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Abstract
Objective and automatic sensor systems to monitor ingestive behavior of individuals arise as a
potential solution to replace inaccurate method of self-report. This paper presents a simple sensor
system and related signal processing and pattern recognition methodologies to detect periods of
food intake based on non-invasive monitoring of chewing. A piezoelectric strain gauge sensor was
used to capture movement of the lower jaw from 20 volunteers during periods of quiet sitting,
talking and food consumption. These signals were segmented into non-overlapping epochs of
fixed length and processed to extract a set of 250 time and frequency domain features for each
epoch. A forward feature selection procedure was implemented to choose the most relevant
features, identifying from 4 to 11 features most critical for food intake detection. Support vector
machine classifiers were trained to create food intake detection models. Twenty-fold cross-
validation demonstrated per-epoch classification accuracy of 80.98% and a fine time resolution of
30 s. The simplicity of the chewing strain sensor may result in a less intrusive and simpler way to
detect food intake. The proposed methodology could lead to the development of a wearable sensor
system to assess eating behaviors of individuals.

Index Terms
Chewing (mastication); food intake detection; monitoring of ingestive behavior (MIB); pattern
recognition; wearable sensor

I. Introduction
Overweight and obesity, defined as the abnormal or excessive body fat accumulation, is
dramatically expanding from high-income countries to low and middle-income countries,
especially in urban settings. The World Health Organization estimated that the overweight
adult population would increase from 1.5 billion in 2008 to 2.3 billion in 2015 and that
obese adult population would rise from 500 to 700 million worldwide during the same
period [1].

The main cause of overweight and obesity is a chronic imbalance between the energy
consumed in foods and the energy expended, which is reflected in body weight gain.
Environmental factors related to an increased intake of energy-dense food (i.e., fried food)
and a decrease in the levels of physical activity due to more sedentary form of life have an
important contribution to obesity [2], [3]. Accurate and objective measurement of ingestive
behavior (when, how and how much of food is consumed), energy content of ingested food
(how many calories were consumed) and energy expenditure (how many calories were
expended) are several of the major challenges facing obesity research, which will allow the
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monitoring of the energy balance to observe and potentially correct behaviors leading to
weight gain.

Monitoring of Ingestive Behavior (MIB) and caloric energy intake in free living individuals
is arguably the most difficult problem in studying behavioral aspects of obesity. Existing
methods such as food recall, food-frequency questionnaires [4], [5], self-report diaries [6],
[7] and multimedia diaries [8] suffer from low accuracy as people tend to miscalculate and
underreport the food consumed leading to an inaccurate measurement of the daily energy
intake [9], [10]. This fact plus the tediousness and lack of robustness of these methods for
long-term studies or interventions arise the need for more accurate methods to detect
specific patterns of food intake.

A. Food Intake Detection
Objective and automatic methods of MIB based on wearable sensors and/or portable devices
were introduced as a potential solution to replace the manual self-reporting methods. MIB
methods are being developed to measure periods of food intake with minimal individual’s
active participation, which may lead to a better understanding of eating behaviors by
improving the accuracy of energy intake estimation, reducing the underreporting and
relieving the subject from the recording burden. Incorporation of new technology helped
participants to automatically report food consumption [11]. In [12], custom designed
software was integrated into a mobile phone with a camera to capture images of foods
before and after the meal as well as to include additional food information using voice
record. In [13], a similar methodology for mobile phone food record was proposed. A total
of 79% of adolescents participating in device evaluation agreed that the software was easy to
use. These automatic dietary monitoring methodologies showed to increase the accuracy of
food intake but they still rely on individuals taking useful images and self-reporting all
consumed foods. In [14], a wearable device that integrates a miniature camera, a
microphone and several other sensors (accelerometers, reference lights, etc) for recording
food intake was presented. The device is currently under development and evaluation.
Another wearable sensor that detected food intake by capturing chewing sounds was
presented in [15]. High chewing sound recognition rates were achieved but without
considering bite and swallowing sounds. The study was then expanded in [16], where a food
recognition system was developed to identify vibration patterns among different foods types.
Chewing sounds were captured from 2 subjects by means of a wearable earpad sensor. A
classification algorithm discriminated intake of four different food types with an overall
accuracy of 86.6%.

