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ABSTRACT 

In this thesis, we treat tunneling similar to a scattering problem in which an incident wave on a barrier is 

partially transmitted and partially reflected.  The transmission probability will be related to the 

conductance using a model due to Landauer.  Previously tunneling has been treated using a simple barrier 

model, which assumes the electron dispersion is that of free electrons.  In this model it is not possible to 

investigate tunneling in the gap between a valence band and a conduction band.  We shall remedy this 

limitation by using the tight-binding model to generate a barrier with a gap separating a valence band and 

a conduction band.  To do this, we constructed a model consisting of semi-infinite chains of A atoms on 

either side of a semi-infinite chain of B-C molecules.  The B-C chain has a gap extending between the 

onsite energy for the B atom and the onsite energy for the C atom.  Tunneling through the gap has been 

calculated and plotted.  We present exact closed form solutions for the following tunneling systems: (i) A-

B interface, (ii) A-(B-C) interface, (iii) A-B-A tunnel barrier, (iv) A-(B-C) interface with the orbitals on B 

having s-symmetry and those on C having p-symmetry, (v) A-(B-C)-A tunnel barrier. 
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CHAPTER 1: INTRODUCTION 

The earliest concept critical to understanding quantum tunneling was introduced by Louis de 

Broglie.  De Broglie proposed in 1923 that waves of matter have a wavelength inversely proportional to 

their momentum.  In 1927, Friedrich Hund was the first to make use of the concept of quantum 

mechanical barrier penetration [1]. Quantum tunneling of electrons cannot be directly perceived other 

than on the quantum mechanical scale.  Classical mechanics cannot explain tunneling phenomena.  

Quantum mechanical tunneling happens when particles move through a barrier that is deemed 

impenetrable by classical mechanical standards.  This barrier can be a region of high energy, a vacuum, or 

an insulator.  

Tunneling plays an essential role in several physical, chemical, and biological phenomena.  In 

field emission, an electron can jump from the surface of a metal into a vacuum by tunneling through a 

potential barrier.  The electron is allowed to tunnel through the vacuum if the electric field is large enough 

and the barrier is thin enough. This is called cold emission. Semiconductors are another example where 

tunneling can occur.  Electron tunneling through an insulating barrier is important for flash devices.  

Tunneling can also be seen in radioactive decay.  In the world of nanotechnology, quantum tunneling can 

be seen in scanning tunneling microscopes, transistors, and even touch screens.  

Consider a particle with energy E in the inner region of a one-dimensional potential well of height 

V.   Assume that the walls of the well have thickness, t.  According to classical mechanics, if E is less than 

V, the particle will remain in the well forever.  If E is greater than V, then the particle will  escape the 

potential well.  This is not the case, according to quantum mechanics.  Even if V is greater than E, there is 

a possibility that the particle will tunnel through the barrier.  The particle can escape even if its energy is 

less than V, but the probability depends on the difference between E and V and on the thickness of the 

walls surrounding the well.   
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For tunneling of electrons in solids, the potential well is typically a metallic region where 

electrons at the Fermi energy can propagate and the barrier is generally a material in which electrons at 

the Fermi energy cannot propagate, in other words there is typically a gap at the Fermi energy for the 

barrier material.  Even though electrons cannot propagate indefinitely, there will be an evanescent state 

that extends from the metal into the tunneling barrier.  These evanescent states play a central role in 

tunneling.  The evanescent states arise from the complex band structure of the insulator which determines 

how they decay in the insulator. [2,3]  

The electron tunneling phenomenon arises from the wave nature of the electrons and results from 

the fact that when a wave encounters an interface, it may be partially reflected and partially transmitted.  

This interfacial reflectance will lead to an interfacial or junction resistance.  In this thesis, we shall treat 

tunneling similar to a scattering problem in which an incident wave on a barrier is partially transmitted 

and partially reflected.  The transmission probability will be related to the conductance using a model due 

to Landauer.[4]  Brinkman, Dynes, and Rowell treat tunneling in this way using a simple barrier model, 

but their model treats the electron dispersion using the free electron model.  In this approach it is not 

possible to investigate tunneling in the gap between a valence band and a conduction band.  We shall 

remedy this limitation by using the tight-binding model to generate a barrier with a gap separating a 

valence band and a conduction band. [5] 

In an alternative model for tunneling used by Bardeen [6] and Slonczewski [2], one begins with 

two electrodes separated by an insulator so thick that no tunneling occurs. Then the two electrodes are 

regarded as completely independent systems.  When they are brought closer together so that their wave 

functions begin to overlap, tunneling occurs.  The overlap matrix elements correspond directly to the 

hopping integrals of the tight-binding method.  Perturbation theory is used to calculate the tunneling 

probability from the matrix elements.   It is assumed that the states between which tunneling takes place 

are those of the electrodes unperturbed by the tunneling process (electrodes separated by an infinitely 

thick insulator). 
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CHAPTER 2: TUNNELING 
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CHAPTER 2.1: LANDAUER CONDUCTANCE FORMULA 

Ballistic transport, including tunneling of electrons, was treated by Landauer in 1970. [4] In this 

approach, one imagines two electron reservoirs separated by leads and a sample (in our case, a tunnel 

barrier) as shown in Figure 1.   

 

 

Figure 1. Geometry for derivation of Landauer transport formula showing left and right electron 

reservoirs separated by leads and a sample. 

Within each reservoir we consider the electrons to be (locally) in equilibrium at chemical 

potentials 1mon the left and 2mon the right.  We also imagine that there are conduction channels that 

connect the reservoirs.  These channels consist of the transverse modes of the leads.  In particular, for a 

system with two dimensional periodicity perpendicular to the leads, they will consist of the values of the 

crystal momentum of the two dimensional Brillouin zone.  The number of these transverse modes is 

proportional to the cross sectional area of the leads.  The reservoirs are viewed as emitters of electrons, 

the one on the left emitting right-going electrons and the one on the right emitting left-going electrons, 

very much like the classical black body emitting radiation. 

The Landauer formalism relates the net current through the sample between the two reservoirs to 

the emitted currents.  The right-going current from the left reservoir, for example, will be given by 

integrating over all of the states in the left reservoir.  Only the right going states (()xv+ k ) will contribute 

Sample 

Left electron 

reservoir 

Right electron 

reservoir 

m
1

 m
2

 

left lead right lead 
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to this current.  The occupation of the states is given by the Fermi function, (1( )f m  ) so that in the 

absence of scattering the right-going current density in the leads in our semi-classical approximation for a 

single spin channel would be 

 

( )
3

13
 ( ) ( )

2
x

e
J d k v f m

p

+ += ñ k  
 

( 1 ) 

 

 

where x  is the direction from left to right leading from one reservoir to the other, 1( )f m is the electron 

distribution function, ( )xv+ k is the electron velocity in the z-direction, and e is the electron charge.  If 

scattering (i.e. anything that breaks the 3-dimensional periodicity of the leads) is present, the forward 

scattered electrons will still get through and contribute to the right-going current, 

 

( )
3

13
 ( ) ( ) ( ),

2
x

e
J d k v f Tm

p

+ + ++= äñ
'

'

k

k k,k  
 

( 2 ) 

 

where ( )T++ä
'

'

k

k,k is the probability that electrons with momentum k will be transmitted, i.e. have a 

positive component of velocity in the x  -direction after scattering.   Let the component of the momentum, 

k , parallel to the interface be ||k and the component perpendicular to the interface be xk .  It can be 

shown that ( )xv+ k is related to the energy dispersion by, 

 1 ( )
( )x

x

E
v

k

+ µ
=

µ

k
k . 

 

( 3 ) 
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Usually there will be more than one band so there should be an index, e.g. n, that should be 

summed over to obtain the current density, however, for simplicity, we will assume that k includes the 

band index and the integral over k includes a sum over bands which is not shown explicitly. 

If we separate the integral over momentum into integrals over k and xk , we can write J
+

as 

 

( )
2

|| 12

1 1 ( )
 ( ) ( )

22
x

x

e E
J d k dk f T

k
m

pp

+ ++µ
=

µ
äñ ñ

'

'

k

k
k,k , 

 

 

( 4 ) 

 

or,  

 
1

1 1 ( )
 ( ) ( )

2
x

x

e E
J dk f T

A k
m

p

+ ++µ
=

µ
ä äñ

'
||

'

k k

k
k,k , 

 

 

( 5 ) 

 

where we have used a standard expression to relate the integral over the two dimensional Brillouin zone 

to a sum.  Finally, we convert the integral over xk into an integral over energy and use the expression 

I=JA to obtain,  

 1

'
||

'

||

,

 ( )
e

I dE T
h

m

+ ++= äñ
||

||

k k

k ,k . 

 

 

( 6 ) 

 

Similarly, we can obtain the current in the x-  direction, 
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 2

'
||

'

||

,

 ( )
e

I dE T
h

m

- --= äñ
||

||

k k

k ,k . 

 

 

( 7 ) 

 

Time reversal invariance of the Schrödinger equation allows us to equate the transmission probability left 

to right to the transmission probability right to left, T T++ --= .  If 1m= 2m  the current from electrons 

whose origin is on the left cancels that of the electrons originating on the right so that the net current 

would be zero.  

If we apply a small positive bias voltage V  so that 1 2 eVm m- = , then the net current will come 

from the energy ñwindowò between 1m and 2m , and the net current (right-going minus left-going) can be 

written as 

 

( )

1 2

' '
|| ||

'
||

'
||

|| ||

, ,

1 2 ||

,

2

1 2
||

,

 ( )  ( )

( )

( ) .

e e
I    I - I dE T dE T

h h

e
T

h

e
T

h e

m m

m m

m m

+ - ++ --

++

++

= = -

= -

-
=

ä äñ ñ

ä

ä

|| ||

||

||

' '

|| ||

k k k k

'

||

k k

'

||

k k

k ,k k ,k

k ,k

k ,k

 

 

 

 

 

 

( 8 ) 

 

Using the definition of the bias voltage, 1 2V
e

m m-
= , and the definition of conductance, G IV= , the net 

current yields the Landauer conductance formula (for a single spin channel), 
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'
||

2

||

,

( ) .

FE

I e
G T

V h

++è ø= = ê úä
||

'

||

k k

k ,k  

 

 

( 9 ) 
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CHAPTER 2.2: SIMPLE BARRIER MODEL FOR TUNNELING 

As an example, the Landauer formula can be used to calculate the conductance for a simple 

model in which the leads are described by free electrons and the sample is modeled as a potential step or 

barrier.  This allows us to reduce the problem of calculating the transmission probability to a one 

dimensional problem that can be solved by requiring continuity of the wave function and its derivative at 

the boundaries between the sample and the leads.  We begin with the Schrödinger equation, in the general 

representation in which the Hamiltonian and wave function depend on both time and position, 

 

( ) ( ) ( )
2

2 , , ,
2

V r t r t i r t
m t

å õ µ
- Ð + F = Fæ ö

µç ÷
. 

