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ABSTRACT
In this thesis, wéreat tunneling similar to a scattering problem in which an incident wave on a barrier is
partially transmitted and partially reflected. The transmission probability will be related to the
conductance using a model due to Landaeeviouslytunnelinghas been treatading a simple barrier
model,which assumethe electron dispersida that offree electroa Inthis modelit is not possible to
investigate tunneling in the gap between a valence band and a conduction band. We shall remedy this
limitation by using the tighbinding model to generate a barrier with a gap separating a valence band and
a conduction bandTo do this, we constructed a model consisting of sefimite chairs of A atomson
either side oh semiinfinite chain of BC molecués. Tle B-C chainhas a gap extending lve¢en the
onsite energy for the Btomand the onsite energy for thea@m. Tunneling through the gap has been
calculated and plottedWVe present exact closed form solutions for the following tunneling systgms: (
B interface, (ii) A(B-C) interface, (iii) AB-A tunnel barrier, (iv)A-(B-C) inteface with the orbitals on B

havings-symmetry and those on C havipgymmetry, (VJA-(B-C)-A tunnel barrier.
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LIST OF ABBREVIATIONS AND SYMBOLS

m Electrochemical potential in left reservoir

m Electrochemical potential in right reservoir

v; (k) Velocity of electrons in Jspace

f(m) Fermi function at electrochemical potentigg

p Ratio of the circumference of circle to its diameter
e Electron charge

A 7" k,k’) Probability that electrons withave vectok will be transmitted
%

k Electronwave vector

Electric current

A Area

\Y Electric biasor voltagedifference

G Landauer conductance

E: Fermi energy

h Plancko6s constant
h h/2p

m Mass of electron

b Gradientoperator

E Energy of the electron

-

Reflection amplitude



Transmission amplitude
Transmissiorprobability

Current density

Electron density
Reflectionprobability

Atomic orbitals centered at site,

Label to distinguishifferent orbitals centered on the same site

Atomic sitelabel

Wave function coefficient for orbital.

la
Linear Combination of Atomic Orbitals

Hamiltonian matrix elements
Onsite energy for A atom
Onsite energy for B atom

Onsite energy foC atom

Dimensionless parametdt / w

Dimensionless parametdt, / w
Dimensionless parametdt, / w
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Hopping matrix element
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CHAPTER 1: INTRODUCTION

The earliest concept critical to understandjngntum tunneling was introduced by Louis de
Broglie. De Broglie proposed in 1923 that waves of matter have a wavelength inversely proportional to
theirmomentum In 1927, Friedrich Hund was the first to make usthefconcept ofjluantum
mechanical baier penetratiorl]. Quantum tunnelingf electronscannot be directly perceived other
than on the quantum mechanical scale. Glassnechanics cannot explaimneling phenomena.
Quantum mechanical tunneling happens when particles mauggthia bargr that is deemed
impenetrabldy classical mechanical standards. Thigier can be a region of high energy, a vacuum, or

an insulator.

Tunneling plays an essential role in several physical, chemical, and biological phendmena.
field emission, amlectroncan jumpfrom the surface of a meteito a vacuum by tunneling through a
potential barrier The electron is allowed to tunnel througk vacuunif the electric field is large enough
andthe barrier ighin enough.This is called cold emission. @&onductors are another example where
tunneling can occur. Electron tunneling through an insulating bagriportant for flash devices.
Tunneling can also be seen in radioactive decay. In the world of nanotechnology, quantum tunneling can

be seenn scanning tunneling microscopes, sators, and even touch screens.

Consider a particle with ener@yin the inner region of anedimensional potential well of height
V. Assume that the walls of the well have thicknésgccording to classical mechanicsHfis less than
V, the particle will remain in the well forever. Hfis greater thaW, then the patrticlaill escape the
potential well. This is not the case, according to quantum mechdives ifV is greater thnE, there is
a possibility that the particle will tunnel through the barri€he particle can escape even if its energy is
less tha V, but the probability depends on the difference betviieendV and on the thickness of the

walls surrounding the well



For tunneling of electrons in solids, the potential well is typically a metallic region where
electrons at the Fermi energy can propagate and the barrier is generally a material in which electrons at
the Fermi energy cannot propagate, in other worgl®tis typically a gap at the Fermi energy for the
barrier material. Even though electrons cannot propagate indefinitely, there will be an evanescent state
that extends from the metal into the tunneling barrier. These evanescent states play a edntral rol
tunneling. The evanescent states drise the complex band striure of the insulatowhich determine

how they decay in the insulat¢g, 3]

The electron tunneling phenomenon arises from the wave nature of the elaeatigesults from
the factthat when a wave encounters an interface, it may be partially reflected and partially transmitted.
This interfacial reflectance will lead to an interfacial or junction resistance. In this thesis, we shall treat
tunneling similar to a scattering problemvihich an incident wave on a barrier is partially transmitted
and partially reflected. The transmission probability will be related to the conductance using a model due
to Landauef4] Brinkman,Dynes, andRowelltreat tunneling in this way usingsample barrier model,
but their model treats the electron dispersion using the free electron model. In this approach it is not
possible to investigate tunneling in the gap between a valence band and a conductididahdll
remedy this limitation by sing the tightbinding model to generate a barrier with a gap separating a

valence band and a conduction bgbdl.

In an alternative model for tunneling used Bardeen p] andSlonczewski 2], onebeginswith
two electrodes separated by an insulator so thick that no tunneling occurs. Then the two electrodes are
regarded as completely independent systems. When they are brought closer together so that their wave
functions begin to overlap, tunneling occui®he overlap matrix elements correspond directly to the
hopping integrals of the tigitinding method Perturbation theory is used to calculate the tunneling
probability from the matrix elementslt is assumed that the states between which tunnelkestplace
are those of the electrodes unperturbed by the tunneling process (electrodes separaigitibgiyan

thick insulator).
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CHAPTER 2.1: LANDAUER CONDUCTANCE FORMULA

Ballistic transport, includingunneling of electronsvas treated by Landauer in 1974) In this
approach, one imagines two electron reservoirs separated by leads and aisayupleate, &unnel

barrier) as shown in Figure 1.

Leéltec Right Pl
reservie|l eft | right reservpi

& n

Figure 1. Geometry for derivation of Landauer transparifiula showing left and right electron
reservoirs separated by leads and a sample.

Within each reservoir we considire electrons to be (locally) in gtjorium at chemical
potentials/77on the left andr on the right. We also imagine thaetk are conduction channétet

connect the reservoirs. These channels consibedfansverse modes of the leads. In particular, for a
system with two dimensional periodicity perpendicular to the leads, they will consist of the vahes of
crystal momentum of the two dimensional Brillouin zone. The number of these transveeseisnod
proportional to the cross sectional area of the ledtie reservoirs are viewed as emitters of electrons,
the one on the left emitting riglgioing electrons and the one on the right emittingdefhg electrons,

very much like the classical blablody emitting radiation.

The Landauer formalism relates thetcurrert through the sampleetween the two reservoits

the emitted currentsThe rightgoing current from the left reservoir, for exampld! be given by

integrating over all of thetates in the left reservoir. Only the right going sta‘és{l() ) will contribute



to this current. The occupation of the states is given by the Fermi funcfifmg)() so that in the

absence of scattering thght-going currentensityin the leads in our serglassical approximatiofor a

single spin channetould be

I =—C mPKK) f
(zp)snd (k) f(rm) "

where X is the direction from left to right leading from one reservoir to the othérm) is the electron

distribution function,v; (k) is the electron velocity in thedirection, andeis the electon charge If

scatteringi(e. anything that breaks theddmensional periodicity of the leads) is present, the forward

scattered electrons will still get through and coniréto the righigoing current,

J* :i

sk WKk) f(ma T &k,
(2p) 2

(2)

where g T* (k,k ) is the probability thaelectronswith momentunk will be transmitted, i.e. have a
%

positive component of velocity in thg -direction after scattering.Let thecomponent othe momentum,

k , parallelto the interfacée k,;and thecomponenperpendiculato the interface bé, . It can be

shown thatv; (k) is related to thenergy dispersiohy,

HE (k)

vi(K) = .
K, (3)

S|



Usually there will be more than one band so there should be an index, e.g. n, that should be
summed over to obtain the current density, however, for simplicity, we will assunte ithelides the

band index and the integral ovkrincludes a sum over bands which is not shown explicitly.

