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ABSTRACT 

Adversarial (competitive) swarms consist of two or more systems (each system consisting 

of a collection of individuals, interconnected agents) where the goals of each group are conflicting. 

This work aims to use an Echo State Network to predict the individual behavior of agents in two 

adversarial swarms and thereby develop an improved understanding of the dynamics of such 

systems. The current study was divided into three phases. An agent-based Adversarial swarm 

model was initially developed comprising of two competing swarms, the Attackers, and the 

Defenders, respectively. The Defender aimed to protect a point of interest in unbounded 2D 

Euclidean space called the Goal. In contrast, the Attackerôs main task was to intercept the Goal 

while continually trying to evade the Defenders, which get attracted to it when they are in a certain 

vicinity of the Goal. The simulation was considered Semi-Hybrid as agent compromise, and goal 

compromise criteria were modeled to introduce realism as real-world engineering applications. 

The final system state was studied for the varied number of agents making up each swarm. The 

effectiveness of the Semi-Hybrid approach was validated by using Multiscale Entropy, which 

revealed a greater degree of randomness for the Defenders than Attackers. In the second 

investigation, two configurations were used to evaluate the use of Echo State Networks for 

predicting group dynamics for each swarm. Configuration 1 employed a single ESN, i.e., the patio-

temporal data for all agents of an Adversarial Swarm model was used input. In configuration 2, 

two separate ESNs, in parallel, were used to predict Defender and Attacker swarm dynamics. It 

was concluded that the parallel ESN configuration was more effective in achieving qualitatively 

similar predictions of the dynamics for the Adversarial Swarms. In the final investigation, an 

instance of an ESN in a massively parallel framework was trained on individual spatio-temporal 
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data of every agent. The optimal hyperparameters obtained for every individual agent in the 

framework showed considerable variance that implied every agent in the Adversarial swarm 

reacted uniquely when a uniform stimulus was applied and thus reaffirmed the concept of 

individuality of agents in a swarm. 
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CHAPTER 1 

INTRODUCTION  

1.1 Background 

 

All swarms are essentially complex systems generally characterized by nonlinear 

dynamics; an accurate physics-based model is imperative to the holistic understanding of the 

underlying dynamics. Swarms are a collection of independent, autonomous agents that are 

widespread in nature from ranging from ant colonies[1], flocks of birds[2], and schools of 

fishes[3]. Nature-inspired swarm models have been an active area of research for the past couple 

of decades. Simulating natural swarm behavior for engineering applications is inherently 

problematic as all-natural systems offer inherent flexibility and scalability, often difficult to 

attain using digital computers. Swarms form the basis of extensive modern-day engineering 

applications ranging from spacecrafts[4], UAVs[5], robots[6], and optimization algorithms[1]. 

Swarms have been historically modeled from a Lagrangian and an Eulerian (macroscopic) 

approach. In the former, the swarm agents and their interactions with the environment are 

modeled based on simple physics-based rules. In the former approach, the swarm behavior is 

generally analyzed based on collective attributes such a flock density. In the Lagrangian-based 

approach, the swarm agents and their interactions with the environment are modeled based on 

simple physics-based rules. Crag Reynoldsôs[7] seminal paper first introduced the idea of 

swarming where three simple rules, namely, óattraction,ô ócohesion,ô and óvelocity alignment, 

were used to model emergent swarming behaviors successfully. Reynolds[8] later introduced 

multiple other rules which enabled these agents to achieve a wide range of purposes. Huth[9] 
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introduced a computational model to mimic the behavior or school of fishes and compared 

synthetic data to real-world data. A discrete-time model on self-governed motion in a system was 

first introduced by Vicsek[10], where autonomous agents in a group coordinated with others by 

modified its velocity by adding to it the weight mean of the difference in velocities of other 

agents[11]. Vicsekôs[10] kinematic model has been extensively studied by adding physics-based 

attributes and extensive modifications of the original model. Such changes include acceleration 

couplings for the self-propelled agents[12], the introduction of two types of interacting agents 

such as chasers and escapers having inertia, delay of communication, and noise[13], application 

of the original model to simulate indoor autonomous flying robots[14-16].    

Swarm models discussed so far contains periodic boundary conditions that are typically 

inconsistent with nature as swarming in nature always occurs in free, unconstrained space. 

DôOrsogna[17, 18] proposed a dynamical systems-based swarming model using a generalized 

Morse potential coupled with Rayleigh friction force to study the structure of rotating flocks in 

free space. The primary force term in this model was derived from the Morse potential[19], which 

is repulsive at short ranges while being attractive at long ranges simultaneously; thus, it entails 

both close range repulsive and long-range attractive forces, which are essential components of 

any swarm preventing agent dispersion at the same time avoiding agent collisions. Vecil et al. 