 

 

( 10 ) 

 

Here m  is the mass of the electron, and is Planckôs constant.  In our case, the potential, ()V r , and the 

Hamiltonian, 

 
()

2
2

2
H V r

m
=- Ð + , 

 

( 11 ) 

 

 

are independent of time, so the solution to the Schrödinger equation can be separated into time and 

position dependences by writing the wave function as the product of space and time dependent functions, 

( ) ()(),r t r f tF =Y so that the Schrödinger equation becomes, 
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() () () ()() () ()

2
2

2
f t r V r r f t i r f t

m t

µ
- Ð Y + Y = Y

µ
. 

 

 

( 12 ) 

 

We divide by ()()r f tY to obtain, 

 

()
() ()

()
()

2
21 1

,
2

r V r i f t
m r f t t

µ
- Ð Y + =

Y µ
 

 

( 13 ) 

 

and we choose a separation constant, E , the electron energy, to separate the Schrödinger equation into 

two equations: 

 

()
() ()

2
21

2
r V r E

m r
- Ð Y + =

Y
 

 

( 14 ) 

 

and 

 

()
()

1
i f t E

f t t

µ
=

µ
. 

 

( 15 ) 

 

Eq. (15) can be integrated to yield,  

 
()

E
i t

f t e
-

= . 
 

( 16 ) 

 

The wave function becomes 
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( ) (),

E
i t

r t r e
-

F =Y  
 

( 17 ) 

 

where ()rY depends on ()V r and is found by solving the time independent Schrödinger equation, 

 

() () ()
2

2

2
V r r E r

m

å õ
- Ð + Y = Yæ ö
ç ÷

, 

 

 

( 18 ) 

 

with boundary conditions appropriate to incoming electrons from x=-¤ and transmitted electrons for  

x=+¤.  () ()V r V x=  is the potential which is assumed to be zero except in the region occupied by the 

sample or tunnel barrier which extends from 0x=  to x d= , where it is a constant, .V    

Because () ()V r V x=  is only a function ofx , we can separate variables by assuming a wave function of 

the form, 

 () ( ) ()()(), ,r x y z x y zy f zY =Y = . 

 

( 19 ) 

 

We substitute this form for ()rY into the Schrödinger equation to obtain 

 

()()
()

()()
()

()()
()

()()()() ()()()

2 2 22

2 2 22

          .

x y z
y z x z x y

m x y z

V x x y z E x y z

y f z
f z y z y f

y f z y f z

è øµ µ µ
- + +é ù

µ µ µê ú

+ =

 

 

 

( 20 ) 

 

Dividing Equation (20) by Equation (19) yields, 
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()
() ()()

()
()

()
()

2 2 2 2

2 2

2 2

2

1 1

2 2

1
.

2

x V x x y
x m x y m y

z E
z m z

y y f
y f

z
z

è ø è øµ µ
- + + -é ù é ù

µ µê ú ê ú

è øµ
+ - =é ù

µê ú

 

 

 

 

( 21 ) 

Each of the three terms on the left side of the equals sign depends on only one of the ,  x y or z  

coordinates.  Hence we have three independent equations: 

 
() ()() ()

2 2

122
x V x x E x

m x
y y y

µ
- + =

µ
 

 

( 22 ) 

 

 
() ()

2 2

222
y E y

m y
f f

µ
- =

µ
 

 

( 23 ) 

 

 
() ()

2 2

322
z E z

m z
z z

µ
- =

µ
 

 

( 24 ) 

 

where 

 
1 2 3E E E E+ + =. ( 25 ) 

 

Equations (23) and (24) have plane wave solutions, 

 () ( )exp yy ik yf = , 
( 26 ) 

 () ( )exp zz ik zz = , ( 27 ) 
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with  

 2 2

2
2

yk
E

m
=  

 

( 28 ) 

 

and 

 2 2

3
2

zk
E

m
= . 

 

( 29 ) 

 

Thus 

 

( )
2 2

2 2 2

1
2 2

y zE E k k E k
m m

= - + = -  

 

( 30 ) 

 

and Equation (22) may be written as, 

 

() () ()
2 2 2

2

22 2
x E k V x x

m x m
y y

å õµ
- = - -æ ö

µ ç ÷
, 

 

( 31 ) 

          

which may be written in regions 1 and 3 where () 0V x =  as 

  

 ()
()

2

2

2

x
k x

x

y
y

µ
=-

µ
 

 

( 32 ) 

 

with 
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2 2

2

2mE
k k= - , 

 

( 33 ) 

 

and in region 2, where ()V x V= as 

 ()
()

2

2

2

x
k x

x

y
y

µ
¡=-

µ
 

 

( 34 ) 

 

where 

 
( )2 2

2

2m
k E V k¡= - -. 

 

( 35 ) 

 

In fact, we shall be interested in the energy range for which 
2k¡ is negative. 

When the energy of the electron, E , is lower than the barrier potentialV , the wave functions may be 

written for regions, 1, 2 and 3 as:  

 
2

1 2

2
,    (region 1)ikx ikx mE

e re k ky -= + = -    

                        

( 36 ) 

 

 
2

2 2

2 ( )
,    (region 2)k x k x m V E

Ae Be k ky
¡ ¡- -

¡= + = +  

 

( 37 ) 
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( )2

3 2

2
,   region 3ik x mE

te k k ky
¡¡ ¡¡= = - =  

 

 

( 38 ) 

 

Equation (36) represents the boundary condition that in region 1, the wave function consists of an 

incident plane wave traveling in the x+  direction and a reflected wave of relative amplitude r  traveling 

in the x-  direction.  Equation (38) represents the boundary condition that in region 3 there is no wave 

incident from the right, only a transmitted wave of relative amplitude t .  The coefficients, , , ,  and ,r t A B

are determined from the boundary conditions and the requirements that the wave function and the 

derivatives should be continuous.  If we assume that the left and right leads are made from the same 

material, then k and k¡¡are equal and will be represented byk .  1y and 3y are the wave functions for the 

left (1) and right leads (3) respectively, and  2y is the wave function for the barrier region (2). 

Requiring continuity of wave function and derivative at the interfaces yields, 

 
1 2 2 30 0

31 2 2

0 0

x x x a x d

x x x a x dx x x x

y y y y

yy y y

= = = =

= = = =

= =

µµ µ µ
= =

µ µ µ µ

 

 

 

 

( 39 ) 

 

 

 

( )

1

1

k d k a ikd

k d k d ikd

r A B Ae Be te

k ik
r A B Ae Be te

ik k

¡ ¡-

¡ ¡-

+ = + + =

¡å õ å õ
- = - - =æ ö æ ö

¡ç ÷ ç ÷

 

 

 

( 40 ) 
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This set of four linear equations can be solved to determine, ,  ,  A B r and t    

 ( )
2 22 cosh ( )sinh

k dk k ik e
A

ikk k d k k k d

¡¡+
=

¡ ¡ ¡ ¡+ -
, 

 

 

( 41 ) 

 

 ( )
2 22 cosh ( )sinh

k dk k ik e
B

ikk k d k k k d

¡-¡-
=-

¡ ¡ ¡ ¡+ -
, 

 

 

( 42 ) 

 

 

2 2

2

2 cosh ( )sinh

ikk
t

ikk k d k k k d

¡
=

¡ ¡ ¡ ¡+ -
, 

 

 

( 43 ) 

 

and 

 2 2

2 2

( )sinh

2 cosh ( )sinh

k k k d
r

ikk k d k k k d

¡ ¡+
=

¡ ¡ ¡ ¡+ -
. 

 

 

( 44 ) 

 

The transmission and reflection amplitudes are given byr andt , respectively. 



 
 

17 
 

Figure 2: Tunneling wave function for the simple barrier model for a fixed value of k .  For this 

example, the barrier extends from 0x=  to 2x= . 

The transmission and reflection probabilities, for a given value of k   are given by  

 

( )

( )

2 2
*

2
2 2 2 2 2 2

2 2

2
2 2 2 2 2

4

4 cosh sinh

4

4 sinh

k k
T tt

k k k d k k k d

k k

k k k k k d

¡
= =

¡ ¡ ¡ ¡+ -

¡
=

¡ ¡ ¡+ +

. 

 

 

 

( 45 ) 

 

and 
( )

( )

2
2 2 2

*

2
2 2 2 2 2

sinh

4 sinh

k k k d
R rr

k k k k k d

¡ ¡+
= =

¡ ¡ ¡+ +
. 

It is important to note that the transmission probability is only given by the simple relation 
*T t t=  when 

the leads are the same on the two sides of the barrier.  If they are different, one must either compare the 

transmitted current to the incident current or carefully normalize the incident and transmitted wave 
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functions so that they carry the same current and flux.  We will return to this point again after we discuss 

the current density.  

To obtain the conductance, we must integrate the transmission probability in Equation (37) over k . If we 

define 

 
2

2

2
F

mE
k =  

 

( 46 ) 

 

and 

 2

2

2
,

mV
k =  

 

( 47 ) 

 

then the transmission probability may be written, 

 

( )
( )( )

( )( )

2 2 2 2 2

2 2 2 2 2 4 2 2 2 2

4
, ,

4 sinh

F F

F F F

k k k k
T E V k

k k k k k k d

k

k k k

- - +
=

- - + + - +
, 

 

 

( 48 ) 

 

and the (single spin-channel) conductance from the Landauer formula may be written, taking advantage 

of the conservation of transverse momentum as an integral over k ,  

 

( )
2

0

,V,
2

Fk
e A

G k dk T E k
h p

= ñ . 
 

( 49 ) 

 

Setting 
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Fk

x
k
=  

 

( 50 ) 

 

and 

 k
z
k
= , 

 

( 51 ) 

 

this may be written as,  

 ( )( )

( )( ) ( )

2 2 2 22
2

2 2 2 2 2 2 2
0

4 1

2 4 1 sinh 1

x x z x ze A
G zdz

h x z x z d x z
k
p k

- - +
=

- - + + - +
ñ . 

 

 

( 52 ) 

 

A change of the variable of integration using, 

 2 2 21u x z= - + ( 53 ) 

yields, 

 ( )
( ) ( )2

2 212
2

2 2 2

1

4 1

2 4 1 sinh
x

u ue A
G udu

h u u du
k
p k

-

-
=

- +
ñ . 

 

( 54 ) 

 

It should be noted that this result is only valid in the limit of low bias both because we have restricted the 

potential to be the same in both leads and because we have assumed a constant potential for the barrier 

region.   
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In the limit of 0d  in which the barrier vanishes and the transmission probability becomes 

unity, Equation (54) can be integrated trivially to give, 

 

( )

2
2

2
2

F

e A
G k

h
p

p
= , 

 

( 55 ) 

 

which is the Sharvin single spin-channel conductance for a contact. [7] The Sharvin conductance can be 

viewed as 

2e

h
 times the number of conductance channels. The number of conductance channels per unit 

area is the projection of the Fermi sphere onto a plane perpendicular to the x-axis divided by ( )
2

2p , 

which may be viewed as a square wave length per conductance channel.   