If we separate the integral over momentum into integrals loyand k , we can writeJ " as

+ = e ~ 12 i HE(k)f T k
—(zp)zndlglzp h Ik, (/n)a k), ”

or,

=L LHEE) Tk K
azpndl& m (nz)a (k.k), .

where we have used a standard expression to relate the integral dwer tieensional Brillouin zone

to a sum. Finallywe convert the integral ovek, into an integral over energy and use the expression

I=JA to obtain,

IT’E a T kk)

Kk (6)

:Tl('D

Similarly, we can obtain the current in thex direction,



m
I"==fFE & T &,k,). 7

Kk

>l

Time reversal invariance of the Sétinger equation allows us to equate the transmission probability left
to right to thetransmission probability right to lef, * "=T . If m=m the current fronelectrons

whose origin is on the leftancels that of thelectrons originating on the right so that tietcurrent

would be zero

If we apply a smalpositive bia voltageV so that/p- 7 =V, then the net current will come

from the ener gymandmnahdhe et coremtrighe-going minus lefigoing)can be

written as

— + - _e”i, i + ' em ~ - '
I=1"-1"=7fEQT (k||1k||) — @ aT K,k
h kpkj h Kk
e a + + '
:E(”Z - g) & Tk, k)
Kiky
_e_2 i + M- m
= a T Kk e (8)

S

Using the definition of the bias voltag¥, = - @, and the definition of conductanc& = IV , the net
e

current yields the Landauer conductance forn(idaa single spin channel)



2

- a &rk,k, g

G:I_ =
V.o h Kk Ee (9)



CHAPTER 2.2: SIMPLE BARRIER MODEL FOR TUNNELING

As an examplehie Landauer formula cdre used t@alculate the conductance for a simple
model in whichthe leads are described fige electronand the sample is modeled agaential step or
barrier. This allows us to reduce the problem of calculating the transmission probability to a one
dimensionaproblem that can be solved by requiring continuity of the wave function and its derivative at
the boundaries between the sample and the |aA@sbegn with the Schrédinger equation, in the general
representatioin which the Hamiltonian and wave furmti depend on both time and position,

a n?
— B ¥(rt
gEZm (r)

S (F.t) = ()

(10)

Here m is the mass of the electron,ahd s P | a n c kld aur casetmlespmtemt'raIN(F) , andthe

Hamiltonian,

H= 2 P r),
— B \Ar) .

areindependent of timesothesolution to theschrédinger equation can be separatea tinte and

position dependences by writing the wave function as the product of space and time dependent functions,

F(r.t) = Yr)f (t)so that the Schrédinger equation becomes,



!

o= (1) B AT) W(r) (M) in= (A (). (12

We divide byY (F') f (t)to obtain

h? _ 1
B Yr) W) i hr ), "

2mY() 10

and ve choose a separation constént theelectronenergy,to separate th8chrodinger equatioimto

two equations:

“2myY (7) 1) W) E (14)
and
ih%ﬁf(t):E. .
Eq. (15) can be integrated to yield,
f(t)=e". .

The wavefunction becomes

10



F(rt) = Yr )e_"‘l -

=5 B ¥(r) 5() E= (1Y .

with boundary conditions appropriate to incoming electrons felom - and transmitted electrons for

x= +. V(F)=V(X) is the potential which iassumed to beero except in the region occupied by the

sample or tunnel barrier which extends frors=0 to X = d, where it is a constany/.

Because/ (f) :V(x) is only a function ok , we can separate variables by assuming a wave function of

the form,
Y(r)=Xxy.2) =AY €3 (19)
We substitutehis form forY (F) into the Schrédinger equation to obtain
n ¢ NAC aly) )
W) 45T R (A (30
(20)

VX (N AY) €3 =E (¥ (¥

Dividing Equation 20) by Equation 19) yields,

11



1 e n W g 1 @ fA
7€ e ) YOO iy gy O
1 eniw e
+z(z)g 2mufz(z) HE (21)

Eachof the threderms on the left side of the equals sidgpends on only ongf the X, y or z

coordinats. Hence we have thréeedependent equations:

72 u2
S ORICI TS .

72 lJ'z
- ?nﬁf(y) £ () (23)

72 H2
'an_zzz(z) £ 42 (24)

where

E+E, 4 £ (25)

Equations (23) and (34ave plane wave solutions,

f(y):exp(ikyy), (26)

z(z)=exp(ik, 2), (27)

12



with

nky _ E,
2m
and
12K?
om 5.
Thus
K? 72
= — E —
& 2m(Kf k‘z) 2m '

and Equation (2) maybe writtenas

e W) 2 K VO 80

2m px

which may be written in regions 1 ansvBereV (X) =0 as

with

13

(28)

(29)

(30)

(31)

(32)



_2mE

< SRt ak (33)
and inregion 2 whereV (x) =V as
HZX(ZX) = wiy () (34)
where
i*=22(E V) K .

In fact, we shall be interested in the energy range for wkithis negative.

When theenergy of the electrorE , is lower than the barrier potentMl, the wave functins may be

written for regions, 1, 2 andd&s

_ jkx - ikx 2mE .
y, =€ #e™, kK H (region 1 (36)

2m(V- E)

y,=Ae" Be" K P

k- (region 2 (37)

14



Kixi 1. o |2mE .
Y, =td¥ ki |-/ P K k=(region 3 (38)

Equation (B) represents the badary condition that in region the wave function consists of an
incident plane wave traveling in thex direction and a reflected wave of relatemmplituder traveling
in the - X direction. Equabn (38) represents the badary condition that in regiontBere is no wave

incident from the right, only a transneitl wave of relative amplitude The coefficientsr,t,A, andB

are determined from the boundary conditions and the requirements that the wave function and the

derivatives should be continuoul.we assume that the left andigeads are made from the same

materia) then k and kj are equal and will be representedkhyy ,andy ,are the wave functiorfer the

left (1) and right leads §Fespectively, andy ,is the wavdunction forthebarrier region (P

Requiring continuity of wave function and derivative at the interfaces yields,

y1|x=0:y2|x© ){|xa :3+/xd=
Wi - W VA
“X x=0 N‘ X 9 Xl“lx & Xh{':d (39)
1+r A B Ag?  Bekd t&d
aki B , e KA
1-r 2 B B Ad®  Betd 12 &
= &8 e o)

15



This set of foutinear equations can be solved to determiAg,B, randt

e k(k+ iki) &
" 2ikkicoshk di+ (€ -k?)sinhkd’ (41)
_ k(k- iki) &
2ikkicoshk di+ (& -k? )sinhk d (42)
‘o 2ikKi
2ikkicoshk di+ (¢ -k? )sinhk d’ (43)
and
(= (k? + ki®) sinh k di
2ikkicoshk di+ (¢ -k? )sinhk d (44)

The transmission and reflection amplitudes are givenangt , respectively.

16



Region 1

Region 2

Region 3

o
[%))
T

'?4 -3 2 -1 0 1 2 3 4 5 6

Figure 2: Tunneling wave function for the simple barrier model for a fixed valulq‘ offor this
example, the barrier extends fror=0 to x=2.