Our research group is working on the development of methodologies for monitoring and
characterization of food intake in free living environment [17]–[20]. In [17] we presented
the concept of using chews and swallows as indicators of food intake. In [18], models were
created using information from time sequences of both chews and swallows to detect food
intake with more that 95% accuracy. In [19], supervised group models and unsupervised
individual models were trained to detect food intake by using swallowing alone with 89%
recognition accuracy for group models and 93.9% accuracy for individual models. In [20]
we presented an acoustical method for detection of swallowing events that could be used as
the source of data for methods in [17], [18]. The downside of detecting food intake by
monitoring of swallowing alone is the apparent uniqueness of swallowing sound for each
individual which results in a need for individual calibration and low accuracy of group
recognition models [19]. An appealing alternative may be automatic detection of
characteristic jaw motion during chewing. Indeed, previous studies [21] indicate that
variations in the jaw motion during chewing differ less between individuals and have well-
defined narrow frequency range between 1–2 Hz.
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B. Monitoring of Chewing
Ingestion of solid foods can be detected if chewing is present as during food intake a bite is
followed by a sequence of chews and swallows, and this process is then repeated throughout
an entire meal. Several sensing options are available for monitoring of chewing. Surface
Electromyography (EMG) [22] can sense the activation of jaw muscles during mastication
by placing electrodes over the skin surface. This measurement technique is obtrusive and
may not be suitable for applications under free living conditions. Multi-point sheet-type
sensor [23] and strain gauge abutments [24] were also proposed to measure bite and
chewing forces. These sensors are placed between the teeth and are likely to produce
variations in an individual’s normal mastication patterns. Gold film corrugated strain gauge
sensors were designed and tested in [25] to measure the displacement changes associated
with jaw motion. The changes in sensor curvature were translated to electrical resistance
changes providing and objective and effective method for chewing monitoring. Another
sensing option is based on the detection of vibrations produced during food breakdown
(chewing sounds). In [16], an earpad sensor was developed to detect those sounds by
capturing air-conduced vibrations inside the ear canal.

The goal of this study was to develop a sensor that can non-invasively monitor characteristic
jaw motion during chewing as a part of a wearable device and automatic methods for
detection of food intake through monitoring of chewing events alone. Detection of jaw
motion, rather than the sounds originating from chewing [16] is proposed to achieve a
simpler and more accurate sensor system for MIB. A simple methodology is proposed to
automatically detect food intake from epoch-divided chewing signal by using a Support
Vector Machine (SVM) trained with time and frequency domain features extracted from the
captured chewing signal. A forward feature selection procedure was implemented to
determine the most relevant set of features representing the data. The optimal size of the
epoch was also evaluated along with the most appropriate number of adjacent epochs to be
added to the feature vector.

II. Methods
A. Jaw Motion Sensor

The purpose of this sensor is to detect characteristic jaw motion during chewing while being
non-invasive, non-obtrusive and socially acceptable. In [17] we determined that the best
sensor location is immediately below the outer ear (Fig. 1, left) where the jaw motion can be
detected by monitoring changes in skin curvature due to changes in distance between the
mandible (jaw) and temporal/occipital bones of the skull during chewing. The changes in
skin curvature can be detected by a strain sensor. Testing of various foil gauges including a
corrugated thin-film sensor [25] produced reasonable results in monitoring of the skin
curvature but unacceptably high energy consumption due to low electrical resistance. Low
power consumption is a major requirement as the chewing sensor is envisioned as a part of a
wearable sensor system. To address the power consumption requirement, dynamic skin
strain was monitored by an off-the-shelf piezoelectric film strain gauge sensor. The selected
sensor was the LDT0-028K vibration sensor manufactured by Measurement Specialties
(http://www.meas-spec.com/). The piezoelectric film element is a PVDF polymer of 28 µm
thickness with screen-printed Ag-ink electrodes and laminated with an acrylic coating. This
laminated film element develops high voltage output when flexed and can generate up to 7
V with a tip deflection of 2 mm, however, sensor response is frequency dependent. Testing
of the sensor has demonstrated response in the range −0.05 V to 0.05 V when flexed at
frequencies < 1 Hz, thus allowing for a simple interface through a buffering and level
shifting non-inverting op-amp circuit. The strain sensor was attached by medical tape to the
area below the outer ear (Fig. 1, left). Such attachment satisfied the requirement of non-
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invasiveness and partially satisfied the requirements of non-obtrusiveness and social
acceptance. In the future, the sensor can be further miniaturized, made as a wireless “band-
aid” sensor and thus improve in these categories. The high impedance of the piezoelectric
film was buffered with unity gain by an ultra-lower power TLV-2452 operational amplifier
(Texas Instruments) with 1 GOhm differential input resistance. Fig. 1 (right) illustrates the
buffer circuit used. A voltage divider was added to the input stage to set a DC offset.
Capacitors were connected at input, output and feedback stages to remove high frequency
RF noise and eliminate high-voltage spikes that may be created by accidental high frequency
excitation. The buffered signal was sampled at 100 Hz and quantized with 16 bits by a data
acquisition module USB-1608FS (Measurement Computing). Fig. 2 (top) shows an example
of the signal obtained after buffering.