In the limit of d¤, Equation (54) yields, 

 

( )

( )
( )

3
2

2

1
2

2

2
2

2

16 1 exp 2 1
2 2

           1 , , 0
2 2

, , 0
2

F F F

F
F

F

E E Ee A
G d

h d V V V

Ee A
T E V k

h d V

e A
k T E V k

h

k
k

p

k

p

p
p

å õå õ
= - - -æ öæ ö æ öç ÷ ç ÷

å õ
= - =æ ö

ç ÷

= =

 

 

 

 

( 56 ) 

 

where 

2 2

2 Fk
k

d

k-
= . 
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Figure 3: Graph of Conductance as a function of FE

V
 for different values of thickness, d.  Conductance 

is expressed in units of 

2 2

2

e A

h

k

p
(see Equation (54)).    
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CHAPTER 2.3: CURRENT DENSITY 

We can think of the probability of finding an electron in a particular spatial region changing due 

to a probability flow, or current, entering or leaving that region.  This definition of the current is chosen 

so that the probability density will satisfy the continuity equation  

 

t

rµ
ÐÖ =-

µ
j , 

 

( 57 ) 

 

representing the fact that electrons are conserved.  Here, the electron density is represented by 

 ( ) ( ) ( )*, , ,r t r t r tr =F F . ( 58 ) 

 

We can use the time-dependent Schrödinger equation to derive the current.  First, we take the time-

dependent Schrödinger equation and its complex conjugate: 

 

( ) ( ) ( )
2

2, , ,
2

i r t H r t V r t
t m

è øµ
F = F = - Ð + Fé ù

µ ê ú
 

 

( 59 ) 

 

and 

 

( ) ( ) ( )
2

* * 2 *, , ,
2

i r t H r t V r t
t m

è øµ
- F = F = - Ð + Fé ù
µ ê ú

. 

 

 

( 60 ) 

 

Multiplying the first of these equations by ( )* ,r tF and the second by ( ),r tF yields 



 
 

23 
 

 

( ) ( ) ( ) ( ) ( ) ( )
2

* * * 2, , , , , ,
2

r t i r t r t H r t r t V r t
t m

è øµ
F F =F F =F - Ð + Fé ù

µ ê ú
 

 

( 61 ) 

 

and 

 

( ) ( ) ( ) ( ) ( ) ( )
2

* * 2 *, , , , , ,
2

r t i r t r t H r t r t V r t
t m

è øµ
-F F =F F =F - Ð + Fé ù

µ ê ú
. 

 

 

( 62 ) 

 

Subtracting these two equations yields  

 
( ) ( ) ( ) ( ) ( ) ( )

2
* * 2 2 *, , , , , ,

2
i r t r t r t r t r t r t

t m

µ
è ø è øF F =- F Ð F -F Ð Fê ú ê úµ

. 

 

 

( 63 ) 

 

which can be written as 

 
( ) ( ) ( ) ( ) ( )* *, , , , ,

2
r t r t r t r t r t

t mi
r
µ

è ø=- ÐÖ F ÐF -F ÐFê úµ
. 

 

 

( 64 ) 

 

We can now see that this becomes the continuity equation if we identify,  

 
( ) ( ) ( ) ( )* *, , , ,

2
r t r t r t r t

mi
è ø= F ÐF -F ÐFê új , 

 

( 65 ) 

 

as the electron current.  Since the gradient operator does not operate on the time dependent part of the 

wave function, this may be written as   
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() () () ()* *

2
r r r r

mi
è ø= Y ÐY -Y ÐYê új  , 

 

( 66 ) 

 

and the current in the x-direction (for a given value of k ) is given by   

 

( )
*

* ,   1 3
2

i i
ix i ij i

mi x x

y y
y y
è øµ µ

= - = -é ù
µ µê ú

 

 

( 67 ) 

 

where ( , )i x ky  is given by Equations (36-38) for the simple barrier model. 

For each region (1, 2, and 3), the currents are represented by 

 
( )2* *

1 1 1 1 1 1  (region 1)
2

x

k
j r

mi x x m
y y y y
µ µè ø

= - = -é ùµ µê ú
    

 

 

( 68 ) 

 

 

 
( )* * * *

2 2 2 2 2   (region 2)
2

x

k
j B A A B

mi x x mi
y y y y

¡µ µè ø
= - = -é ùµ µê ú

  

 

 

( 69 ) 

 

 

 
( )2* *

3 3 3 3 3   (region 3)
2

x

k
j t

mi x x m
y y y y
µ µè ø

= - =é ùµ µê ú
  

 

( 70 ) 

 

 



 
 

25 
 

The reflection and transmission probabilities in the simple barrier model were found to be, 

 ( )

( ) ( )

2
2 2 2

2

22 2 2 2

sinh

2 sinh

k k k d
R r

k k k k k d

¡ ¡+
= =

¡ ¡ ¡+ +
 

 

 

( 71 ) 

 

and 

 ( )

( ) ( )

2

2

22 2 2 2

2

2 sinh

k k
T t

k k k k k d

¡
= =

¡ ¡ ¡+ +
. 

 

 

( 72 ) 

 

In the left lead, we have, 

 
( )

( )

( ) ( )

( ) ( ) ( )

( ) ( )

( )

( ) ( )

2* *

1 1 1 1 1

2
2 2 2

22 2 2 2

2 22 2 2 2 2 2 2

22 2 2 2

2

22 2 2 2

1
2

sinh
1

2 sinh

2 sinh sinh

2 sinh

2

2 sinh

x

x

k
j r

mi x x m

k k k dk

m k k k k k d

k k k k k d k k k dk

m k k k k k d

k kk
v

m k k k k k d

y y y y
µ µå õ

= - = -æ ö
µ µç ÷

è ø¡ ¡+
é ù= -
é ù¡ ¡ ¡+ +
ê ú

è ø¡ ¡ ¡ ¡ ¡+ + - +
é ù=
é ù¡ ¡ ¡+ +
ê ú

è ø¡
é ù= =
é ù¡ ¡ ¡+ +
ê ú

()()k T k

 

 

 

 

 

 

 

 

( 73 ) 

, 

 

and in the barrier region, the current is given by, 
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( )

( )

( )
( )

( )

( )

( )
( )

* * * *

2 2 2 2 2

2 2 2 2

2 2

2 2

2 cosh sinh 2 cosh sinh

2 cosh sinh 2 cosh

x

k a k a

k a k a

k
j B A A B

mi x x m

k k ik e k k ik ek

mi ik k k d k k k d ik k k d k k k d

k k ik e k k ik ek

mi ik k k d k k k d ik k k d

y y y y

¡ ¡-

¡ ¡-

¡µ µå õ
= - = -æ ö

µ µç ÷

è ø¡ ¡+ +¡
é ù= +

¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡- + - + -é ùê ú

¡ ¡- -¡
+ +

¡ ¡ ¡ ¡ ¡ ¡- + - ( )

( )

( )

( ) ( )
()()

2 2

4 3 2 2 4 3 2 2

2
2 2 2 2 2 2

2

22 2 2 2

sinh

2 2

4 cosh sinh

2
.

2 sinh
x

k k k d

k k k ik k k k k ik k k

mi k k k d k k k d

k kk
v k T k

m k k k k k d

è ø
é ù

¡ ¡+ -é ùê ú

è ø
¡ ¡ ¡ ¡ ¡+ - - + +é ù=
é ù¡ ¡ ¡ ¡+ -
ê ú

è ø¡
é ù= =
é ù¡ ¡ ¡+ +
ê ú

 

 

 

 

 

 

 

 

 

 

( 74 ) 

 

 

It is interesting to note that the exponentially increasing as well as the exponentially decreasing 

component of the wave function in the barrier region must be present, otherwise the current in this region 

will vanish (see Equation (69)).  A semi-infinite barrier will support an exponentially decreasing 

evanescent wave, but it carries no current.   

In the right lead, the current is given by, 

 

 

( )

( ) ( )
()()

2* *

3 3 3 3 3

2

22 2 2 2

2

2
 .

2 sinh

x

x

k
j t

mi x x m

k kk
v k T k

m k k k k k d

y y y y
µ µå õ

= - =æ ö
µ µç ÷

è ø¡
é ù= =
é ù¡ ¡ ¡+ +
ê ú

 

 

 

( 75 ) 
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Thus the current is conserved throughout each region of the tunneling process.  Second, the identity, 

1R T+ =, is satisfied.  Last, we should note that as the barrier becomes thicker (d increases) or the 

barrier gets taller (k¡increases), R increases and the conductance and current decreases. 

In Equations (72-75) we have identified the transmission probability with the absolute square of 

the transmission amplitude, () *T k t t= .  This is only valid if the left and right leads are the same or if 

the incident and transmitted wave functions are normalized to carry the same current.  In the general case 

with un-normalized incident and transmitted wave functions, Leftik x
e , and Rightik x

e ,  the transmission 

probability is obtained by taking the ratio of the transmitted current to the incident current, 

() ()()() ()* /Left RightT k v k t k t k v k= . 
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CHAPTER 3: TIGHT-BINDING APPROXIMATION  
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 CHAPTER 3.1: LCAO OR TIGHT-BINDING MODEL FOR ELECTRONIC STRUCTURE  

The simple barrier model has the advantage of simplicity, but it may miss important physics 

associated with the existence of atoms in real tunneling systems.  One obvious limitation is that real 

barrier materials have both a conduction band and a valence band ï the simple barrier model for a 

tunneling barrier has only a conduction band.  In this section we shall develop the tight-binding formalism 

for electron transport and quantum mechanical tunneling. 

The tight-binding approximation is based on the assumption that the electron wave function can 

be approximated as a linear combination of atomic orbitals (LCAO), 

 () ( )
,

,

i i i

atomic orbitals
site i

r C r Ra a
a

fY = -ä ä , 

 

 

( 76 ) 

 

where iaf represents an atomic orbital centered at site, i , with label, a, distinguishing different orbitals 

centered on the same site.  The iCa represent coefficients which are to be determined.  The time 

independent Schrodinger equation was given in Equation (18).  The Schrödinger equation is 

() ()H r E rY = Y ,  where, in the presence of atoms, the Hamiltonian can be written as  

 
( )

2
2

2
i i

i

H V r R
m

=- Ð + -ä , 

 

 

( 77 ) 
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with ( )i iV r R-    representing the effective potential associated with site i .  It should be noted that we are 

assuming a ñone electron at a timeò or ñeffective fieldò approximation such as that given by density 

functional theory. [8] 

By substituting the LCAO approximation for the wave function into the Schrödinger equation and 

assuming that the atomic orbitals are orthonormal, one can convert the Schrödinger equation into a matrix 

equation, 

 HC EC=  
( 78 ) 

or 

  

 ( ),

 

0   all  and i j j

sites j orbitals

H E C ia b b
b

aè ø- =ê úä ä   

( 79 ) 

 

 

where the Hamiltonian matrix element is given by 

 ( ) ( )*

, ji j i j iH H i H j d r r R H r Ra b a b a bf f a b f f= = = - -ñ . 