The transmission and reflection probabilities agiven value ofk, aregiven by

Tt = 4Kk
AKKi? cosit k ik (I - kz)zisinﬁ kd
_ 4Kk '
akzki? + (K2 +k2)zsinh2 kd i (45)
(k2+ kiz)zsinhz K di

andR=1rr" = - .
4k2ki2+(k2 +k2) sinh? k d

It is important to note that the transmission probability is only given by the simple refagidnt when
the leads are the same on the two sides of the barrier. If they are diffeeemusineither compare the

transmitted current to the incident current or carefully normalize the incident and transmitted wave

17



functions so that they carry the same current and flux. We will return to this point again after we discuss

the current density.

To obtain the conductance, we must integrate the trasmiprobability in Equation (Joverk, . If we

define
2mE
k=53
h (46)
and
2mV
k? = e
(47)

then the transmission probability may be written,

42- K)(x* K K) |
a(k2- k?)(k* -k ®) Asinhi[ % k- Kd (48)

T(EV.K)=

and the(single spirchannel)conductance from the Landauer formula may be written, taking advantage

of the conservation of transverse momentum as an integrakp,ver

6=
h

kdkT( EV, k).

>
O:zﬂx

(49)

Setting

18



X=—
k (50)
and
"y
k (51)
this may be written as,
&€ A, A(x-Z)(1-% #)

= —k’fedz
h 2p ¥

o 4(x-Z)(1-%¢ #) sir{kd/1 % 2) (52)

A change of theariable of integration using,

uw=1-x¥ # (53)
yields,
€ A, " 4 (1- v?)
G=——k* f udu .
n2p VR (@) winf(kay) (54)

It should be noted that this resulisly valid in the limit of low bias both because we have restricted the
potential to be the sanime both leads and because we have assumed a constant potentiab&oridie

region.

19



In the limit of d - O in which the barrier vanishes and the transmission priityafsecomes

unity, Equation %4) can be integrated trivially tgive,

2

e A 2
2P

(55)

which is the Sharvin single spohannel conductance for a contdéj. The Sharvin conductance can be
2

viewed asF times the number of conductance channels. The number of conductance channels per unit

area is the projection of the Fermi sphere onto a plane perpendicularxe thés divided by(2,0)2 ,

which may be viewed a& square wave length per conductance channel.

In the limit of d - @ , Equation $4) yields,
> Ak 3,
e A E-ra, EE & 2 E
G=———16—"F24 -—F &sexpe %d,|1 %
h 2p 2d v&;‘éL v 2 Fég Y,
1
e A k@&, E B
- I o ’\/’ (56)
h2p2d881 Vv Q(EF k9
€ A
== T(E.,V.k =0
_ kZ_kZ
wherek’ = F
d

20
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Figure 3: Graph of Conductance as a function\% for different values of thicknesd, Conductance

2 2
is expressed in units §h—

(see Equation (54)).
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CHAPTER 2.3: CURRENT DENSITY

We can think of the probability of finding an electron in a particular spatial region changing due
to a probability flow, or current, entering or leaving that regidhis definition of the current is chosen

so that the probability density will satisfyetbontinuity equation

T VT
bp —,
it (57)

representing the fact that electrons are conserved. Here, the electron deepiigsisnted by

r(r0)= F(r2) &), (5)

We can use théme-dependent Schrddinger equation to derive the current. First, we take the time

dependent Schroédinger equation asddmplex conjugate:

P E(r 1) &1 g 9
|hmF(r,t):H frt) € om D E(r;} (59)
and
L B B OB S22 2w ()
TS " 2m 0 (60)

Multiplying the first of these equatiomy F (F,t)and theseconcby F (Tt) yields
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Fr(rink Fre) = HroR () S6R)g o -f VPG E)
g 2m 0 (61)

and

1) =mmCE) EgE LSSV SR,

e2m

Subtradihg thesetwo equations yields
NV R ~ /. . v s
nEFEOF[) g 81 CEF (R @F

which can be written as

N B .
Hf(r’t)_ﬁ BO(MR) (BF (Fr)F (191 (64)

We can now see that this becomes the continuity equation if we identify,
. h g .
j=5—gF(rt) DFL) -(E) "OF),

2mi (65)

as the electronuzrent. Since the gradient operator does not operate on the time dependent part of the

wave function, this may be written as
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Lgv(r) oK) (Y Y

2m|

and the current in thes- direction(for a given value ok ) is given by

2m'é ux M

% -
:é
[eall )
I
@

wherey ; (X, k) is given by Equations (388) for the simple barrier model.

For each regionl( 2, and 3, the currents are represented by

1x

2x

i€ i

e

i€

e

hk ) .
=y, - ){— yH (1 |r|-) (region 1
— ), - )5—“ *yg :1"(8 A A—B) (region 2

)g— yH (|t|) (region 3’
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(67)

(68)

(69)
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The reflecion and transmission probabilitiesthe simple barrier model were found to be,

, (K2 +ki?)”sinh? k df
R=|r| = 2 2
(2kik)* +( K +?) sink? kd

and

T = (2kik)’
(2Kik)* +(1 +2)" sint? kd

In the leftlead, we have,

. h a.p (VI o /1 2
Bt ST yg=(1 Irf)

_nkg (k2 +k?) sinh’ ki 9
Me  (2kik)’ +(K +?) sint? kd §

_ ik §(2Kkik)" + (1 +) sint? kd (R )" sinff kd

mg (2kik)2+(k2 +k2)zsinh2 kd j
RE (2 i (k) ()

™ &(2kik)?+(IE ) sinkt kd §

and in the barrier region, the current is given by,
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o

& . 1

. M . O AKi
= -y =(BA AB
Jax 2m|8é(2uxy2 ¥ M y92 ( )
hk. k(k+iki) e*® .\ K( k +ik) j&®
mi @ 2ik k coshk di -(k2 K ) sinhkd gk k coslk d (+?< 18) sinhk g
hk, k(k- iki) e® .\ K( k - ik)ie®

mi g 2ik k coshk di (kz Kk ) sinhkd  #kk cosH<d+(k2 Ki )smhkd.

_nki Sk + 2Kk k2K K 2RIk KK 9
Mi €4kik? cosi k i (K - k?) isinff kd i

M &(2kik)" +( K +:2)" sint? kd gw (k) T(K).

It is interesting to note that the exponentially increasiagvell as the exponentially decreasing
component of the wave function in the barrier region must be present, otherwise the current in this region

will vanish (see Equation (69))A semtiinfinite barrier will support an exponentially decreasing

evanescent wave, but it carries no current.

In the right lead, the current is given by,

. h & . K M. Ak,
= = =t
Jax 2m|8‘£(3|1xy3 < M yg m||
ke (2K o (%)

M &(2kik)* +( K +?)’ sink? kd gw () T(k)
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Thus he current is conserved throughout each regighefunneling process. Second, the identity
R+ T 4, is satisfied. Last, we should note that as the barrier becomes thitker¢ases) or the

barrier gets tallerKjincreases)Rincreases and the conductance and current decreases

In Equations (72/5) we have identified the transmission probability with the absolute square of
the transmission amplitudé’,(lg‘) ={'t. This is only valid if the left and right leads are the same or if
the incident and transmitted wave functions are normalized to carry the same current. In the general case

with un-normalized incident and transmitted wave functi(IEilkS?“X, and eikRigh‘X, the transmission

probability is obtained by taking the ratio of the transmitted current to the incident current,

T (k)= (%) £ (%) ()7 v K-
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CHAPTER 3: TIGHTFBINDING APPROXIMATION
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CHAPTER 3.1: LCAO ORTIGHT-BINDING MODEL FOR ELECTRONIC STRUCTURE

The simple barrier model has the advantage of simplicity, but it may miss important physics
associated with the existence of atoms in real tunneling systems. One obvious limitation is that real
barrier materis have both a conduction band and a valence baéme simple barrier model for a
tunneling barrier has only a conduction band. In this section we shall develop tHertijhg formalism

for electron transport and quantum mechanical tunneling.