[20] performed a 3D numerical simulation based on Orsoga's [18]model which, identified vital 

parameters that govern the nature of flocking behavior observed as such a rigid body rotation, 

clumps, milling, spheres, and dispersion. The consensus problem in the swarm made up of 

egalitarian agents was first explored by Cucker and Smale[21], which has been studied 

extensively by the addition of stochastic white noise [22], repulsive force[23], interparticle 

bonding force[24], and Rayleigh friction[25]. 
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In nature, typically, two types of swarm interaction are observed-Adversarial and 

Symbiotic, wherein swarms either compete or cooperate over resource utilization.  Symbiotic 

swarms found in the animal kingdom include multispecies group [26]hunting, were in different 

groups of species team up (cooperation) with each for hunting groups of prey. Adversarial 

swarms, which were the focus of the current study, are abundant in natural environments, such 

as groups of predators engaging with prey groups, and can be found both in aquatic and terrestrial 

environments. Most of such interactions take place for foraging purposes. Natural examples of 

Adversarial Swarms include groups of omnivorous Chimpanzees hunting groups of Red Colobus 

Monkeys[27] and groups of predator Lions hunting herds of Zebras[28].In the aquatic 

environment, a multispecies association of Dolphins with Seals and Dogfish for feeding schools 

of small fish[29], groups of Killer Whales, and a large number of Herring, where the former 

would force the latter to dive up by almost 150 meters[30], which would enable more effective 

foraging.  

Historically, the Adversarial Swarm phenomena have been traditionally modeled as a 

predator-prey problem, explored by multiple groups of researchers, including ecologists, 

physicists, statisticians, and mathematicians. These models can be broadly classified into three 

types: kinematic, lattice-based, and dynamical. In addition to the computational models, few 

experimental studies have also been conducted in the recent past. In kinematic models, the 

interactions between agents are typically modeled as velocity terms. Angelani [31]investigated 

the collective predation in a simple agent-based model capable of reproducing animal movement 

patterns where the individual agents were modeled based on Vicsek's self-propelled[10] agents. 

Lin[32] used a self-propelled particle-based model to study the predation of bats on prey. In the 

lattice-based models, the computation domain is divided into uniform 2D grids or lattices, which 
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have 'states' associated with them, e.g., empty or filled. Notable lattice-based models include 

Kamimura et al.[33], where group chase and escape in a swarm modeled, and the study concluded 

the formation of highly self-organized spatial structures. Wang et al. [34]extended the predator-

prey problem by adding a third species and considered the effects of stochastic vision; the study 

concluded a direct relationship between the predator's vision and the prey's extinction rate. Other 

notable works on swarms to swarm interaction includes Gaertner et al.[35], where an agent-based 

model based on the MASON library[36] was used to model the engagement between two groups 

of UAVs in 3D space. Strickland[37] studied swarm engagement during live experiments with 

two swarms of UAVs based on different pursuit and evasion strategies. 

Dynamical swarm models are explicitly based on Newton's second law of motion, which 

offers accurate insights into the highly complex emergent behavior between the two swarms. 

Zhdankin et al. [38] studied the dynamics of a swarming predator-prey model, where each 

group's swarming was based on long-and short-range forces, and a non-conservative force was 

used to model the interaction term between the swarms. The study concluded the presence of 

Chaos, quasi-periodic, periodic behavior, and the existence of singularities. Kolon et al.[39] 

investigated the collision of two swarms made up of homogenous agents by considering the effect 

of delay in communication between various agents; the study demonstrated mutual swarm 

capturing during the interaction, ultimately leading to the milling[18] state of motion. 

The current literature lacks the presence of an agent-based dynamical adversarial swarm model 

with explicitly defined 'inter' and 'intra' swarm forces. The first phase of the present study 

addressed this gap in the current literature by developing a physics-based dynamical adversarial 

homogenous swarm model with well-defined intra-swarm and inter-swarm forces. The 

Adversarial swarm model consisted of two distinct interacting swarms: The Attackers and the 
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Defenders, which had conflicting objectives in unbounded 2D Euclidean Space. The Defender's 

primary role was to protect the óGoalô i, e a point of interest in 2D Euclidian space. In contrast, 

the Attacker's main objective was e to intercept the Goal while continually trying to evade the 

Defenders. The Defenders swarms always tried to protect the Goal by swarming around it and 

blocking any Attackers agent trying to reach the Goal. It was assumed that if an Attacker and 

Defender agents were very close to each other if the distance between them was less than a 

predefined criterion, they were assumed to have collided and were consequently arrested from 

participating in the simulation. The arrested agents became inactive for the remainder of the 

simulation. The simulation will be assumed to have a binary outcome or a final state, wherein 

either the Attacker or the Defenders emerge as the dominant swarm. The Attacker swarm was 

considered dominant if an agent in the swarm would successfully intercept the Goal during the 

simulation. If there were no remaining agents in the Defender swarm at any point in the 

simulation, the Attackers were be considered dominant. If the Defenders will successfully defend 

the Goal before the end of the simulation or if no Attackers were left in the simulation, the 

Defenders were considered the dominant swarm. If no agents were left in either of the swarms 

(i,e the agents compromise each other off in the engagement), the Defenders were considered 

dominant in the simulation as the Goal will be successfully protected from the predation of the 

Attacker swarm. The scenarios mentioned above formed the basis of the óSimulation Ending 

Criteriaô as presented in [40]. 