 

 

( 80 ) 

 

Although the assumption that the wave functions are orthonormal is not very realistic, it can be 

justified by invoking Wannier functions which are local functions obtained by a transformation of the 

actual energy bands of the material.  The Wannier function basis is orthonormal and the Hamiltonian built 

from a Wannier function basis can often be made to have a relatively short range. [9] 
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The development of realistic short-ranged tight-binding Hamiltonians is an active area of 

research.  In this thesis we shall employ empirical models based on tight-binding.  The empirical tight-

binding method develops approximations only for the Hamiltonian matrix elements ,i jH a b themselves 

without attempting to model the potential and the explicit form of the LCAO basis functions.  The tight-

binding models used in this thesis are too simplistic to accurately represent the electronic structure of a 

solid, but our objective will be to illustrate important physical principles within models that can be solved 

exactly. 

The simplest tight-binding model for an infinite solid would be a one-dimensional chain of one-

orbital atoms with only nearest neighbor interaction.  The Hamiltonian for such a system would be an 

infinite tridiagonal matrix with the orbital energy, 0E , on the diagonal and the ñhopping matrix elementò,  

 
1| |i iw Hf f+= , ( 81 ) 

 

above and below the diagonal.  In practice, 0E , and w  are parameters that would be adjusted to mimic as 

well as possible the relevant energy band of the solid.   The Schrödinger equation will consist of an 

infinite set of equations,  

 
0 1 1i i i iC E wC wC EC+ -+ + = . ( 82 ) 

The infinite set of equations can be solved by use of Blochôs theorem which states that the wave functions 

on adjacent sites are related by a phase factor, i.e., 

 
1

i

i iC e Cq+= . ( 83 ) 

 

This ansatz leads to the dispersion relation, 
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 () 0 2 cos .E E wq q= +  ( 84 ) 

The phase angle in Equation (83) can be either positive or negative.  From Equation (84), it is clear that 

q°  yield the same energy.  The positive sign corresponds to a wave propagating in the x+  direction.  

The negative sign corresponds to a wave of the same energy propagating in the opposite direction.   

  



 
 

33 
 

CHAPTER 3.2: TRANSMISSION THROUGH AN INTERFACE IN TIGHT-BINDING 

The simplest system that illustrates tunneling in tight-binding has two types of atoms, type-A and 

type-B atoms, i.e. an A-B system.  In this model, a semi-infinite chain of A atoms on the left connects to a 

semi-infinite chain of B atoms on the right.  The parameters are chosen such that the A atoms are metallic 

having a propagating state at the energy, designated by us as the Fermi energy while the parameters for 

the Hamiltonian describing the chain of B atoms will be chosen so that it will be either an insulator or a 

metal at this energy.  For simplicity we assume a single s-symmetry orbital on each A or B site.  We will 

also assume that the electrons are incident from the left, propagating in the chain of A atoms.  The 

parameter w represents the matrix element connecting orbitals on adjacent sites.  For simplicity, we 

assume that w is the same for the A and B chains and for the matrix element that connects them. AE  and 

BE  are respectively the on-site energies for the orbitals on sites A and B. 

 

Figure 4: Single s-orbital model with semi-infinite chains of A and B atoms.  The A atoms extend from 

n=-¤ to 0n= .  The B atoms extend from  1n=  to n=¤.   

 

For the left part of the A-B system the wave function ( 0n¢ ) is represented by 

 
( )

0
A A

Left n n nc r Ry f
-¤

= -ä , 
 

( 85 ) 

 

and for the right part ( 1n² ) by, 
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( )

1

B B

Right n n n

n

c r Ry f
¤

=

= -ä . 
 

( 86 ) 

 

The matrix Schrödinger equation (Equation 79) will be an infinite set of equations which includes a semi-

infinite set for the left, a semi-infinite set for the right and two equations for the interface, 

 ( ) ( )1 1 0   (for 0)A A A

A n n nE E c w c c n- +- - + = <, ( 87 ) 

 

 

 ( ) ( )0 1 1 0      (for 0)A A B

AE E c w c c n-- - + = =, ( 88 ) 

 

 ( ) ( )1 0 2 0       (for 1)B A B

BE E c w c c n- - + = =, ( 89 ) 

and 

 ( ) ( )1 1 0   (for 1)B B B

B n n nE E c w c c n- +- - + = >. 
( 90 ) 

 

If we divide these four equations by w , and define  

 /E w e= , ( 91 ) 

 

 /A AE w e= , ( 92 ) 

and 
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 /B BE w e= , ( 93 ) 

the system becomes, 

 
1 1( )c ( ) 0   for 0A A A

A n n nc c ne e - +- - + = <, ( 94 ) 

 

 
0 1 1( )c ( ) 0      for 0A A B

A c c ne e -- - + = =, ( 95 ) 

 

 
1 0 2( )c ( ) 0      for 1B A B

B c c ne e- - + = =, ( 96 ) 

and 

 
1 1( )c ( ) 0  for 1B B B

B n n nc c ne e - +- - + = >. ( 97 ) 

 

The boundary conditions are such that there are incident and reflected wave functions for 0,n¢  and a 

transmitted wave function for 1n² . These can be written as, 

  ( 0)A Ain inA

nc e re n
q q-

= + ¢ ( 98 ) 

and  

    ( 0)BinB

nc te n
q

= ² . ( 99 ) 

 

Substituting the boundary conditions into Equation (95) for 0n= gives,  
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 ( )(1 ) ( ) 0A A Bi i i

A r e re te
q q qe e -

- + - + + =. ( 100 ) 

Similarly, substituting the boundary conditions into Equation (96) for 1n=  gives 

 2
( ) ( 1 ) 0B Bi i

B te te r
q qe e- - + + =. ( 101 ) 

The dispersion relations for the left and right sides relate the energy to the phase factors, 

 A Ai i

A e e
q qe e -

- = +  ( 102 ) 

 

 B Bi i

B e e
q qe e -

- = +  ( 103 ) 

 

These can be used to write equations (99) and (100) in terms of r, t and the phase factors: 

 A B Ai i i
e r te e
q q q-
- =-  ( 104 ) 

 

 1r t- + =. ( 105 ) 

The transmission amplitude can be determined from adding Ai
e
q

 times the first of these equations to the 

second,  

 2 sin

1
B

B A

iA

i i

i
t e

e e

q

q q

q
- -

=
-

, 
 

( 106 ) 

 

and the reflection amplitude from Equation (105), 
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 2

1

A A B

A B

i i i

i i

e e e
r

e e

q q q

q q

-
=

-
. 

 

( 107 ) 

 

In this case, the reflection probability,
* 1R rr= =if  Bi

reale z
q-
 .  This will happen when the energy is 

outside the range 2 2Bw E E w- < - <, since in this case, ( )cos / 2B BE E wq= -  will only have a 

solution if Bq  is imaginary.  We assume 2 2Aw E E w- < - <, otherwise there would not be an incoming 

wave. 

 1 cos( )1 1
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1 1
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1 1
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i i i i
iB A
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i i
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i i
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e e e e
r r when z e

e e e e

z e z e
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z e z e

q q q q
q

q q q q

q q

q q

q q

q +q

- -
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-

-

å õå õ- -- -
= = =æ öæ ö

- - -ç ÷ç ÷

å õå õ- -
= =æ öæ ö
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This implies that the reflection probability is unity even though there is a decaying wave of amplitude 

n

nc tz=  (where 1z< ) in the semi-infinite chain on the right hand side ( 1n² ).   We defer a calculation 

of the transmission probability until after we have derived an expression for the current density in the 

tight-binding approximation.  At that time, we will see that for the case of a semi-infinite chain of B 

atoms, for energies that do not admit electron propagation, (i.e. Bi

reale z
q-
 ), the current in the B chain 

vanishes and the transmission probability also vanishes even though there is an exponentially decaying 

evanescent wave in the B chain.  
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CHAPTER 3.3: TUNNELING THROUGH A BARRIER IN TIGHT-BINDING 

We now consider transmission through a barrier in the tight-binding picture.  Our model consists 

of a semi-infinite chain of A atoms on the left and a semi-infinite chain of A atoms on the right.  In 

between is a finite chain of B atoms. 

A-B-A System 

 

 

Figure 5:  A tunneling system consisting of two semi-infinite chains of A atoms separated by N B atoms.  

By proper choice of parameters, we can make the A atoms conducting and the B atoms insulating.  

 

The wave functions on the left, middle and right are, as before expressed as a linear combination of 

atomic orbitals centered on the sites, 

 
( )

0
A A

Left n n n

n

c r Ry f
=-¤

= -ä , 
 

( 109 ) 

 

 

 
( )

1

N
B B

Middle n n n

n

c r Ry f
=

= -ä , 
 

( 110 ) 
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( )

1

A A

Right n n n

n N

c r Ry f
¤

= + ¤

= -ä . 
 

( 111 ) 

 

Using the numbering system shown in Figure 5, we have the two equations that relate the coefficients for 

the A-chain on the left to the coefficients for the B chain in the center: 

 
1 0 1 0Awc E c wc Ec-+ + =  ( 112 ) 

 

and 

 
0 1 2 1Bwc E c wc Ec+ + = . ( 113 ) 

The two equations that relate the coefficients for the wave function in the center to those for the wave 

function describing the chain on the right: 

 
1 1N B N N Nwc E c wc Ec- ++ + =       ( 114 ) 

and 

 
1 2 1N A N N Nwc E c wc Ec+ + ++ + = . ( 115 ) 

As before, the boundary conditions on the left represent an incoming wave and a reflected wave, 

 ( ) for 0A Ain in

nc e re n
q q-

= + ¢. ( 116 ) 

In the middle region, the coefficients consist of exponentially increasing and decreasing terms if 

the energy is outside the region for which the B chain allows propagating solutions.  If there are 

propagating solutions, the exponential functions would be replaced with circular functions representing 
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left- and right- going waves.  Here we will assume for definiteness that the energy is outside the range of 

the propagating solutions, 

 ( )  for 1B Bn n

nc Ae Be n N
q q-

= + ¢ ¢. ( 117 ) 

 

On the right side, the boundary condition is that of a transmitted wave propagating in the +x direction,  

    (for 1)Ain

nc te n N
q

= ² +. ( 118 ) 

Substitution of Equation (116) and (117) into the boundary conditions of Equations (112) and (113), the 

two equations for the left interface yields: 

 ( )( )( )( )1B Bi i

Ae re Ae Be r
q qq q e e-- + + + = - + 

( 119 ) 

 

 ( )( )( )( )2 2
1 B B B B

Br Ae Be Ae Be
q q q qe e- -

+ + + = - + . 
( 120 ) 

While substitutions of Equations (117) and (118) into the boundary conditions of Equations (113) and 

(114), the two equations for the right interface yields, 

 ( ) ( )( ) ( ) ( )( )1 1 1B B B B
N N i N N N

BAe Be te Ae Be
q q q q qe e

- - - + -
+ + = - +  

 

( 121 ) 

  

 ( ) ( ) ( ) ( )2 1
B B

i N i NN N

AAe Be te te
q qq q e e

+ +-
+ + = -  

 

( 122 ) 
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Using the dispersion relation for A, 2cosA Ae e q= + , and for B, 2coshB Be e q= + , on the equations 

for the left interface yields,   

 ( )A B B Ai i
re Ae Be e

q q q q- -
- + + = 

( 123 ) 

and  

 1r A B- + + =. ( 124 ) 

Similarly, for the right interface, 

 ( ) ( ) ( )1 1 1
0B B AN N i N

Ae Be te
q q q+ - + +
+ - = 

( 125 ) 

 

 0B B AN N iN
Ae Be te

q q q-
+ - =. ( 126 ) 

The reflection amplitude, r , can be easily eliminated from Equations (123) and (124) that describe the 

left interface,   

 ( ) ( )B A B A A Ai i i i
A e e B e e e e

q q q q q q- - - -
- + - = -. 