B. Data Collection
Data used in this study were collected during a human study described in [17]. A total of 20
healthy volunteers (11 males and 9 females, age ranged from 18 to 57 years) who did not
present any medical condition that would interfere with normal food intake were recruited.
The average body mass index (BMI) was 29.0 ± 6.4 kg/m2, to verify that the proposed
sensors may be implemented in obese individuals. Each subject participated in four visits,
each of which consisted of three parts: 1) 20-min resting period where the subjects remained
seated quietly for 10 min and spent 10 min reading aloud; 2) a meal period consisting of
unlimited time to eat four food items in a specific order (pizza, yogurt, apple, peanut butter
sandwich, and water); 3) a second 20-min resting period with subjects remaining silent for
10 min and reading aloud for 10 min. A total of 66 visits were analyzed in this study. The
purpose of reading aloud was to test the ability of the chewing sensor and pattern
recognition algorithms to differentiate jaw motion during chewing and talking. The food
items consumed during the meal period were selected to represent different physical
properties of everyday foods, specifically, different chewing properties such “hardness”,
“crunchiness” and “tackiness” [26], [27]. For example, pizza is a typical soft food; yogurt is
a semi-solid food that some people chew and some don’t; apple is a hard crunchy food while
peanut butter sandwich is soft but very tacky and hard to chew. During each visit, subjects
were monitored by a multi-modal sensor system [17] including a jaw motion sensor. By
means of custom designed scoring software, the beginning and end of each chewing period
were marked labeling each sample of the sensor signal either as ’chewing’ (+1) or ’no
chewing’ (−1). Periods containing bites, swallows, speech or inactivity were labeled as ’no
chewing’. The number of chews associated with each period was counted. The top plot in
Fig. 2 illustrates an example of a signal captured during a 140 s interval by the piezoelectric
strain gauge sensor. The bottom plot illustrates the results of the scoring process that marked
bites (dashed line) and chewing periods (solid line). Fig. 3 shows the signal collected during
a whole visit (more than an hour of data). In both resting periods, the movement of the lower
jaw was minimal during subject’s inactivity. Fig. 3 also illustrates that the sensor responds
to the jaw motion both during food intake and talking with food intake signal being of
higher magnitude, most likely due to higher forces involved in food grinding. The goal of
automatic food intake detection is to reject sensor signals not originating from chewing (e.g.,
talking) and respond only to chewing events. The classifier assigns a class label from the set
{’intake’, ’no intake’} to a time window of specific length (epoch) by classifying the state of
chewing in the sensor signal as ’chewing’ or ’no chewing’. Before classification, a relevant
set of features should be extracted from the sensor signal as described in next section.

C. Feature Extraction and Selection
The first step in the signal processing stage consisted in normalization with respect to the
signal median to compensate for differences in signal amplitude between subjects. The
chewing signal was then segmented into non overlapping windows of fixed duration, called
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decision epochs. This parameter was of special importance since it defined the time
resolution of food intake detection. A shorter epoch would give better time resolution and
should help to identify shorter periods of food intake, such as snacking. On the other hand, a
longer epoch may result in higher accuracy as more of the sensor signal is involved in
making the decision. Our earlier study used an epoch size of 30 s to detect food intake
events based on the frequency of swallows [18]. In this study, three different epoch sizes
were evaluated to determine the most appropriate window size for the detection of food
intake based on chewing signal: 15 s, 30 s, and 60 s.

Since the original signal was divided into non overlapping decision epochs which may have
parts of the signal labeled as “chewing” and parts of the signal labeled as “no chewing”, a
procedure was implemented to derive labels for each epoch from the labels of the original
signal. The 50% determination rule was used, which labeled an epoch as ’chewing’ if at
least 50% of the labels in the original sensor signal were +1, and it labeled an epoch as ’no
chewing’ otherwise.