The model developed in the first phase of this study was essentially a multiagent dynamical 

system producing highly nonlinear time-series data.  Traditional Artificial Neural Networks 

(ANNs) have been traditionally limited in predicting nonlinear transient times series data, which 

are highly non-stationary and non-cyclic in nature. ANNs have been historically combined with 
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other techniques such as NARMAX[41] to predict highly nonlinear chaotic systems such as the 

Lorentz system[42], Sunspot times series[43], and downhole pressure for a gas-lift oil well [44]. 

Elman et al.[45] introduced the idea of Recurrent Neural Networks, which were proven suitable 

for forecasting highly non-linear time-series data obtained from a dynamic system such as the 

Lorentz system[46]. However, training RNNs is a difficult task. The backpropagation through 

time (BPTT) method has been used to train RNNs successfully [47, 48]. Modified RNNs such 

as Long Short Term Memory (LSTM) have been successful in predicting high dimensional 

spatiotemporal systems in the short term[49], custom architectures such as Deep Neural 

Network(DNN) with convolutional LSTM[50] have also been successful. Oher state-of-the-art 

RNN architectures include Gated Recurrent Units (GRU-D), which has also been successful in 

predicting multivariate time-series with missing values by taking two representations of the 

missing patter, namely making and time interval. Random Recurrent Neural Network (rRNN)  

has also shown in success in predicting the periodic nonlinear Mackey Glass system[51]. One of 

the primary limitations with conventional RNN as indicated by Demiris [48] is the non-

convergence in the training process due to existence of bifurcations. Slow convergence and high 

computational costs of RNNs also limit its utility for practical applications. However, a 

significant limitation of RNNs is the vanishing gradient problem[52] which severely limits its 

ability to learn long data sequences.  

An alternative to gradient descent methods was thus proposed by Jager and Hass[53] as the 

Echo State Network(ESN) and by Maas[54] as the Liquid State Machine(LSM) in which only 

the synaptic connections form the RNN to output neurons were trained by learning. The idea of 

ESNs can be traced back to Neuroscience, Dominey et al.[55] presented a learning algorithm 

about sequence processing in mammalian brains, e.g., speech recognition in the human brain[55, 



7 

 

56], was the precursor of the actual algorithm of ESNs. ESNs and LSMs were unified into a 

common research topic known as the óReservoir Computingô (RC) [57, 58]. In an ESN, the main 

task is to construct an RNN with randomly generated weights. The randomly constructed 

complex nonlinear transformation of temporal data can be extracted from the output layer using 

simple techniques such as linear regression[59]. A great deal of art is needed to implement an 

ESN successfully.  Several global hyperparameters must be tuned effectively. Since the first 

decade of the 2000s, RC-ESN has been successfully implemented in a multitude of domains, 

including speech recognition[60], robot control[61, 62], forecasting financial markets[63], 

natural language processing[64-67], Oil and natural gas sector such as pressure estimation in gas-

lift oil wells[68], detrending of non-stationary fractal timeseries[69] and finally dynamical 

systems [53] such as the Mackey Glass system[51]. Recent research also reveals that hardware-

based Reservoir computers are also possible based on FPGA arrays[70] and carbon nano 

tubes[71]. Compared to the current popular cloud computing trend, these computers can be more 

effective than traditional software and may be suited for óedge computingô[70]. 

An ESN working effectively should satisfy have the echo state property. It is defined as a 

property where the effect of an earlier state or a previous input should vanish on the future state 

as time passes [72]. Mathematically, the echo state property is assumed to be maintained if the 

spectral radius value (the largest eigenvector) ɟ(W) of the reservoir weights is less than or equal 

to a value of 1. However, recent studies showed that the echo state property holds for ɟ(W) Ó 1 

for nonzero inputs u(n), so ɟ(W)<1 is not a necessary condition for the echo state property[73, 

74].  