( 127 ) 

Similarly, t , can be eliminated from Equations (125) and (126) that describe the right interface,   

 ( ) ( ) 0B B A B B AN i N i
Ae e e Be e e

q q q q q q- -
- + - =. ( 128 ) 

Equation (128) allows us to obtain A  in terms of B .  

 ( )
( )

2

B A

B

B A

i

N

i

e e
A Be

e e

q q

q

q q

-

-
-

=-
-

. 

 

( 129 ) 

 

Then the inhomogeneous equation involvingAandB  can be solved:  
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 ( )( )
( )( ) ( )( )2

A A B A

B A B A B B A B A

i i i

i i N i i

e e e e
B

e e e e e e e e e

q q q q

q q q q q q q q q

-

- - - - -

- -
=

- - - - -
 

 

( 130 ) 

 

 

 ( )( )
( )( ) ( )( )

2

2

A A B A B

B A B A B B A B A

i i i N

i i N i i

e e e e e
A

e e e e e e e e e

q q q q q

q q q q q q q q q

- - -

- - - - -

- - -
=

- - - - -
. 

 

( 131 ) 

 

Once AandB  are known, t  and r can be obtained in a straightforward (if slightly tedious) manner: 

 ( )( )
( )( ) ( )( )

A A B B

A

B A B A B B A B A B

i i

iN

i i N i i N

e e e e
te

e e e e e e e e e e

q q q q

q

q q q q q q q q q q

- -

- - - - -

- -
=

- - - - -
 

 

( 132 ) 

 

  

 ( )( )
( )( ) ( )( )

B B A A B B

A

B A B A B B A B A B

i i N N

i

i i N i i N

e e e e e e
re

e e e e e e e e e e

q q q q q q

q

q q q q q q q q q q

- - -

-

- - - - -

+ - - -
=

- - - - -
. 

 

( 133 ) 

 

Equations (132) and (133) can also be written as, 

 

( )[ ] ( )
4 sin sinh

4sinh 1 cos cosh 4 cosh sin sinh
AiN A B

B A B B A B

i
te

N i N

q q q

q q q q q q
=

- +
 

 

( 134 ) 

 

and 
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 ( ) ( )

( )[ ] ( )

4 cosh cos sinh

4sinh 1 cos cosh 4 cosh sin sinh
A B A Bi

B A B B A B

N
re

N i N

q q q q

q q q q q q

-
-

=
- +

. 
 

( 135 ) 

 

We can make contact with the transmission and reflection amplitudes calculated for the simple 

barrier model, Equations (43 and 44) by taking advantage of the fact that tight-binding bands have free 

electron-like dispersion near the top or bottom of the band.  Thus we can recover the simple-barrier 

tunneling amplitude expressions in the following limit, 

 
21

0,   sin ,   cos 1
2

A A A A Akaq q q q q=    -   
                                                                       

( 136 ) 

 

 21
0,    sinh ,    cosh 1

2
B B B B Bk aq q q q q¡=    +  

                                                 

( 137 ) 

  

 Na d= . ( 138 ) 

 

Then 

  

 

( ) ( ) ( )2 2

2

sinh 2 cosh

AiN ikk
te

k k k d ikk k d

q ¡


¡ ¡ ¡ ¡- +
 

 

( 139 ) 

 

and 



 
 

44 
 

 ( ) ( )

( ) ( ) ( )

2 2

2 2

sinh

sinh 2 cosh

Ai
k k k d

re
k k k d ikk k d

q-
¡ ¡+


¡ ¡ ¡ ¡- +

. 

 

( 140 ) 

 

Equations (139) and (140) can be seen to be the same as Equation (43) and (44) aside from unimportant 

phase factors.  
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CHAPTER 3.4: TRANSMISSION PROBABILITY FOR SIMPLE TIGHT-BINDING TUNNELING 

The transmission and reflection probabilities can be obtained from equations (134) and (135) 

respectively, 

 

( )[ ] ( )

2 2
*

22 2 2 2

sin sinh

sinh 1 cos cosh cosh sin sinh

A B

B A B B A B

T t t
N N

q q

q q q q q q
= =

- +
 

 

( 141 ) 

 

 

 ( ) ( )

( )[ ] ( )

2 2

*

22 2 2 2

cosh cos sinh

sinh 1 cos cosh cosh sin sinh

B A B

B A B B A B

N
R r r

N N

q q q

q q q q q q

-
= =

- +
. 

 

( 142 ) 

 

Electron conservation ( 1R T+ =) can be verified by noting that by repeated use of the identity, 

2 2cosh 1 sinhq q= + , the common denominator in Equations (141) and (142) can be written as, 

 ( )[ ] ( )

( ) ( )

22 2 2 2

2 2 2 2

sinh 1 cos cosh cosh sin sinh

cosh cos sinh sin sinh .

B A B B A B

B A B A B

N N

N

q q q q q q

q q q q q

- +

= - +
 

 

( 143 ) 

 

Equations (141) and 142) can also be written in a form that shows the energy dependence more clearly, 

by using 2cosA Ax e e q= - = and 
1 2coshB By z ze e q-= - = + =  or 2cos Bq  if 2Be e- <,    

 
( )( )

( )( ) ( )( )

22

22 2 24 4

N N

N N

x y z z
R

y x z z x y

-

-

- -
=
- - - - -

 

 

( 144 ) 
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 ( )( )

( )( ) ( )( )

2 2

22 2 2

4 4

4 4N N

x y
T

y x z z x y-

- - -
=
- - - - -

. 

 

( 145 ) 

 

 

Written in this form, conservation of electrons, 1R T+ =, is immediately obvious.  Similarly to the 

interface case we can make contact with the simple barrier model in a limit in which 0A kaq=  , 

0B k aq ¡=  , andNa d= . 

( )[ ] ( )

( )

( ) ( )

2 2
*

22 2 2 2

2

22 2 2 2

sin sinh

sinh 1 cos cosh cosh sin sinh

2

2 sinh

A B

B A B B A B

T t t
N N

k k

k k k k k d

q q

q q q q q q
= =

- +

¡


¡ ¡ ¡+ +

 

( ) ( )

( )[ ] ( )

( )

( ) ( )

2 2

*

22 2 2 2

2
2 2 2

22 2 2 2

cosh cos sinh

sinh 1 cos cosh cosh sin sinh

sinh

2 sinh

B A B

B A B B A B

N
R r r

N N

k k k d

k k k k k d

q q q

q q q q q q

-
= =

- +

¡ ¡+


¡ ¡ ¡+ +

 

This limit can be taken consistently if the energy is very near the top or bottom of the conduction band for 

the leads and simultaneously just below the bottom or just above the top of the conduction band for the 

barrier. 

The variation of the transmission probability with energy for the A-B-A system is shown in 

Figures 6 and 7.  The A (leads) onsite energy in units of the hopping matrix element is chosen to be 0, and 

the B (barrier) onsite energy is chosen to be 2.  The band of the leads will extend from -2 to 2, the range 
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over which the figure is plotted.  The band of the barrier extends from 0 to 4.  There is wave propagation 

from 0e=  to 2e= , energies where propagation is allowed in both leads and barrier.  In the region 

2e=- to 0e=  there is a small transmission due to quantum mechanical tunneling.  Figures 6 and 7 

show the transmission probability for N=10, and 5 respectively, i.e. for 10 and 5 B atoms in the barrier. 

 

Figure 6: Transmission (blue) and Reflection (green) probabilities for the A-B-A tight-binding model as 

a function of energy.  Parameters are 0,  2,  =10A B Ne e= =  .  Energy is measured in units of hopping 

matrix element,w .  The red curve shows the sum of Transmission and Reflection probabilities. 

For some energies in the non-tunneling energy range, the transmission probability reaches 100%.  

These are energies for which BN mq p=  where m is an integer.  In the non-tunneling or band 
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conduction regime, the hyperbolic functions in Equation (141) become circular functions.  Thus perfect 

transmission will occur for /B m Nq p=  or for ( )2cos /B m Ne e p= + .   

Figure 7 shows a similar plot of the transmission, but for N=5.  It can be seen that the 

approximately exponential decay of the transmission probability into the barrier is slower for this case 

than when the barrier is thicker as in Figure 6.     

  

Figure 7: Transmission (blue) and Reflection (green) probabilities for the A-B-A tight-binding model as 

a function of energy.  Parameters are 0,  2,  =5A B Ne e= =  .  Energy is measured in units of hopping 

matrix element, w . 
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Figure 8 shows the transmission and reflection probabilities using a logarithmic scale so that 

decay of the tunneling probability can be seen at energies far from the band edge for propagation in the 

barrier. 

 

Figure 8: Transmission and Reflection Probabilities plotted with a logarithmic scale.  The tight-binding 

tunneling parameters are 0,  3,  10.A B Ne e= = =   

 

Figure 9 shows the wave function at 0.99e= using the parameters of Figure 8.  The blue 

and red points (boxes) represent the real and imaginary parts of the wave function coefficients on 

the atomic sites as described in Equations (106-108).  Waves are incident from the left from -¤ 

and are outgoing on the right toward +¤.  Note that the wave function changes sign between 
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adjacent atoms in the barrier.   This is due to Be
q-

 being negative below the bottom of the band 

for the barrier.   If we move the barrier band down so that the energy is above the band 

maximum for the barrier, the factor Be
q-

will be greater than zero.  This is illustrated in Figure 10 

which uses the parameters, 0,  3,  0.99A Be e e= =- =-, so that E  is slightly above the B band 

maximum of 1.    