Spectral differences in the sensor signal during chewing and no chewing were utilized for
feature computation. During the process of chewing, food is crushed inside the mouth by up-
and-down and side-to-side movements of the lower jaw whereas these movements are
absent or less pronounced in inactivity and talking periods (’no chewing’). This effect is
illustrated in Fig. 4 by calculating the average power spectra for chewing and no chewing
epochs (Fig. 4, left) and the difference between them (Fig. 4, right). The frequency interval
ranging from 1.0 Hz to 5.0 Hz presented the largest difference between ’chewing’ and ’no
chewing’ spectra with the most pronounced difference in the range of 1.25–2.5 Hz. These
observations suggested that the characteristic frequencies that distinguish the chewing
process fell inside the 1.25–2.5 Hz range, where suitable features could potentially be used
to create the classification model. This finding corresponds well with the finding of earlier
studies [28], [29] that determined chewing frequency to be in the range 0.7–2 Hz.

To extract signal features, the sensor signals were first filtered using a bandpass filter with
cutoff frequencies of 1.25 Hz and 2.5 Hz. A feature vector fi ∈ ℜd representing each
decision epoch (for i = 1, 2, …, N; where N is the total number of epochs) was created by
combining a set of 25 scalar features extracted from the filtered and unfiltered signal of each
epoch in linear and logarithmic scale. This set of 25 features included time domain and
frequency domain features. Time domain features were based on time statistics of: 1) the
epoch data, 2) the number of zero crossings inside the epoch, and 3) the number of peaks
observed in the epoch. Frequency domain features involved the entropy and standard
deviation of the spectrum as well as the peak frequency observed is the epoch data. Table I
presents a list with the features used.

An initial feature vector fi was created when merging several feature subsets that were
formed by calculating the 25 scalar features form the filtered and unfiltered epoch and by
different feature combinations:

(1)

where ffilt and funfilt represent feature subsets extracted from the filtered and unfiltered
epochs respectively; ffilt/unfilt and funfilt/filt represent two feature subsets obtained by
calculating the ratio between each feature of the ffilt and funfilt subsets and vice versa; and
ffilt·unfilt represents another subset of features obtained by calculating the product between
each feature of the ffilt and funfilt subsets. These combinations yielded an initial feature
vector with 125 dimensions.
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A scale equalization was performed to features in the ffilt and funfilt subsets using the natural
logarithm. Ratio and product between resulting feature subsets was again calculated to
create a log-scaled feature vector with 125 dimensions:

(2)

Finally, both the linear and log-scaled feature vectors were concatenated into a single 250-
dimension feature vector Fi ∈ ℜ250 that represented each epoch

(3)

To account for the time-varying structure of the chewing process, features from neighboring
epochs were added to the original epoch feature vector according to the number of lags
selected L. Three different lag values were tested: 0, 1, and 2. If this number was greater
than zero, then features from L previous and L subsequent epochs were included in the final
feature vector τi:

(4)

Some of the 250 features extracted may not be as important as others to discriminate
between chewing and no chewing epochs. A forward selection procedure [30] was used to
find a subset with the most relevant features based on 20-fold cross-validation classification
accuracy. In the first step, for a total of D = 250 features, D models were created containing
only one feature each. The most relevant feature was given by the model that presented the
highest classification accuracy. In the second step, the selected feature was added to the
subset and D − 1 new subsets were created by pairing the chosen feature with the remaining
D − 1 features, one at a time. D − 1 models were created using those subsets and the pair of
features that presented the higher classification accuracy was selected. In the jth step, D−j
models were created using D−j subsets that combined the j previously selected features with
the each one of the remaining D − j features. The model that yielded the highest
classification accuracy was used to selected the (j + 1)th most relevant feature. The
algorithm stopped when the addition of new features did not increase the classification
accuracy. The resulting subset contained the most relevant set of features that presented the
highest classification accuracy.