The tight-binding approximation is based on the assumption that the electron wave function can

be approximated as a linear combination of atomic orkital£\O),

v(r)=a ac..l R)
atomic orbitalsa (76)

where £, representsin atomic orbitatentered at sitd,, with label, @ , distinguishing different orbitals

centered on the same sifEhe C, representoefficients which are to be determined. The time
independent Schrodinger equation was given in Equation {I{8.Schrodinger equation is
HY (r) =E Yr), where, in the presence of atoms, the Hamiltonian can be written as
h? .
H=—— D &V(r R),

2m (77)
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withV, (f - Ifg) representing the effective potential associated withi sité should be noted that vese

assuming a fAone fiedfefcetcrtoinv ea tf iae Itdi omeadp porrengity mat i on

functional theory[8]

By substituting the LCAO approximation for the wave function into the Schrédinger equation and
assuming that the atomic orbitals are orthonormal, one can convert thdiBgaré@quation into a matrix

eqguation,

HC=EC (78)

or

a é@Hia;b'E(Hb:O (aIIianda)
sites j orbitalsb ’ ( 79)

where the Hamiltonian matrix element is given by

M o= (6 R ) 4 T ) bR (1 R)H (B/R)

(80)

Although the assumption that the wave functions are orthonormal is not very realistic, it can be
justified by invoking Wannier functions which doealfunctions obtained by a transformation of the
actual energy bands of theaterial. The Wannier function basis is orthonormal and the Hamiltonian built
from a Wannier function basis can often be madestve a relatively short randé]
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The development of realistic shoeinged tightbinding Hamiltonians is an active area of

research. In this thesis we shall employ empirical models based cehitightg. Theempirical tight

binding method develops approximations only for the Hamiltonian matrix elerhgpts, themselves

without attempting to model the mrttial and the explicit form of the LCAO basis functiofide tight
binding models used in this thesis are too simplistic to accurately represent the electronic structure of a
solid, but our objective will be to illustrate important physical principlaékiwimodels that can be solved

exactly.

The simplest tighbinding model for an infinite solid would beoaedimensional chain of ore

orbital atomswith only nearest neighbor interactioihe Hamiltonian for such a system would be an

infinite tridiagonal matrix with the orbital energf,,, on t he di agonal and the #fAh
w=(f [H| £), (8v)

above and below the diagonal. In practiEg, andw are parameters that would be adjusted to mimic as

well as possible the relevant energy band of the sdlide Schrddinger equationill consist of an

infinite set of equations,

CE+WG,, WG, £C (82)
The infinite set of equations can be solved by wus

on adjacent sites are related by a phase factor, i.e.

C :éqc;_ (83)

This ansatz leads to the dispersion relation,
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E(g)=E, ®wcos g (84)
The phase angle in Equation J&2n be either positive or negative. FrBguation (84, it is clear that

° g yield the same energy. The positive sign corresponds to a wave propagating ja divection.

The negative sign corresponds to a wave of the same energy propagating in the dipposite.
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CHAPTER 3.2: TRANSMISSION THROUGH AN INTERFACE IN TIGHBINDING

The simplest system that illustrates tunneling in tlgihding hagwo types of atomdypeA and
typeB atoms,j.e.anA-B system.In this model, asemiinfinite chainof A atoms on the leftonnectdo a
semiinfinite chain of B atoms on the righf he parametersare chosesuch that the A atomseametalic
having a propagating state at the energy, deségl by us as the Fermi energy while the paraséter
the Haniltonian describinghe chain oB atomswill be chosen so that it will be eithan insulatoror a
metalat this energy.For simplicity we assuma singles-symmeéry orbital on each A or B siteWe will
also assume that the electrams incident fromtte left propagating in the chain & atoms. The

parametemw represents the matrix element connagtirbitals on adjacent sitesor simplicity, we

assume thaw is the saméor the A and B chains and for the matrix element that connects thgrand

E; are respectively the esite energies for the orbitadn sites A and B.

FoloXolelerer
TH ™ n M H 0)

Figure 4: Singles-orbital modelwith semiinfinite chairs of A and Batoms The A atoms extend from
n= - ton=0. The B atoms extend froom=1to n= &,

For theleft part of theA-B system the wave functiom(¢ O) is represented by

0
— A AA )
yLeft_-anCn If(r Rn)! (85)

andfor the right part 02 1) by,
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Y Right = élcﬁ A(r R,). (86)

Thematrix Schrédinger equatioiquation79) will be an infinite set of equations which includes a semi

infinite set for the left, a senmfinite set for the right and two equations for the interface,

(E-E)d W ¢, €,) 0=(forn 0) (87)
(E-E)¢ -W¢ €) 0= (forn O, (88)
(E-E)& -W¢ €) o= (forn 1, (89)

and

(E-E)¢ W&, €,) o=(forn 1) (90)

If we divide these four equations lwy, and define

E/w=e, (91)

E./w=e,, (92)

and
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E,/w=¢g;,

the system becomes,

(e- @ch «ch, &, O=forn

n1

(e- Ac) «c, &) 0= forn

(e- O c; &) 0= forn

and

(e- 9c® «c2, ¢£,) O=forn 1.

n n1l

(93)

(94)

(95)

(96)

(97)

Theboundary conditions are such that there are incidedtreflected wave functions for¢ 0, and a

transmitted wave function foxr2 1. These can be written as,

ch=d% #e"% (n @

and

c®=te"® (n 20).

Substitutng the boundary conditions inEguation @5) for n=0gives,
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(e- P *) €' re% te#d O. (100)

Similarly, substitutinghe boundary conditions intequation(96) for n=1 gives

(e- Ote® (t€ ¢ T+ rw+ 0. (101)

The dispersion relations for the left and right sides edla¢ energy to the phase factors

e- g =% GR (102)
e- § :e' igs é.g ( 103)
These can be used to write equatid® and (00 in terms ofr, t and the phase factors:
e€%r-td? =e# (104)
-r + E (105)

The transmissioamplitudecan be determined froadding € times the first of these equations to the

second,

98

{= 2i sing,
1- g%l @ " (106)

and the reflection amplitude from Equatid®9),
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% _ g &b

dred-1 - (107)
In this cese, the reflection probabilit)R=rr" 4if €'%- z_ . This will happen when the energy is
outside the range2w <€ E, 2w, since in this case&osg, =(E -Eg) / 2w will only have a

solution if g, is imaginary. We assume 2w <€ E, 2%, otherwise there would not be an incoming

wave.

_éeide_iq_l GéquAq-l _1@ COS@ -Q)
r*r =ge—— 0 ' 0 B
ce%e9-1 Jee¥d ~71 1 eosfy +,0)

whenz #¢.

(108)
_ézreale-iqA -1 6 éal é(i( 1

r=g—— gao——
gzrealé%_l + 4gal e

0 .
=) when zisreal

This implies that the reflection probability is unity even though there is a decaying wave of amplitude
¢, =tZ' (where z<1) in the seminfinite chain on the right hand side g 1). We defer a calculation

of the transmission probability until after we have derived an expression for the current density in the

tight-binding approximation. At that time, we will see that for the case of aiséinite chain of B
atoms, for energiethat do not admit electron propagatiaire.(e ' - Z.,,), the current in the B chain

vanishes and the transmission probability also vanishes even though there is an exponentially decaying

evanescent wave in the B chain.
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CHAPTER 3.3TUNNELING THROUGH A BARRIER IN TIGHT-BINDING

We now consider transmission through a barrier in the-tigitting picture. Our model consists
of a semiinfinite chain of A atoms on the left and a senfinite chain of A atoms on the right. In

between i finite chain of B atoms.

A-B-A System

Xb bb\

Figure 5: A tunneling system consisting of two seimiinite chains of A atoms separated by N B atoms.
By proper choice of parameters, we can make the A atoms conducting and the B atoms insulating.