 

Figure 9:  Parameters are 0,  3,  0.99, 10.A B Ne e e= = =- = The wave function coefficients for the 

real and imaginary parts of the wave function are shown by the blue and red boxes respectively.  The blue 

and red lines joining the boxes serve as a guide to the eye. 
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Figure 10: Parameters are 0,  3,  0.99, 10.A B Ne e e= =- =- =The wave function coefficients for the 

real and imaginary parts of the wave function are shown by the blue and red boxes respectively.  The blue 
and red lines joining the boxes serve as a guide to the eye.  
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CHAPTER 3.5: CURRENT DENSITY IN TIGHT-BINDING 

In order to understand the above results for the transmission and reflection amplitudes, especially 

the results for the A-B System, we must understand the current in the tight-binding approximation.  In 

analogy to the derivation of the current in Chapter 2 (starting from Equation (57)), we have, for our one 

dimensional tight-binding model, the time-dependent wave function,  

 () ( )n n

n

t c tfF =ä , ( 146 ) 

 

which obeys the time dependent Schrödinger equation, 

 
() ()i t H t

t

µ
F = F

µ
. 

 

( 147 ) 

 

This can be written in terms of the wave function coefficients by using the assumed orthonormality 

properties of the local orbitals, 

 
0 1 1( ) ( ) ( ) ( )n n n ni c t E c t wc t wc t

t
+ -

µ
= + +

µ
. 

 

( 148 ) 

 

The probability that an electron is on site, n , is given by 

 () () ()*

n n nt c t c tr = , ( 149 ) 

and the time derivative of this quantity is given by,  
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()
*

*n n
n n n

c c
i t i c c

t t t
r

è øµ µµ
= +é ù

µ µ µê ú
, 

 

( 150 ) 

 

but this can be evaluated by use of Equation (143) and its complex conjugate: 

 
* * * *

0 1 1n n n n n n n ni c c E c c wc c wc c
t

+ -

µ
= + +

µ
 

 

( 151 ) 

 

and 

 * * * *

0 1 1n n n n n n n ni c c E c c wc c wc c
t

+ -

µ
=- - -

µ
. 

 

( 152 ) 

 

Thus the time rate of change of the number of electrons on a site is given by, 

 
() ( )( )* * * *

1 1 1 1n n n n n n n n ni t wc c wc c wc c wc c
t
r - - + +

µ
è ø= - - -
ê úµ

, 
( 153 ) 

 

but this must be equal to the difference between the current coming in from the left and the current 

leaving from the right, 

 
() ( )( )* * * *

1 1 1 1 1 1

2 2

n n n n n n n n n
n n

i
t wc c wc c wc c wc c J J

t
r - - + +

- +

µ
è ø= - - - = -
ê úµ

, 
 

( 154 ) 

 

where, 

 
( )* *

1 1 1

2

n n n n
n

i
J wc c wc c- -
-
= -  

 

( 155 ) 
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and 

 
( )* *

1 1 1

2

n n n n
n

i
J wc c wc c+ +
+
= - . 

 

( 156 ) 

 

 

We are now in a position to discuss the reflection and transmission amplitudes, Equations (106) 

and (107), in terms of the electron currents.  The current on the left is given by substituting Equation (98) 

into the expression for the current, Equation (98) into one of the expressions for the current, obtaining, 

 
( )*2 sin
1A

Left

w
J r r

q
=- - . 

 

( 157 ) 

 

Similarly, use of Equation (99) in the expression for the current yields, 

 *2 sin B
right

w
J t t

q
=- . 

 

( 158 ) 

 

Substituting from the expressions for r  and t , (Equations (154) and (155)) allows us to verify that 

.Left rightJ J=    If we define the transmission and reflection probabilities to be, 

 *sin

sin

B

A

T t t
q

q
=  

 

( 159 ) 

 

and 
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 *R r r= , ( 160 ) 

then we have 1R T+ = as expected.  The reason we need to modify the definition of the transmission 

probability to include the factor, 
sin

sin

A

B

q

q
, is that the incident and transmitted wave functions have 

different normalizations, i.e. the current or flux carried by ( )exp Ainq  differs from that carried by 

( )exp Binq .  If we had been careful to include the normalization factors to ensure equality of these fluxes 

then the additional factor, would not have been needed.   

  The negative sign in front of the expression for the currents has a simple explanation.  

2 sin /wa q-  is the electron velocity for an electron with dispersion relation () 0 2 cosE E wq q= + .  

Thus Equation (153) could be written 
*

RightJ vt t=  which may be compared to the analogous Equation 

(75) for the current in the simple barrier problem.  When 0w> , the energy is a maximum for 

0kaq= =.  To compare the simple barrier model with a limiting case of the tight-binding model, we 

will  need to take 0w< .   

Note that when the energy is outside the range 2 2Bw E E w- < - < so that Bq  is imaginary, then 

the current expressions give zero for the current on the right.  This is consistent with 1R=  as derived 

above.  
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CHAPTER 4: TUNNELING THROUGH A BARRIER WITH A GAP 

  The systems that we have studied so far, the simple barrier model based on free electron 

dispersion and the single-orbital tight-binding model differ from realistic tunneling in that neither involve 

tunneling through a ñgapò.  In the free-electron based simple barrier model, the barrier is made non-

conducting by raising the zero of energy so that it is above the Fermi energy of the leads.  In the single-

orbital tight binding model, the conduction band of the barrier is positioned so that its minimum is above 

the Fermi energy or its maximum is below the Fermi energy.  In none of these situations is the Fermi 

energy positioned in a gap between two bands.  In this chapter we shall investigate tunneling through a 

barrier with a gap in its dispersion relation.    
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CHAPTER 4.1: THE A-[B-C] SYSTEM 

A simple way to generate a gap is to have two types of atoms with different on-site orbital 

energies as shown in Figure 11. 

 

Figure 11: Single s-orbital model ï Semi-infinite chains of A atoms and B-C molecules.  The A atoms 

extend from n=-¤ to 0n= .  The B-C molecules extend from  1n=  to n=¤. 

 

In this system, a semi-infinite chain of A atoms connects on the left to a semi-infinite chain of B-

C molecules on the right.  The parameters will be chosen such that the A atoms are metallic having a 

propagating state at the energy, that we will designate as the Fermi energy.  The B-C molecules can be 

designated as an insulator or as a metal, to be determined by us.  Importantly for creating a gap, B-C 

molecules have two different orbitals.  For nearest neighbor interactions, there will be a gap between the 

B and C onsite energies.   Let AE , BE , and CE be respectively the on-site energies for the orbitals on sites 

A, B, and C.  For the left part of the A-BC system the wave function ( 0n< ) is represented by 

 
( )

0
A A

Left n n nc r Ry f
-¤

= -ä , 
 

( 161 ) 

 

  
( )

1

  (B-atoms)B B

Right n n n

n

c r Ry f
¤

=

= -ä , 
 

( 162 ) 
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( )

1

   (C-atoms)C C

Right n n n

n

c r Ry f
¤

=

= -ä . 
 

( 163 ) 

 

The Hamiltonian together with the assumed orthonormality of the orbitals will generate an infinite set of 

equations:  

 ( ) ( )1 1 0   0A A A

A n n nE E c w c c n- +- - + = <for , 
( 164 ) 

 

 ( ) ( )1 1 0   0A A B

A n n nE E c w c c n- +- - + = =for , 
( 165 ) 

  

 ( ) ( )1 0 1 0   1B A C

BE E c w c c n- - + = =for , 
( 166 ) 

  

 ( ) ( )1 1 2 0   1C B B

CE E c w c c n- - + = =for , 
( 167 ) 

  

 ( ) ( )1 1 0   1B A C

B n n nE E c w c c n- +- - + = >for , 
( 168 ) 

and  

 ( ) ( )1 1 0   1C B B

C n n nE E c w c c n- +- - + = >for . 
( 169 ) 
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Note that two equations are needed for each two atom cell for 0n> : 

The boundary condition on the left in the chain of A atoms is the sum of an incoming, right-going 

wave of unit amplitude, Ain
e
q

, and a reflected, left-going wave of amplitude ,  Ain
r re

q-
.  The boundary 

condition on the right is a transmitted right-going wave that has amplitude 
n

Bt z  on the B atoms and 
n

Ct z  

on the C atoms.   Using these boundary conditions and defining,E we= , A AE we= , B BE we= ,

C cE we= ,   we have from Equation (164), 2cosA Ae e q- =  ,and from Equations (168) and (169) using 

1 1,  ,B B C C

n n n nc zc c zc+ += =  

 ( )
( )

11
0

1

B B

CC

z t

tz

e e

e e

-è ø- - + è ø
=é ùé ù

- + -é ùê úê ú

, 

 

                                                  ( 170 ) 

 

which implies that, 

 ( )( ) 1 2B C z ze e e e -- - = + +. ( 171 ) 
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Figure 12: Dispersion relation for B-C chain.  A gap extends from 0.5Be=- to 0.5Ce= .  Blue and 

green curves are real and imaginary parts of log(z) respectively where( )( )
1

2B C z
z

e e e e- - = + +. 

On substitution of boundary conditions, Equation (165) becomes,  

 ( )( )( )1 0A Ai i

A Br e re t z
q qe e -

- + - + + =, 
( 172 ) 

which, with the help of the results from Equation (164) can be written as, 



 
 

61 
 

 2A Ai i

Br t ze e
q q

- =-   

( 173 ) 

 

Similarly, Equation (167) becomes, 

 ( ) ( )1 0C C Bt z t z ze e- - + =, ( 174 ) 

which allows us to write, 

 ( )

( )

1B

C

C

t z
t

e e

+
=
-

. 

( 175 ) 

and Equation (166) becomes 

 ( ) ( )1 0B B Ct z r t ze e- - + + =, ( 176 ) 

which with the use of Equations (171) and (173), may be written as, 

 

( )

11
1B

C

z
r t z

e e

-è ø+
- + =é ù

-é ùê ú

. 

 

( 177 ) 

 

Adding Equations (173) and (177) yields a solution forBt , 

 ( )( )

( )

2

1

1

1

A

A

i

C

B i

C

e
t z

z e

q

q

e e

e e-

- -
=
+ - -

, 

( 178 ) 

from which a solution for Ct  follows, 
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 ( )( )

( )

2

1

1 1

1

A

A

i

C i

C

e z
t z

z e

q

qe e-

- +
=
+ - -

, 

 

( 179 ) 

as well as a solution forr , (using Equation (176)), 

 ( )( )
( )( )

1

1

1

1

A

A

i

C

i

C

z e
r

z e

q

q

e e

e e

-

--

- - +
=-

- - +
. 

 

( 180 ) 

The reflection probability,
*R r r= , is clearly unity if z is real, i.e. if the parameters are such as to forbid 

conduction in the B-C chain.  However, if BCi
z e

q
= , then R  becomes, 

 ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2

*

2

2 2cos 2cos 2cos

2 2cos 2cos 2cos

C BC C A C A BC

C BC C A C A BC

R r r
e e q e e q e e q q

e e q e e q e e q q

- + + - - - - -
= =

- + + - - - - +
. 