D. Signal Classifier
Support Vector Machines (SVM) is a supervised machine learning technique that have been
used for classification of wide variety of data sets showing outstanding performance in most
cases [31]. Robustness and high generalization are two powerful properties that place SVM
over other binary classification methods. These properties become beneficial when training
group models, which would classify data sets with high variability between subjects.
Consequently, SVM was selected in this study as the classification algorithm for chewing
detection. SVM models were trained using the LibSVM software package [32]. A linear
kernel function k(x, xi) = x·xi was used. Since the features may not be linearly separable in
the new feature space, the parameter C was introduced to penalize the training points lying
in the wrong side of the decision margin. The optimal value for the parameter C = 10n was
chosen by a search procedure using four values of n ∈ (−2, −1, 0, 1).

During the training stage, a subject-independent group model was created by incorporating
chewing information from all of the subjects into the training dataset to account for the inter-
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subject variability. The group model allows detection of food intake without a need for
individual calibration. Each point in the training set was a pair of the form {τi, ti}, where τi
was the feature vector representing epoch ei and ti ∈ {−1, 1} was the class label that
indicated if the feature vector represented a ’chewing’ (ti = 1) or a ’no chewing’ (ti = −1)
epoch. The resulting group model classified an epoch’s feature vector belonging to the
validation set as ’chewing’ or ’no chewing’ which represented an ’intake’ or ’no intake’
epoch, respectively. A 20-fold cross-validation procedure was used to train and validate the
model. The selection of 20 folds allowed the training of the model with features from 19 of
the 20 subjects recruited and the validation using independent features from the remaining
subject. Thus, each subject was used once for model validation and the results were
averaged across all the validation results.

To evaluate the performance of the model, the class labels assigned to each epoch in the
validation set were compared to manual scores performed by experienced human raters [17].
The accuracy value defined as the average between precision and recall was the parameter
used for comparison:

(5)

(6)

The true positive (T+) was the number of correctly classified ’chewing’ epochs, the false
negative (F−) was the number of times that the model failed to classify a ’chewing’ epoch
and the false positive (F+) was the number of times the model incorrectly classified an epoch
as ’chewing’.

III. Results
The size of the epoch that best represented the chewing signals was selected from three
different values. Results of 20-fold cross-validation indicated that a 30 s epoch size
presented higher accuracy than 15 s and 60 s epoch sizes. In all cases, the classifiers were
trained with features from the current epoch plus features from one adjacent epoch data (lag
L = 1) to account for the time variability of the chewing signal. Fig. 5 illustrates an
improvement in the classification accuracy for the three epoch sizes as more features were
added to the training vector. No further improvement was observed after the training vector
comprised a certain number of features. For an epoch size of 30 s, only 8 features were
needed to reach the maximum accuracy value of 80.98% whereas for an epoch size of 15 s
the accuracy increment stopped after 11 features were added. When the epoch size increased
up to 60 s, the classifier discriminated ’chewing’ and ’no chewing’ epochs with an accuracy
of 78.18% using only 5 features although this value did not increase when more features
were included in the training vector. Using 30 s epoch (L = 1), the group model trained with
8 features presented per-subject classification accuracies that ranged from 60.5% to 90.8%
(Fig. 6).

Fig. 7 shows the results using an epoch size of 30 s for three different lag values. The best
performance was found to be 81.39% for a feature vector that grouped features from the
current epoch and from L = 2 adjacent epochs on each side. This result was very close to the
80.98% accuracy value obtained with L = 1. Statistical analysis showed that the group
models for lagged features presented significant difference in the classification accuracy
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than the group model for non lagged features (two-tailed t-test, p < 0.05), which may
indicate the need of including adjacent epoch data to the current epoch.

Results of the forward selection procedure for 30 s epochs are presented in Table II. Only
the results for the lagged feature sets are presented due to they showed better performance
than non-lagged features. The feature set combined linear and log scaled features from
filtered and unfiltered epochs. A common feature observed in both sets was the entropy of
the filtered epoch, which in both cases was the first feature selected. More than 70% of
accuracy was obtained by using entropy as the only one feature meaning that the measure of
the randomness of the filtered signal represents an acceptable predictor of chewing epochs.
For L = 1, most of the class discriminatory information was given by the mean and standard
deviation of the time between peaks of the filtered and unfiltered epochs as well as by the
fractal dimension. For L = 2, results indicated that the most relevant features were mostly
log scaled magnitudes from filtered and unfiltered epochs. Mean and standard deviation of
the time between peaks was also chosen.