The wave functions on the left, middle and right are, as befgessed as a linear combination of

atomic orbita$ centered on the sites,

View = a nA):A(r-n)’

n=- o (109)

N
Y Middie = a CE /f(l’ -Rn)’

n=1 (110)
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=5 ct A (r -R).
leght n:%{ Dn n( n) (111)

Using the numbering system shown in Figure 5, we havewtequations that relate the coefficients for
the A-chain on the left to the coefficientor the B chain in the center:

we,+ G +we Eg (112)

and

wg + E;¢ twg  Ec. (113)
Thetwo equations that relate the coefficients for the wave function in the center to those for the wave

function decribing the chain on the right:

we,, + BG twg, Eg (114)
and

Wo, + B Gy WG EG (115)

As before, the boundary conditions on the left represent an incoming wave and a reflected wave,

c,=€" #e"4 (for n @). (116)
In the middle region, the coefficients consist of exponentially increasing and decreasing terms if

the energy is outside the region for which the B chain allows propagating solutions. If there are

propagating solutions, the exponential functions woulcepaced with circular functions representing
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left- and right going waves. Here we will assume for definiteness that the energy is outside the range of

the propagating solutions,

c,= Ad® +Be"? (forl & K. (117)

On the right side, the boundary condition is that of a transmitted wave propagatingxndihection,

c, =td" (forn 2N 3. (118)

Substitution ofEquation (116) and (1} 7nto the boundary conditionsf Equations (12) and(113), the

two equatios for the left interface yields:

(e7+re) {Ae Bef) (& g1 } (119)

(1+1) {A¢® Be’?) (& @ Ae’ Bet). (120)

While substitutions oEquations (117) and (11#tothe boundary conditionsf Equdions (113) and

(114), the two equations for the right interface yields,

(Ad" 1 B 18) s Vo o g A B

(121)

(A" + BeM) +" D (@ g 18 VS

(122)
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Using the dispersion relation fé&, e= g 2cos ,, and for B,e= g ®2cosh ., on the equations

for the left interface yields,

- re’ ' -(Aeg {Be'B") & (123)
and
-r A B 1 (124)
Similarly, for theright interface,
AdVY% 4 gelN Be _dN I g (125)
Ag'% + Be"¢ -t&' 4 @ (126)

The reflection amplitudet , can be easily eliminated froBguations(123) and (12%that describe the

left interface,

Aler- e'4) +H e &) ‘@ b (127)
Similarly, t, can be eliminated frofaquations(125) and (12pthat describe the right interface,

A" (ef- &4) +BE' °f e° 7le)70. (128)

Equation(128) allows us to obtairA in terms of B .

(e e)

A= Be?'\® W (120)

Then the inhomogeneous equation involvingndB can be solved:
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- (eiqA _e-ia()(e-sq éﬁ N e d

A:(e"’B- etd)(e” -e) (e Te)(e o)

(130)

(131)

Once AandB are knownt andr can be obtained in a straightforwlgif slightly tedious) manner:

teo = (- &%) (e” -e7)
e —(e-qB_ e”‘)(qu _éA) e q(_ o qig)(q o qiéA) e

(qu+e'g & eu\)( Bea é‘és)q

re'% =

(e“’B - e”‘)(eﬁ" -éA7 e ‘7(- e° "ie‘\)(q e ‘”e‘A) &

Equationg132) and (13Bcan also be written as,

4i sing, sinh g
4sinh(Ng,)[ = cosq coshfy +i4 co$N ;)g sin gsing

t Ngp» —

and
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o = 4(coshy, - cosg) sinN .y |
4sinh(Ngy)[ & cosg coshfy +i4 coéN ,)g sin gsing (135)

We can make contact with the transmission and reflection amplitudes calculated forpilee sim
barrier model, Equations (43 and)4¥ takingadvantage of the fact thaght-binding bands have free
electronlike dispersion near the top or bottom of the band. Thus we can recover thelsamjge

tunneling amplitude expressions in the follogiimit,

2

g,=ka -0, sing - ,g cos, g 1% o

(136)
: - 1,
g; =kia - 0, sinhg - g cosh, g ¥ |
2 (137)
Na=d. (138)
Then
1N 2ikKi
(k?- ki?)sinh(k d) +2ikk coslf k (139)
and
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(k? + ki?)sinh( k d)

-iqa _
© (k2 - kiz)sinh(kd) +2ikk coplf kd (140)

Equations (13pand (40) can be seeto be the same as Equation (48) (44 aside from unimportant

phase factors.
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CHAPTER 3.4 TRANSMISSION PROBABILITY FOR SIMPLE TIGHIBINDING TUNNELING

The transmission and reflection probabilities barobtained from equations (134) and (135

respectively,
Toft = sin’g, sintf g
sint? (Ng, )[1- cosg cosh,§f + codfiN .)g sin, gihh, (141)
Ry (coshg, - cosq)” sinh(N .Y

sint?(Ng,)[1- cosq coshgli + codfN .)g €in, @ihh, (1%

Electron conservationR+ T =) can be verified by noting thaly repeated use of the identity,

cosH g=1 +sinfi ¢, the commordenominator in Equationd41) and (42 can be written as,

sint? (Ng,)[1- cosg cosh.§f + codfiN .)g €in, gihh,

=(coshg, -cosq)’ sinh(N .§ +sh , gsifh, g (143)

Equations (141) and 142) can also be written in a form that shows the energy dependence more clearly,
by usingx=e - g 2cos ,andy=e - ¢ z z+ 2cesh, or 2cosy, if |e- 4 <,
(x- (2 -2")

R= (144)

(v- (2 -2") (4 #)(4 9)
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e )
(y- (2 -2") (4 #)(4 ¥}

(145)

Written in this form, conservation of electrorf8+ T =, is immediately obviousSimilarly to the

interface case we can make contaith the simple barrier model in a limit in whiajp, =ka - 0,

g, =kia - 0, andNa=d.

Toft = sin*g, sinit ¢
sint? (Ng, )[1- cosg cosh,§f + codfN .)g €in, gihh,
(2kik)*
(2Kik)*+ (K +2) sint? kd |
R=rr = (coshg, - cosq)’ sinh(N .

sint? (Ng,)[1- cosg cosh.f + codfN ;)g sin, aifih,
(K2 +ki2)”sinh? k df
(2kik)” + (I +?2) sint kd |

This limit can be taken consistently if the energy is very near the top or bottom of the conduction band for

the leads and simultaneously just below the bottom oajuste the top of the conduction band for the

barrier.

The variation of the transmission probability with energy for tHB-A system is shown in
Figures6 and7. The A(leads)onsite energy in units of the hopping nratlement is chosen to be 0, and

the B (barrier) onsite energy is chosen to be 2. The band of the leads will exter# foo2y the range
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over which the figure is plotted. THeand of the barrier extends from O to®here is wave propagation
frome=0 to e=2, energies where propagation is allowed in both leads and barrier. In the region
e= 2 to e=0 thereis a small transmission due to quantum mechanical tunneliggres 6 and 7

showthe transmission probability fdd=10, and 5 respectively,e. for 10and 5B atoms in the barrier.

Transmission and Reflection Probabilities N=10
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Figure 6: Transmission (blue) and Reflection (green) probadidlifor the AB-A tight-binding model as
a function of energy. Parameters &e=0, ¢ =2, N =1(. Energy is measured imits of hopping
matrix elementyw. The red curve shows the sum of Transmission and Reflection probabilities.

For some energies in the namneling @ergy range, the transmissiprobability reaches 100%.

These are energies for whiddg, = m ¢ where mis an integer. In the netanneling orband
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conduction regime, the hyperbolic functions in Equati#il) become circular functions. Thus perfect

transmission will occur fog, =m g N or for e= g 2co{m fN).

Figure 7 sbws a similar plot of the transmission, but for N=5. It can be seen that the
approximately exponential decay of the transmission probability into the barrier is slower for this case
than when the barrier is thicker as in Figure 6.