 

( 181 ) 

In order to investigate the transmission probability, it is necessary to calculate the current on the 

right of the interface and compare it to the current carried by the incident wave.  An expression for the 

current is given by Equation (156).  This expression involves the wave function coefficients in adjacent 

atoms of the chain.  The easiest place to apply this expression for the B-C chain is between the B and C 

atoms in one of the cells, 

 
( ) ( )* * * *

1 1 1

2

n n n n C B C B
n

iw iw
J c c c c t t t t+ +
+
= - = - . 

( 182 ) 

Substituting from Equations (178) and (179) gives, 
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( )( )

( )

( )( )

( )

( )( )
( )

( )( )

( )

*
2 21 1

1 1

*
2 21 1

1 1

1 1 1

1 1

1 1 1

1 1

A A

A A

A A

A A

i i

C

i i

C C

Right
i i

C

i i

C C

e z e z

z e z e
iw

J

e z e z

z e z e

q q

q q

q q

q q

e e

e e e e

e e

e e e e

- -

- -

- -

- -

å õå õ- + - -
æ öæ ö
æ öæ ö+ - - + - -

ç ÷æ ö=
æ ö
å õ- + - -æ ö
æ ö-æ öæ ö+ - - + - -æ ö
ç ÷ç ÷

. 

 

 

 

 

( 183 ) 

If z  is real, Equation (183) gives 0, however if BCi
z e

q
= , the current is finite and is given by, 

 ( )

( ) ( ) ( )

2

2

8sin sin

2 2cos 2cos 2cos

A BC C

Right

BC C C A A BC

w
J

q q e e

q e e e e q q q

--
=

+ + - - - + +è øê ú

. 

 

( 184 ) 

 

Both Equations (181) and (184) can be simplified by using, Equation (174) in the form, 

( )( )2 2cos BC B Cq e e e e+ = - - giving, 

 ( )( ) ( )

( )( ) ( )

2cos 2cos

2cos 2cos

C B A A BC

C B A A BC

R
e e e e q q q

e e e e q q q

- + - - - -
=
- + - - - +

 
 

( 185 ) 

 

and 

 

( )( ) ( )

28sin sin

2cos 2cos

A BC
Right

B C A A BC

w
J

q q

e e e e q q q

-
=

- + - - - +
. 

 

( 186 ) 

 

 

The current carried by the incident wave is given by 2 sin /in AJ w q=- , so that the transmission 

probability is 
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( )( ) ( )

4sin sin

2cos 2cos

Right A BC

in B C A A BC

J
T

J

q q

e e e e q q q
= =

- + - - - +
. 

 

( 187 ) 

 

It is now possible to confirm that the sum of R  in Equation (185) and T  in Equation (187) is unity. 
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CHAPTER 4.2: THE A-[B-C] SYSTEM WITH s-p BARRIER 

 

 

 

Figure 13: Single s-p-orbital model ï semi-infinite chains of A and B-C molecules.  The A atoms extend 

from n=-¤ to 0n= .  The B-C molecules extend from  1n=  to n=¤.  The orbital on the C atom 

has xp symmetry. 

 

In the A-BC (s-p) system, the B-C chain is a chain of two-molecule system B and C with atom B 

having an s-orbital and atom C has a p-orbital.  The system is solved as follows: 

 ( )0 1 1( )c ( ) 0      0A A B

A c c ne e -- - + = =, ( 188 ) 

 

 ( )1 0 1( )c ( ) 0     1,  B atomB A C

B c c ne e- - - = = , ( 189 ) 

and 

 ( )1 1 2( ) ( ) 0     1,  C atomC B B

C c c c ne e- - - + = = . ( 190 ) 

In the A chain, for 0n< , we have, 

 ( ) ( )1 1 0A A A

A n n nc c ce e - +- - + =, ( 191 ) 

And in the B-C chain, for 1n> , we have 

 ! ǿ ǿ 
 !  ! ǿ ǿ 

 .  / ǿ ǿ 
 .  / ǿ ǿ 

πм л м нΧ 

  ǿ ǿ . / 

n  
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 ( ) ( )1 0B C C

B n n nc c ce e -- - - =, 
( 192 ) 

and 

 ( ) ( )1 0C B B

C n n nc c ce e -- - - =. ( 193 ) 

Equations (192) and (193) lead to the dispersion relation( )( )
1

2B C z
z

e e e e- - = + -.  The boundary 

conditions representing an incoming wave from the left and an outgoing wave on the right are  

 ( )    0A Ain inA

nc e re n
q q-

= + ¢, ( 194 ) 

 

 1B n

n B Rc t z -= , ( 195 ) 

and 

 1C n

n C Rc t z -= , ( 196 ) 

 

respectively.  Substitution of the boundary conditions, Equations (194), (195), and (196), into the 

interface equations, Equations (188), (189), and (190), yields 

 ( )(1 ) ( ) 0A Ai i

A Br e re t
q qe e -

- + - + + =, ( 197 ) 

 

 ( ) (1 ) 0B B Ct r te e- - + - =, ( 198 ) 

and 
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 ( ) t ( ) 0C C B B Rt t ze e- - - + =. ( 199 ) 

Re-arranging as a set of linear equations for variables r , Bt  and Ct ,  

 ( ) ( )A Ai i

A B Ae r t e
q qe e e e-- - - =- - -, ( 200 ) 

 

 ( ) 1B B Cr t te e- + - + =, ( 201 ) 

 

and 

 ( ) ( )1 0R B c Cz t te e- + - =. ( 202 ) 

 

 

We can use Equation (202), to eliminateCt , 

 (1 )

( )

R
C B

C

z
t t

e e

-
=-

-
, 

 

( 203 ) 

 

 

Next, using Equation (191) we obtain, A Ai i

A e e
q qe e -

- = +  which we substitute into Equation (200), so 

that after substituting Equation (203) into (202), Equations (200) and (201) become 

 2

(1 )
( ) 1

( )

A Ai i

B

R
B B B

C

r t e e

z
r t t

q q

e e
e e

- =-

-
- + - - =

-

. 

 

( 204 ) 
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The sum of the two equations (204) gives, 

 2
( )( ) (1 ) (1 )( )A Ai i

B C R B Ce z t e
q qe e e e e eè ø- - - - - = - -ê ú . 

( 205 ) 

Then one can solve Equation (205) for Bt and use Equation (203) to obtain Ct , 

 2

2

(1 )( )
,

( )( ) (1 )

(1 )(1 )
.

( )( ) (1 )

A

A

A

A

i

C
B i

B C R

i

R
C i

B C R

e
t

e z

e z
t

e z

q

q

q

q

e e

e e e e

e e e e

- -
=
- - - - -

- - -
=
- - - - -

 

 

( 206 ) 

 

With an equation forBt , either of Equations (204) can be used to obtain r ,  

 

. 

 

( 207 ) 

 

We rearrange Equation (207) to get 

 
2 ( )( ) ( )( ) (1 )

( )( ) (1 )

( )( ) (1 )

( )( ) (1 )

A A A

A

A

A

A

i i i
i C B C R

i

B C R

i

B C R

i

B C R

e e e z
re

e z

e z

e z

q q q
q

q

q

q

e e e e e e

e e e e

e e e e

e e e e

-
-

-

- - - - - - + -
=

- - - - -

- - - - -
=-

- - - - -
, 

 

( 208 ) 

 

and r  is given by 

 
2( )( ) (1 )

( )( ) (1 )

A

A

A

i
iB C R

i

B C R

e z
r e

e z

q
q

q

e e e e

e e e e

-
- - - - -

=-
- - - - -

. 
 

( 209 ) 

 

If Rz is real, then 

2
(1 )( )

( )( ) (1 )

A

A A A

A

i
i i iC

B i

B C R

e
re e t e

e z

q
q q q

q

e e

e e e e

- - -
=- + = -

- - - - -
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2

2

( )( ) (1 )
*

( )( ) (1 )

( )( ) (1 )
1.

( )( ) (1 )

A

A

A

A

A

A

i
iB C R

i

B C R

i
iB C R

i

B C R

e z
r r e

e z

e z
e

e z

q
q

q

q
q

q

e e e e

e e e e

e e e e

e e e e

-

-

-

è ø- - - - -
= -é ù

- - - - -ê ú

è ø- - - - -
³ - =é ù

- - - - -ê ú

 

 

 

 

( 210 ) 

 

Thus when the Bloch factor in the B-C region is real indicating that states cannot propagate, the reflection 

probability is unity.  Similarly, it can be seen that the current in the B-C chain obtained by evaluating 

Equation (182) vanishes.  On the other hand, if BCi

Rz e
q

  , then 

 ( )

( )
*

2cos 2cos

2cos 2cos

B C A A BC

B C A A BC

R r r
e e e e q q q

e e e e q q q

- + - - + -
= =

- + - - + +
 

 

( 211 ) 

and 

 

( )

4sin sin

2cos 2cos

A BC

B C A A BC

T
q q

e e e e q q q

-
=
- + - - + +

. 
 

  ( 212 ) 

 

The negative sign in the numerator of the transmission indicates that sin Aq  and sin BCq  have opposite 

signs. 
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CHAPTER 4.3: THE A-[B-C]-A ï A TUNNELING SYSTEM 

 

 

 

Figure 14: Semi-infinite chain of A atoms on the right and a semi-infinite chain of B atoms on the left.  

The B-C barrier has orbitals of similar symmetry on the B atom and on the C atom.  All inter-atom 

hopping is assumed to be nearest-neighbor and the same throughout the chain. 

 

The energy dispersion in the leads, is as before, 2cosA Ae e q- =  and the dispersion relation in the B-C 

barrier is given by, 

 
( )( )

1
2B C z

z
e e e e- - = + +. 

 

( 213 ) 

 

  The equations for the two interfaces are, on the left, 

 ( )0 1 1( ) ( ) 0    0A A B

A c c c ne e -- - + = =for , ( 214 ) 

 

 ( )1 0 1( ) ( ) 0   1,  B A C

B c c c ne e- - + = =for atom  B , ( 215 ) 

 

 ( )1 1 2( ) ( ) 0   1,  C B B

C c c c ne e- - + = =for atom  C , ( 216 ) 

and on the right, 

 ! ǿ ǿ 
 !  . ǿ ǿ 

 /  . ǿ ǿ 
 /  . ǿ ǿ 
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ǿ ǿ / !    