IV. Discussion
The presented food intake sensor is based on a very simple principle of capturing skin strain
during chewing events rather than chewing sound [16]. Reliance on low-frequency chewing
motion allows for use of inexpensive and low-power piezoelectric film sensor as the sensing
element that can be unobtrusively worn below the outer ear. Use of low-frequency signals
also reduces the energy consumption for digital signal processing and feature extraction
which is important for the envisioned wearable sensor system. Further miniaturization of the
sensor and integration of on-board signal processing is possible, potentially enabling
creation of a small wireless “band-aid” wearable sensor system for objective monitoring of
ingestive behavior.

Signals captured during periods of resting, talking and food ingestion were used to create a
group model that discriminated between ’chewing’ and ’no chewing’ epochs with an
averaged accuracy of 80.98% and a time resolution of 30 s. This group model was
developed on approximately 72 hours of sensor data collected from 20 subjects. The reason
behind creating a population-based model was to incorporate the inter-individual variability
of the chewing signals in the training stage so a robust classification model requiring no
individual calibration could be achieved.

The training dataset grouped the most relevant features that were selected by the forward
selection procedure. Through this procedure, features were chosen based on the
classification accuracy of SVM models created using individual and combined features. This
fact does not necessarily imply that the selected features are not correlated with each other.
However, the projection of these features using the linear kernel function provided the
largest separation between classes (largest margin) in the new feature space which was
essential to discriminate between ’chewing’ and ’no chewing’ epochs. Feature selection
results showed that no more than 11 features were required to achieve the highest
classification accuracy for any epoch size or number of lags used. This number represented
only 4.4% of the original set containing 250 time domain and frequency domain features and
therefore can be calculated on limited computing resources of a wearable device. The graphs
in Figs. 5 and 7 showed classification accuracies growing asymptotically until they reached
a plateau meaning that the addition of more features to the training vector did not
significantly increase the classification accuracy. The feature sets giving the highest
classification accuracies (Table II) contained features extracted both from the filtered and
unfiltered epoch. These results not only highlighted the importance of combining filtered
and unfiltered features but also suggested that the frequency band selected for filtering
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(1.25–2.5 Hz) indeed encompassed discriminatory information to distinguish chewing and
no chewing epochs.

The group model created was based on a per-epoch classification instead of per-meal
classification, which would allow the detection of short events of food ingestion such as
snacking. The original sensor signal was divided into non-overlapping epochs of fixed size
that were labeled as ’chewing’ or ’no chewing’ epochs. Three different epoch sizes were
investigated and the optimal size was selected after comparing the classification accuracy of
the models created. Results in Fig. 5 showed that a 30 s epoch presented the highest
classification accuracy, meaning that the group model was able to detect food intake with 30
s time resolution. The amount of information used for epoch classification increased when
features from neighbor epochs were added to the current epoch features. The lag parameter
L indicated the total number of adjacent epochs used to train the model. Fig. 7 shows that
lagged features (L = 1 and L = 2) improved the classification accuracy observed when
features were not lagged (L = 0), which suggested the need of including features form
adjacent epochs to account for the time variability of food ingestion. Reported results
indicated that the classification accuracy increased when more features were lagged. For an
epoch size of 30 s, L = 1 and L = 2 produced statistically similar accuracy values (two-tailed
t-test, p > 0.05). This result added to the fact that feature vectors with L = 1 require less
computing time than with L = 2 suggested that features from only one adjacent epoch may
be added to the current epoch features without jeopardizing the performance of the system.

Classification accuracy may potentially be improved by creating individual models instead
of the group model. The implementation of individual models based on subject-specific data
would have to provide for means of individual calibration which could potentially adapt to
subject’s individual pattern of chewing and therefore increase classification accuracy.

Ingestion of liquids may not be accurately detected by the proposed model although further
studies are needed to confirm this statement. Typically, the chewing process is absent during
liquid consumption. However, the sensor signals captured during the sip and swallowing
process may present typical features that can be sufficient to detect liquids consumption.
Another interesting point of conflict may arise during chewing of food surrogates such as
gum. This event is not associated with food intake and therefore the model may accurately
detect chewing but mistakenly predicting food intake. However, further tests are needed to
determine how the methodology behaves on food surrogates as their chewing pattern may be
different from that of food.