Transmission and Reflection Probabilities N=5
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Figure 7: Transmission (blue) and Reflection (green) probabilities for tieAtight-binding model as
a function of energy. Parameters &e=0, ¢ =2,N =5. Energy is measured in units of hopping
matrix elementw.
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Figure 8 sbws the transmission and reflection probabilities using a logarithmic scale so that
decay of the tunneling probability can be seen at energies far from the band edge for propagation in the

barrier.

Transmission and Reflection Probabilities N=10
Energy Range for Tunneling

o

—
le»]

—
Ou
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—
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Transmission and Reflection Probabilities

Energy

Figure 8: Transmission and Reflection Probabilities plotted with a logarithmic s@dde.tightbinding
tunneling mrameters are, =0, ¢ 3,N 0

Figure 9 Bows the wave function a=0.99using the parameteds Figure 8. The blue
and redpoints (boxes) represent the real and imaginary parts of the wave function coefficients on
the atomic sites as described in Equations{1l@%). Waves are incident from the left fromz

and ae outgang on the right toward- 2. Note that the wave function changes sign between
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adjacent atoms in the barriefThis is due toe ® being negative below the bottom of the band

for the barrier. If we move the barrier band down so that the energy is above the band
maximum for the barrier, the facter® will be greater than zero. This is illustrated in Figure 10
which uses the parametees, =0, ¢ =3, e 9.9¢ so thatE is slightly above the B band

maximum of 1.

1.5

0.5

o
[8)]
T
i

N
9]
T
1

Barrier

Real and Imaginary parts of VWave Function Coefficients
()
I

20 5 0 5 10 15 20
Site Number

Figure 9: Parameters are, =0, ¢ =3, €e=0:99N 1€ The wave fuction coefficients for the

realand imaginary parts of the wave function are shown bblineandredboxes respectively. Thaue
andredlines joining the boxes serve as a guide to the eye.
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Real and Imaginary parts of Wave Function Coefficients
o)
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T

RN Barrier EEEEE
A0 5 0 5 10 15 20

Site Number

Figure 10: Parameters are, =0, & =3, e ©.99N 1(The wave function coefficients for the

realand imaginary parts of the wave function are shown by the blue and red boxes respectively. The blue
and red lines joining the boxes serve as a guide to the eye.
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CHAPTER 3.5CURRENT DENSITY IN TIGHFBINDING

In order to understarttie aboveesuls for the transmission and reflection amplitudespecially
the results for the B Systemwe must understand the current in the tigimding approximation. In
analogy to the derivation of the current in Cleay (starting from Equation ()7 we havefor our one

dimensional tighbinding modelthe timedependent wave function,
F(t) =& c.(0f,. (140)
which doeys the time dependent Schirigger equation,

v _
h—F(t) =H Kt).
nbE@) = R .

This can be written in terms of the wave function coefficients by using the assumed orthonormality

properties of the local orbitals,

inEc ) =Ec,() W () we.().
ut (148)

The probability that an electron is on sitg, is given by

ra(t) =c.(t) (1), (149)

and the time derative of this quantity is given by,
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M € W .o
h—r_(t)=Iih €, —
R Ui (150

but this can be evaluated by use of Equatiot8) and its complex conjugate

imiﬁcn =E,GG WG G, WG G,

(151)
and
- u * — * * *
ihc,——C,= HGG WGG, WGE,.
s (152)
Thus the time rate of change of the number of electrons on a site is given by,
(153)

ih&fn(t):§WC;Cnl -Wchévl) (—WQ]*QH Wq 91)’

but this must be equal to the difference between the current coming in from the left and the current

leaving from the right,

L= fed, wie) (wie. wee) g

L

>
N

3
Nto,

(154)
where,

‘]_ :ig(Wqu*]_l -W¢1(|:i-1) (155)

N
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and

i * *
J , =—|w¢,,G -wW .
" (W66 -wé () 56

We are now in a position to discuss the reflection and trassmni amplitudes, Equations (106)
and (107, in terms of the electrocurrents. The current on the left ivgn by substituting Equation (98

into the expressi for the current, Equation (PBito one of the expressions for the current, obtaining,

e = _—Zw;qu (1 r-*r).
(157)

Similarly, useof Equation (99in the expression for the current yields,

_ 2wsing; 't

right —

J
(158)

Substituting from the expressions forandt, (Equations 154) and (55)) allows us to verify that

Jien = Jign-  If we define the transmission and reflection probabilities to be,

T= s!an 't
sing, (159)

and
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R=rr, (160)

then we haveR+ T = as expected. The reason we need to modify the definition of the transmission

. : sin . o : .
probability to include the factm%q“, is that the incident and transmitted wave functions have
sing,

different normalizations, i.e. the current or flux carriedensp(ing, ) differs from that carried by

exp(ian). If we had been careful to include the normalizafiactors to ensure equality of these fluxes

then the additional factpwould not have been needed.

The negative sign in front of the expression for the currents has a simple explanation.
- 2wasing /h is the electron velocitfor an electron with dispersion relatidﬁ(q) =E, 2wcos ¢
Thus Equation¥53) could be writtend ..., = vt t which may be comared to the analogousjiation

(75) for thecurrent in the simple barrier problem. Wher> 0, the energy is a maximum for
g=ka $. To compare the simple barrier model with a limiting case of theltigking model, we

will need taake w< 0.

Note that when the energy is outside the rangey <€ E; 2% so thatg, is imaginary, then

the current expressions give zero for the current on the right. This is consisteRR withas derived

above.
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CHAPTER 4: TUNNELING THROUGHA BARRIER WITH A GAP

The systems that we have studied so far, the simple barrier model based on free electron
dispersion and the singlebital tightbinding model differ from realistic tunneling in that neither involve
tunnel i ng t hr efuegdectran badsgdssimple barriek moddi, the barrier is made non
conducting by raising the zero of energy so that it is above the Fermi energy of the leads. In the single
orbital tight binding model, the conduction band of the barrier is position#wsiis minimum is above
the Fermi energy or its maximum is below the Fermi energy. In none of these situations is the Fermi
energy positioned in a gap between two bands. In this chapter we shall investigate tunneling through a

barrier with a gap in itdispersion relation.
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CHAPTER 4.1: THE AIBB-C] SYSTEM

A simple way togenerate a gap is to have two types of atoms with differesitemrbital

energies as shown in Figure 11.

forololleNo)] O-@%Q (D4

Figure 11: Smgle sorbital modeh Semanlnlte chairs of A atomsandB C molecules The A atoms
extend fromn= - to n=0. The BC molecules extend froom=1to n= =,

In this systema semiinfinite chain of A atoms connexbn the left to a senminfinite chain of B
C molecules on the right. The parameteilsbe chosen such that the A atoms are metallic having a
propagating state at the enertjat we will designatas the Fermi energy. The® molecules can be
designatd as an insulator or as a metal, to be determined bimportantly for creating a gaB-C

moleculeshave two different orbitalsFor nearest neighbor interactions, there will be a gap between the

B and C onsite energiesLet E,, E;, andE_ berespectively the osite energies for the orbitals on sites

A, B, and C. For the left part of theBC system the wave functiom& 0) is represented by

0
yLeftzaC:fr:A(r _Rn)!