1N+  N  
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 ( )1( ) ( ) 0     B C C

B N N Nc c c n Ne e -- - + = =for atom  B , ( 217 ) 

 

 ( )1( ) ( ) 0     C B A

C N N Nc c c n Ne e +- - + = =for atom  C , ( 218 ) 

and 

 ( )1 2( ) ( ) 0    1A C A

A N N Nc c c n Ne e + +- - + = = +for . ( 219 ) 

 

The boundary conditions appropriate to an incident and reflected wave on the left and a transmitted wave 

on the right with exponentially increasing and decreasing solutions in the barrier are, 

 ( )  0A Ain inA

nc e re n
q q-

= + ¢, ( 220 ) 

 

 ( )   0B n n

nc B z B z n N-

+ -= + < ¢, ( 221 ) 

 

 ( )   0C n n

nc C z C z n N-

+ -= + < ¢, ( 222 ) 

 

 ( )   1AinA

nc te n N
q

= ² +. ( 223 ) 

 

Substitution of these boundary conditions into interface equations, gives a set of six equations for the six 

unknowns r , t , B+, B-,C+, andC-: 
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 ( ) 1( ) 1 ( ) 0A Ai i

A r e re B z B z
q qe e - -

+ -- + - + + + =, ( 224 ) 

 

 ( )1 1( ) (1 ) 0B B z B z r C z C ze e - -

+ - + -- + - + + + =, 
( 225 ) 

 

 ( )1 1 2 2( ) ( ) 0C C z C z B z B z B z B ze e - - -

+ - + - + -- + - + + + =, 
( 226 ) 

 

 ( ) 1 1( ) ( ) 0N N N N N N

B B z B z C z C z C z C ze e - - - - +

+ - + - + -- + - + + + =, 
( 227 ) 

 

 ( ) ( )1
( ) ( ) 0Ai NN N N N

C C z C z B z B z te
q

e e
+- -

+ - + -- + - + + =, 
( 228 ) 

and 

 ( ) ( )1 2
( ) ( ) 0A Ai N i NN N

A te C z C z te
q q

e e
+ +-

+ -- - + + =. 
( 229 ) 

These equations will look slightly simpler if, instead ofB+, B-,C+, andC-we use, 

 ( )11B B z B z-+ -= + , 
( 230 ) 

 

 ( )N N

NB B z B z-+ -= + , 
( 231 ) 
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 ( )11C C z C z-+ -= + , 
( 232 ) 

and 

 ( )N N

NC C z C z-+ -= + . 
( 233 ) 

Once 1B , NB , 1C , and NC have been determined, we can findB+, B-,C+, andC-using,  

 
1

2 2

N

N

N

zB z B
B

z z
+

-
=

-
, 

 
( 234 ) 

 

 

 1

1

2 2

N

N

N

z B z B
B

z z

- -

- - -

-
=

-
, 

 
( 235 ) 

 

 

 
1

2 2

N

N

N

zC z C
C

z z
+

-
=

-
, 

 
( 236 ) 

 

and 

 1

1

2 2

N

N

N

z C z C
C

z z

- -

- - -

-
=

-
. 

 
( 237 ) 

 

Our system of six equations becomes 

 ( ) 1( ) 1 ( ) 0A Ai i

A r e re B
q qe e -

- + - + + =, ( 238 ) 

 

 
1 1( ) (1 ) 0B B r Ce e- - + + =, ( 239 ) 
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 2 2

1 1( ) ( ) 0C C B B z B ze e -

+ -- - + + =, ( 240 ) 

 

 1 1( ) ( ) 0N N

B N NB C C z C ze e - - +

+ -- - + + =, ( 241 ) 

 

 ( )1
( ) ( ) 0Ai N

C N NC B te
q

e e
+

- - + =, 
( 242 ) 

 

 ( ) ( )1 2
( ) ( ) 0A Ai N i N

A Nte C te
q q

e e
+ +

- - + =. 
( 243 ) 

Equations (238) and (243) can be simplified using the dispersion relation for the A chain: 

 2

1
A Ai i

r B e e
q q

= -  ( 244 ) 

and 

 AiN

Nt C e
q-

= . ( 245 ) 

These equations can be used to eliminate r and t  leaving equations (239-242) that only involve 1B , 1C ,

NB , and NC : 

 ( ) 2

1 1 1A Ai i

B e B C e
q qe e- - - = -, 

( 246 ) 
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 2 2 1

1 11 1 1 1
1 ( ) 0

N N

N CN N N N

z z z z
B B C

z z z z
e e

- - + -

- - + - - +

å õ å õ- -
- + + + - =æ ö æ ö

- -ç ÷ ç ÷
, 

 
( 247 ) 

 

 

 1 2 2

11 1 1 1
( ) 1 0

N N

B N NN N N N

z z z z
B C C

z z z z
e e

- - - +

- - + - - +

å õ å õ- -
- - - + =æ ö æ ö

- -ç ÷ ç ÷
, 

 
( 248 ) 

 

and 

 ( ) 0Ai

N C NB e C
qe e- + - - =. ( 249 ) 

These equations can be written in more compact form if we let Ai

Bb e
qe e= - - ,  Ai

Cc e
qe e= - - , and 

define 
n n

nx z z-= - : 

 
1 1 2 sin Ai

AC bB i e
qq= + , ( 250 ) 

 

 ( )1 2 1 1 1 1( ) 0N N N C Nx x B x B x Ce e- - -- + - + - =, ( 251 ) 

 

 ( )1 1 1 1 2( ) 0B N N N N Nx B x C x x Ce e - - -- - - + =, ( 252 ) 

and 

 
N NB cC= . ( 253 ) 

Equations (250) and (253) can be used to eliminate1C and NB , leaving two equations for the remaining 

two unknowns, 1B and NC : 
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 ( )1 2 1 1 1 1( ) 2 sin ( )Ai

N N N C N A C Nx x x b B x cC i e x
qe e q e e- - - -- + - - - =- - ( 254 ) 

and 

 ( )1 1 1 2 1 1( ) 2 sin Ai

N N N B N Ax bB x x x c C x i e
qe e q- - -- - + - - = . ( 255 ) 

The coefficients of 1B  in Equation (254) and of NC  in Equation (255) may be simplified, using, for 

example,  

 

( )

( )

1 2 1

1

1 2 1

*

1

( )

2 ( )

.

A

A

N N N C

i

N N N C

i

N N

x x x b

x x x z z e

x c e x

q

q

e e

e e

- - -

-

- - -

-

+ - -

= + - + + - -

=- -

 

 
 

( 256 ) 

 

Equations (254) and (255) for 1B  and NC  become,  

 ( )*

1 1 1 12 sin ( )A Ai i

N N N A C Nx c e x B x cC i e x
q qq e e- -- - =- -  

( 257 ) 

 

 ( )*

1 1 1 12 sinA Ai i

N N N Ax bB x b e x C x i e
q qq-- + - = . 

( 258 ) 

Equation (258) can be solved for 1B : 

 ( )1 1 1 *

1 1 12 sin A Ai i

A N N NB i e b x b x b e x C
q qq - - -

-=- + - . 
( 259 ) 

Then Equation (257) yields a solution for NC  and t   

 ( )

( )( )

*

1 1

1 * * 2

1 1 1

( )
2 sin

A

A A

A A

i

C N N Ni iN

N A i i

N N N N

b x x c e x
C ix e te

x b e x x c e x x cb

q

q q

q q

e e
q

- -

- -

è ø- - -
ê ú=- =

è ø- - -
ê ú

. 

 
 

( 260 ) 
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The numerator can be simplified since, 

 

( )

*

1 1

1 1

1

1 1 1 2

( )

( )( )

2 .

Ai

C N N N

B C N N N

N N N N N

b x c e x x

x x x

z z x x x x x

qe e

e e e e

- -

- -

-

- - - -

- + -

= - - - -

= + + - - = +

 

 

( 261 ) 

 

Thus, the transmission amplitude can be written as, 

 

( )( )
1 2

1 * * 2

1 1 1

2 sinA A

A A

iN i N N
A i i

N N N N

x x
te ix e

x b e x x c e x x cb

q q

q q
q - -

- -

+
=-

- - -
. 

 
( 262 ) 

 

where Ai

Bb e
qe e= - - , Ai

Cc e
qe e= - - , and 

n n

nx z z-= - .   

The transmission probability as a function of energy is shown in Figures 15 ï 17. 

 

Figure 15: Transmission (blue) and Reflection (green) probabilities for the A-BC-A tight-binding model 

as a function of energy.  Parameters are 0,  0.3,  =10A B C Ne e e= =- =  .  Energy is measured in units of 

hopping matrix element, w . 
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Figure 16: Transmission (blue) and Reflection (green) probabilities for the A-BC-A tight-binding model 

as a function of energy.  Parameters are 0,  0.7,  =10A B C Ne e e= =- =  .  Energy is measured in units 

of hopping matrix element, w . 
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Figure 17: Transmission (blue) and Reflection (green) probabilities for the A-BC-A tight-binding model 

as a function of energy.  Parameters are 0,  1.1,  =5A B C Ne e e= =- =  .  Energy is measured in units of 

hopping matrix element, w .  
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CHAPTER 5: CONCLUSIONS 

 We have explored the tunneling properties in quantum mechanical solid state physics.  

Chapter 2 discusses how we used the Landauer formulation of transport to relate the transmission 

probability in terms of the conductance and the resistance.  Also, the three-dimensional simple 

barrier model for tunneling was derived using the separation of variables.  In order to derive a 

general expression for the current, we used the separation of variables from the time-dependent 

formulation of quantum mechanics.  Our expression for the current was obtained from the 

continuity equation. 

 The simple barrier model for tunneling was solved by calculating the transmission and 

reflection probabilities.  There is a relationship between the transmission probability and the 

conductance to calculate the conductance of the three dimensional barrier system at low bias.  

We used our expression for the current density in terms of the wave functions to demonstrate that 

the current is equal in all three regions of the tunneling system: left lead, barrier, and right lead. 

 The electron dispersion in solids is not precisely represented due to limitations of the free 

electron model.  This is why we introduce the tight-binding model in Chapter 3.  Section 3.2 

covers how to calculate transmission and reflection probabilities for an interface using the 

simplest one-dimensional tight-binding model for an interface between semi-infinite chains of A 

atoms and B atoms.  This model is extended in Section 3.3 to a tunneling system consisting of 

two semi-infinite chains of A atoms separated by a finite chain of B atoms.  We showed that in 

the limit of very long electron wavelengths and very slow decay of the evanescent states, the 

tight-binding approximation for tunneling reduces to the simple barrier model in Section 3.4.  In 

Section 3.5, we calculated the transmission and reflection probabilities of the A-B-A model.  

Section 3.6 covers the energy variation and also the wave functions are plotted to show that 
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when BE E< , the wave function has the opposite sign on adjacent atoms.  In Section 3.7, the 

current density in the tight-binding approximation was calculated.  Then the current density was 

used to complete the calculation of the transmission probability at an interface.   

 To produce a dispersion relation with a gap, we cannot use the simple tight-binding 

model with a single orbital on each site.  This is why we continued our calculations to construct a 

barrier consisting of B-C molecules in Chapter 4.  A chain of this type produces a gap extending 

between the onsite energy for the A atom and the onsite energy for the B atom.  Tunneling 

through gap is calculated and plotted.  We have observed that if the orbitals on the B and C 

atoms have the same parity, the wave function will change sign between molecules, however if 

the parity of the orbitals are different, there will not be a sign change. 
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