Results of a previous study estimated that an accuracy of 95% can be achieved in the
detection of food ingestion when measuring chews and swallows [18]. Another study used
only swallowing sounds captured with a miniature microphone located over the
laryngopharynx to create individual models that detected periods of food intake with an
average accuracy of 83.2% [19]. The results reported here showed that comparable
classification accuracy but without the need of individual calibration can be achieved by
monitoring of jaw motion. The simple structure of the chewing strain sensor may result in a
less intrusive and simpler way to detect food intake. Two more advantages support that
statement. First, the strain sensor is simply attached to the skin by using medical tape and
may last for a 24-hour period with a low risk of sensor detach. Second, the strain sensor is
easily available in the market at a low cost. On the other hand, changes in temperature as
well as vibrations caused by daily living activities (e.g., walking, talking, sitting, etc) may
affect the performance of the sensor. New studies are being performed in our laboratory to
include such artifacts into the training data for long-term applications under free-living
conditions. The simple implementation of the chewing sensor presented in this paper plus
the automatic classification of food intake using only chewing events constitutes an
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important step towards the development of a wearable device for monitoring of the ingestive
behavior of individuals under free-living conditions.

V. Conclusion
This paper presented a sensor and signal processing and pattern recognition methodology to
detect periods of food intake by monitoring characteristic jaw motion during food
consumption. The most relevant features representing the sensor signals were chosen by a
forward selection procedure. The population-based model created was able to classify
chewing epochs with an averaged accuracy of 80.98% and a time resolution of 30 s. This
epoch-based classification approach would allow the monitoring of short events of food
consumption, such as snacking. Practical implementation of this methodology in a wearable
device is highly possible due to the use of a simple and inexpensive strain gauge sensor to
monitor chews plus a simple classification algorithm that can be easily implemented in a
microcontroller. The development of such wearable device would allow the real-time
monitoring of ingestive behavior under free-living conditions.
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Fig. 1.
Left: strain sensor attached below the outer ear to detect movement of the lower jaw. Right:
sensor amplifier.
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Fig. 2.
Top: Strain sensor signal collected during resting and food ingestion. Bottom: Bites and
chews marked during annotation of food intake by a human rater.
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Fig. 3.
Example of a chewing signal collected during the three parts of a subject’s visit.
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Fig. 4.
Left: Power spectrum for “No Chewing” and “Chewing.” Right: Difference between power
spectra.
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Fig. 5.
Classification accuracy for three epoch sizes as more features are included in the feature
vector. Epochs of 30 s presented the higher accuracy.
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Fig. 6.
Classification accuracy for each subject for a time resolution of 30 s.
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Fig. 7.
Classification accuracy for an epoch size of 30 s and for three values of the lag parameter L.
Lagged features overcame non-lagged features.
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TABLE 1

Scalar Features Used to Extract Information From Chewing Signal.

Feat # Description

1 RMS

2 Entropy (signal randomness)

3 Base 2 logarithm

4 Mean

5 Max

6 Median

7 Max to RMS ratio

8 RMS to Mean ratio

9 Number of zero crossings

10Mean time between crossings

11Max. time between crossings

12Median time between cross.

13Minimal time between cross.

14Std. dev. of time between crossings

15Entropy of zero crossings

16Number of peaks

17Entropy of peaks

18Mean time between peaks

19Std. dev. of time between peaks

20Ratio peaks/zero crossings number

21Ratio zero crossings/peaks number

22Entropy of spectrum

23Std. dev. of spectrum

24Peak frequency

25Fractal dimension (uniqueness of the elements inside an epoch)
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TABLE II

Features Selected After a Forward Selection Procedure.

Epoch size = 30s - Lag = 1 Epoch size = 30s - Lag = 2

# Features Selected* # Features Selected*

2 Entropy - (F) 2 Entropy - (F)

193 Mean time between peaks - (logF/logNF) 168 Mean time Between peaks - (logNF)

129 Mean - (logF) 219 Std. dev. time between peaks - (logNF/logF)

244 Std. dev. time between peaks (logF*logNF) 3 Base 2 log-(F)

50 Fractal dimension - (NF) 57 Max to RMS ratio - (F/NF)

19 Std dev time between peaks -(F) 183 RMS to mean ratio - (logF/logNF)

94 Std dev time between peaks -(NF/F) 233 RMS to mean ratio - (logF*logNF)

25 Fractal dimension -(F) 130 Max - (logF)

224 peak frequency - (logNF/logF)

*
(F) filtered epochs, (NF) unfiltered epochs, (logF) log scaled filtered epochs, (logNF) log-scaled unfiltered epochs.
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