(161)

o= ) c® A(r -R) (B-atoms
Y Rignt ?:l n n( ”) ( ! (162)

and
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=5 cc £(r -R C-atoms.
o 21 AR (163)

The Hamiltonian together with the assumed orthonormalitire orbitals will genetta an infinite set of

equations:
(E- )¢ -w(¢, €,) ofor n o, (164)
(E- E,) & V\((ﬁl ﬁi) O=for n 0, (165)
(E-B)¢ -W¢ €) ofor n 1, (166)
(E-E)¢ -w(¢& €) ofor n 1, (167)
(E-E)¢ -wW¢, €,) oorn 1 (168)
and
(E-E)¢ W&, €,) oforn 1 (169)

58



Note that two equations are neededeach two atom cell fon>0:

The boundary condition on the left in the chain of A atoms is the sum of an incomingyaigyt
wave of unit amplitudeg™ , and a reflected, lefjoing wave of amplitude, re . The boundary
condition on the right is a transmitted rigdaing wave that has amplitudgz" on the B atoms ant}. z"
on the C atoms. Using theseubdary conditions and defining, = we, E, = we,, E; = we;,

we have from Equation (1$4e- g =2cos , ,and from Equations (168) and ()a8sing

E. = v,
Con = 26, G4 =2,

e- g (1 251)58
¢ (L2) e -e @

D~ D/

0, (170)

p
i

which implies that,

(171)
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Bands and Gap

2.5

Figure 12 Dispersion relation for B chain. A gap extends from, = 0.5to €. =0.5. Blue and

green curves are real and imaginary parlsg() respectively wheree- g)( e.) ez 10
z

On substitution of boundary conditions, Equati®5 becomes,

(e- A1 *) (e re t,7 0, (172)

which, with the help the results from Equation (1p4an be written as,
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r-t,zé» = ¢ *%

(173)
Similarly, Equation (16ybecomes,
(e- Otz t,z(1 8 0O, (174)
which allows us tavrite,
t. = s (1+2) :
(e- &
and Equation (166becomes
(e- Otz {1 ¥ t2) O, (176)
which with the use of Equations (1)7dnd (173, may be written as,
€l1+z' @ :
-r — Wz E
ERER ()
Adding Equations (173) and (1)yields a solution fat ,
(1_ e2iqA)(e _ (?) (178)

tgz=

1+z' {e -g€*’

from which a solution fott. follows,
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(1- eziqA)(l +2)
lez=—— AR 179)
1+z' {e -gé* (

as well as a solution for, (using Equation (179

(e- @ -(1 ZEl)é"A

e 9 e

The reflection probabilityR = r'r, is clearly unity if zis real, i.e. if the parameters are such as to forbid

conduction in the BC chain. However, iz = gec , then R becomes,

R=rTr _(6’- @)2 2 2Zcos s (' %)’ 2‘E‘Z:OSA ( g- c) QCC(SA BC)
. .
(e- & 2 2cos,g (- e}2zos, ( g-.) €cds, ) (181)

In order to investigate the transmission probability, it is necessary to calculate the current on the
right of the interface and compare it to the current carried by the incident wave. An expression for the
current is given by Equation (16 This expressioinvolves the wave function coefficients in adjacent
atoms of the chain. The easiest place to apply this expression foiCQtuh&n is between the B and C

atoms in one of the cells,

Jn+£ :igw(%ﬂc; -éh ﬂq1) _I%le_( t:’tB *tC_tB)- (182)
2

Substitding from Equations (178) and (1y8ives,
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) g e a7
A e 9EE  (e0E b
Right ~ 7" g8 (1 eziqA)(l +Z'1) *.1 é“‘)(e é’) 7

If z is real, Equation @3) gives 0, however iz = é%c | the current is finite and is given by,

-w 8sirfg, sing.( -e.)e
h 2+2C0, '( e 'c)g (' %)QQCOSA ZPE(SA BC)7+<

Jright =

Both Equations (181and (B4) can be simplified by using, Equatiorvd) in the form,

2+2coxp. € . &) giving,

o

(

e- & { e,)e2eos, 2Zeof , )
e- & { e,)e2eos, 2Zeof , Qi

and

- W 8siIt g, sin g

‘]Right:7(e_ §).( ec) (92605A ZIGOéA Bg)-}.

(183)

(184)

(185)

(186)

The current carried by the incident wave is givenhy= 2wsing, /%, so that the transmission

probability is
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_ 4sing, sin g-
Jo (e- @ € e.)e2eos, 2Zeof , @F (187)

It is now possible to confirm that the sumIgfin Equation (18band T in Equation (18Yis unity.
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CHAPTER 4.2: THE AIBB-C] SYSTEM WITHs-p BARRIER

™ N M HX n

Figure 13 Single sp-orbital modeli semtinfinite chains of A and BC molecules. The A atoms extend
fromn= - ton=0. The BC molecules extend froom=1to n= . The orbital on the C atom

hasp, symmetry.

In the A-BC (s-p) system, th&-C chain is a chain dfvo-molecule systerB and Cwith atomB

having arns-orbital and aton€C has gp-orbital. The system is solved as follows:

gc, ¢, &) 0= (n 0, (188)
9c’ (¢ &) 0= (n 1Batorp, (189)
and
8 (& & 0=(n 1 Gatorp (190)
In the A chain, forn< 0, we have,
gch {ch, &) o, (191)

And in the BC chain, forn>1, we have
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(e_ QCB -(CC (—:C) 0, (192)

n

and
(e- gcy -(CB (-:B) 0. (193)

Equations (192) and (193) lead to the dispersion relggten g)( e .) ez 12 The boundary
z

conditions representing an incoming wave from the left and an outgoing wave on the right are

ch=e% #e"% (n 0, (194)
e =p 2t (195)

and
= 2, (196)

respectively. Substitution of the boundary conditiongjuations(194), (195), and (196into the

interface equations, Equations (188), (189), and (190), yields

(e- B ¥) €% & t)+0 (197)

(e- oty 1 mty) O, (198)

and
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(e- @Nc a [ tB'ZR) 0. (199)
Rearranging as a set of linear equations for variatiied, and t.,

e- g €")r t e, €'%), (200)
(e- ge")r & f-e.€)

-t e Oty te 1, (201)
and
(1- z)t, fe -gt. O. (202)
We can usé&quation(202), to eliminatd,. ,
— (1' ZR)
(o tB’
(e- & (203)

Next, using Equation (191) we obtaia; £ =% @& % which wesubstitute into Equation (200), so

that after substituting Equation (203) into (202), Equations (200) and (201) become

r-te% =¢'¢

- . 204
ot e -or, L&y (204

(e- & °
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The sum of the twoguiatiors (204) gives

de- g€ e)el-z)y g A 2 @

Then one can solVequation (20%for t; and use Equation (208) obtairt,. ,

_ @-éM)e -9
*Tle- €M) eo) el z)
(L EM)1 7)

(e- £ €™ eJ) el z)

C

With an equation fdi, , ether of Equatiors (204) can be used to obtain,

(- €”)e - & 54

re'»= d% ¢ -—= i
(e- e -€™)( ec) el z}

We rearrange Equation (2P get

_(€%-¢é9e -8 ¢ es @9 F-(e B)
(e- &™) eo) el z)

re 2%

(e- £ €")( e) el z)

andr is given by

(e g€ ed) el 7}
(e- £ 4" eo) et z)

If z;is real, then
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(205)

(206)

(207)

(208)

(209)



(e' £ _equ)( e'c) e(l' ZR}e-ziqA g

e- g€ e el z) i

(e- &) e &l ) g B,

(- £€")( edel zy g (210)

Thus when the Bloch factor in the®region is real indicating that states cannot propagate, the reflection

probability is unity. Similarly, it can be seen that the current in tzdbain obtained by evaluating

Equation (182) vanishes. On the othendhaf z, - €% , then

Rofy £ €+ ec @eos, Zo0f . 4

(211)
e- e+ e, @cos , Zoof , )

and

T -4sing, sin g- (212)

e- e+ e, @cos, Zoof , L)

The negative sign in the numerator of the transmission indicatesithgt and sing,. have opposite

signs.
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CHAPTER 4.3: THE AIB-C]-Ai A TUNNELING SYSTEM

N+1

Figure 14 Semiinfinite chain of A atoms on the right and a senfinite chain of B atoms on the left.
The B-C barrier has orbitals of similar symmetry on the B atom and on the C atorimteAttom
hopping is assumed to be neanesighbor and the same throughout the chain.

The energy dispersion in the leads, is as befere, ¢ 2cos , and the dispersion relation in the®
barrier is given by,
1
(e- g( e.)ez Z+E' (213)

The equations for the two interfaces are, on the left,

gc {c &) 0=(forn 0, (214)
¢ {¢ &) Oofor n 1,aom B, (215)
ac {c¢’ &) Ofor n 1,aom Q, (216)

and on the right,
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(e- @cy {cy &, O0=(for n Natom B, (217)

(e- &cy {cy &) O0=(for n Natom Q, (218)

and

(- Ach. S &) 0=(forn N=1. (219

The boundary conditions appropriate to an incidertt reflected wave on the left and a transmitted wave

on the right with exponentially increasing and decreasing solutions in the barrier are,

=" #4e"% (n @, (220)
c=BZ7 +Bz" (0 « N, (221)
c=C 2 +z" (0 u W, (222)

¢ =td" (n2N ¥ (223)

Substitution of these boundary conditions into interface equations, gives a saetafadibons for the six

unknownsr ,t,B,,B ,C, , andC. :
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(e- p(1 *¥) ©“* ref Bz B#) O

(e- 8(Bz+B2') @ r+Cg CH) 0,

(e- &(c.z+«cz') ¢(Bz BZ B%Z BH 0,

(e- 9(B.2' B2") (C2 ez ot cdy o,

(e- 8(c.2' «cz") (B2 BZ W) o,

and

(e- pte™¥n (G2 ez W9 0.

These equations will loaglightly simpler if, instead dB, ,B_,C, , andC_ we use,

B =(Bz +B2"),

B, =(B2' +B.2"),
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(225)

(226)

(227)

(228)

(229)

(230)

(231)



c =(c.z +c ),

and
Cy=(c.2' +«c.z").

OnceB,, B, C,, andC have beemletermined, we can fifd, , B ,C, , andC_ using,

5 _28-2'8

SR A

and

z'¢- 2V G
C=—"FF—-
z%- z

N

Our system of siequations becomes

(e- (1 *¥) ©“* reéf B} O,

(e- 9B 1 » Ch O,
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(233)

(234)

(235)

(236)

(237)

(238)

(239)



(e- 8C, (B BZ BZ) O, (240)

(e- 8B, {C, &2 c&z'Y O, (241)
(e- ©C, B, 8Ny o, (242)
(e- gtei(Nu)qA {C, w94y o (243)

Equations (238) and (2#8an be simplified using the digg@n relation for the A chain:

r=Bg% -&4 (244)
and
t=C,e"%. (245)

These equations can be used to elimirradedt leaving equations (23242) that only involve3,,C, ,

B, . andCy:

(e- gé‘“)a c 1=8¢, (246)
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a zZV?%-zV?%* g azt -z o}
A S & e B 86 o (247
a z- Z* G azz-z"> o
_N1+-_& 1gegt— (-_50, (248)

e- 9By s
& 85 =mr e b Epr o

and

- B, -(e -€ é‘ZA)CN 0. (249)
These equations can be written in more compact form if wetee - ¢ €%, c=e - ¢ €%, and

definex, =2' -z™

C,=bB <Rising,&”, (250)
(%1 % o)B XB (& &x%.G O, (251)
(e- &x%v..By -xQ (')4\1-1 )ﬂ'z) G O, (252)
and
By, = cC. (253)

Equations(250) and (253¢an be used to eliminafs andB,, , leaving two equations for the remaining

two unknowns,B, andC:
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“(X1 Po %6 OB B xeG 28N, ( &) (25)

and

-xbB X%, %, X6 &9G R3Iin & (255)
The coefficients ofB; in Equation(254)and of C, in Equation (255)may be simplified, using, for

example,

X1t X2 X }(6' '@b
=X e X }(2 z+ 7+ (e - @ @*) (256)

= '(XN e*éqA)&-l).

Equations(254) and (255jor B, and C, become,

(XN - Cén )f\ll) B -xcG =2sing, Ieﬂ( e X (27

-xbB {x, B& x) G gsing, ¢ (258)

Equation (258fan be solved foB; :

B = 2ising,d*b" )g‘lbl()& B ¥ k$_l) c. (259)

ThenEquation (257Yields a solution forlC,, andt

Ple- A%, {x €&x)a
ng- b e )&1)(& -Ckf ?6.1) % cbg ' (260)

C, = 2ix sing,&%
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The numerator can be simplified since,

b(e' @XN—I +6éqA)f\|-1 *
=(e - 9( e, Xy, X (261)

=27 )%, % X XF Xo

Thus, the transmission amplitude can be written as,

X1t Xy 2

NI = 2ix sing. é % . - '
te 2lx sing, (xN - b é* )&1)( X -CE&f ?\4-1) Xl

(262)

whereb=e - ¢ €*,c=e - g &%, ,andx,=2" -Z".
The transmission probability as a function of energy is shown in Fig&ried7.
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Figure 15: Transmission (blue) and Reflection (green) probabilities for #H®CAA tight-binding model
as a function of energy. Parametersgre=0, g = + e 03,N =1(. Energy is measured in units of
hopping matrix elementyV.
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Transmission and Reflection Probabilities N=10
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Figure 16: Transmission (blue) and Reflection (green) probabilities for HBCAA tight-binding model
as a function of energy. Parametersgre=0, & = e 0F,N =1(. Energy is measured in units
of hopping matrix elementy .
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Transmission and Reflection Probabilities N=5
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Figure 17: Transmission (blue) and Reflection (green) probabilities for HBCAA tight-binding model
as a function of energy. Parametersgre=0, & = e 14,N =£. Energy is measured in units of
hopping matrix elementy .
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CHAPTER 5: CONCLUSIONS
We have explored the tunneling properties in quantum mechanical solid state physics.
Chapter 2 discusses how we used the Landauer formulation of transport to relate the transmission
probability in terms of the condtance and the resistance. Also, the titis@ensional simple
barrier model for tunneling was derived using the separation of variables. In order to derive a
general expression for the current, we used the separation of variables from ttiegendent
formulation of quantum mechanics. Our expression for the current was obtained from the

continuity equation.

The simple barrier model for tunneling was solved by calculating the transmission and
reflection probabilities.There is a relationship betwethe transmission probability and the
conductance to calculate the conductance of the three dimensional barrier system at low bias.
We used our expression for the current density in terms of the wave functions to demonstrate that

the current is equal inlghree regions of the tunneling system: left lead, barrier, and right lead.

The electron dispersion in solids is not precisely represented due to limitations of the free
electron model. This is why we introduce the tigimding model in Chapter 3. Section 3.2
covers how to calculate transmission and reflection probabilitieenfamterface using the
simplest onedimensional tighthinding model for an interface between sanfinite chains of A
atoms and B atomsThis model is extended in Section 3.3 to a tunneling system consisting of
two semiinfinite chains of A atoms sepaeal by a finite chain of B atoms. We showed that in
the limit of very long electron wavelengths and very slow decay of the evanescent states, the
tight-binding approximation for tunneling reduces to the simple barrier model in Section 3.4. In
Section 3.5we calculated the transmission and reflection probabilities of tBeAAmodel.

Section 3.6 covers the energy variation and also the wave functions are plotted to show that
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whenE < E;, the wave function has the opposite sign on &sjaatoms. In Section 3.the

current density in the tigHtinding approximation was calculated. Then the current density was

used to complete the calculation of the transmission probability at an interface.

To produce a dispersion relatiortlva gap, we cannot use the simple tigimding
model with a single orbital on each site. This is why we continued our calculations to construct a
barrier consisting of BZ molecules in Chapter 4. A chain of this type produces a gap extending
betweenlte onsite energy for the A atom and the onsite energy for the B atom. Tunneling
through gap is calculated and plotted. We havemwies thaif the orbitals on the B and C
atoms have the same parity, the wave function will change sign between moleawieger if

the parity of the orbitals are different, there will not be a sign change.
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