The current state of the art revealed that ESNs have been very successful in predicting 

chaotic dynamic systems. ESNs in the existing literature have been found to use three 
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configurations while predicting chaotic behaviors, namely, observer mode (non-autonomous or 

predictive mode), where model free prediction is achieved by utilizing limited state variables 

[75], the generative (or autonomous) mode in which during the prediction the output of a previous 

timestep is fed as the input in the Reservoir [76-78] and finally custom ensemble methods where 

ESNs are used in conjunction with knowledge-based models[79]. The authors of the previously 

mentioned works successfully verified and validated these techniques in the simple Lorentz 

system[76], Lorentz-96 system[80], Kuramoto-Sivashinsky (KS) system[75, 78], the Rössler 

system[75], and dynamics of excitable media such as the Barkley model and the Bueno-Orovio-

Cherry-Fenton model [81]. Hardware-based reservoir computers have also successfully 

predicted dynamical systems[70], such as the Mackey-Glass system. Krishnagopal[82] studied 

the effectiveness of reservoir computing for the separation of chaotic signals and concluded that 

their results were better than the Wiener filter obtained from the same training data. 

Several studies have also been conducted to have a holistic understanding of a Reservoir 

computerôs inherent dynamics, which would enable its effective use while predicting dynamic 

systems. Carroll[83] used an RC-ESN at the óEdge of Chaosô[84, 85] region to perform 

predictions and concluded that it does not necessarily improve the performance. Carroll [86]also 

conducted studies on the dimension of Reservoir computers and concluded the increase of 

fraction dimension occurs inside the Reservoir with the increase of its dimension, which may 

adversely affect the performance of Reservoir Computer, Carroll[87] also conducted studies on 

the network structure of the RC-ESN. Zhang[88]conducted studies in the sensory phase 

coherence of two parallel reservoirs and concluded that short term prediction is possible, but 

parallel reservoirs are limited in sensing the collective dynamics of a coupled chaotic dynamic 

of the entire system in the long run. 
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In the second and the third phases of this investigation, ESN played a vital role in meeting 

the project objectives. Initial in-house studies showed that RC-ESN successfully predicted large-

scale dynamical systems such as Large Eddy simulation of an incompressible turbulent round jet 

by implementing massively large-scale parallel reservoirs[89]. The second objective outlined in 

this study was achieved by using a high dimensional reservoir and two parallel high dimensional 

Reservoirs to predict the individual agent dynamics of the Attackers and Defenders, respectively. 

In this study's final objective, large-scale parallel reservoirs were used, wherein individual 

reservoirs were assigned to each agent of the Attackers and the Defenders, respectively. The 

respective agents were trained separately, and a comprehensive hyperparameter grid search was 

performed. The hyperparameters of the trained massively parallel reservoirs were studied 

statistically to explore the concept of óindividualityô in a complex adaptive system. 

1.2 Motivation  

Complex adaptive systems and machine learning are currently both highly active fields 

of research due to the widespread occurrence of such systems and to continued increases in 

computing power, respectively. Numerous examples of Adversarial Swarmsô behavior, a type of 

complex adaptive system interaction, exist in nature (conflict between individual insect 

colonies/species, interactions between predator and prey species, etc.). Such behavior is also seen 

in human-related activities (team sports, military conflicts, political contests, etc.). An exhaustive 

literature survey has revealed that highly complex behavior can result from relatively simple 

rules governing the conduct of the individual agents comprising adversarial swarms. To date, 

research has focused on applying a single simple rule set to encode the response of all agents in 

a given swarm to a specific stimulus. Intuitively, it is known that all organisms (even those of 

the same species) do not react to identical stimuli uniformly. By using a step-by-step approach, 
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the variations in individual response affecting the behavior of a given swarm will be explored, 

in addition to its effect on the interaction between two Adversarial Swarms. 

The current study will benefit society by advancing the understanding of a type of system 

that, while ubiquitous in the natural world, is increasingly being used to describe behavior 

observed in a myriad of disparate human applications. From the military use of drone swarms to 

cybersecurity to business analytics, insight gained from observed adversarial (competitive) 

swarms is being used to improve the efficiency and effectiveness of these and other complex 

systems. The physics-based Adversarial swarm model developed in this study represented an 

advancement that will ultimately serve as a benchmark for other researchers in the field. 

Successfully applying machine learning to predict complex agent-based swarming behavior also 

laid the groundwork for further study into a field that is rapidly changing. 

1.3 Objectives 

 The current study contributed to the field of non-linear applied physics, machine learning, 

and complex adaptive systems in the following manner, respectively: 

1. A novel physics-based adversarial swarm system will be modeled to study the nonlinear 

dynamics of the system. This model will further advance the understanding of the nature of 

dynamics observed during the interaction of two distinct swarms that are adversarial in 

nature. It will also advance the knowledge of the final outcome (i, e, the final state) of such 

interactions when studied across various populations of agents making up the two swarms, 

respectively. Also, it will validate the use of a novel semi-hybrid based assumption to similar 

agent-based models using Multiscale Entropy. 

2. In the second part of this study, the prediction of the group dynamics of each swarm will be 

considered as a nonlinear time-series prediction problem using Echo State Networks (ESN), 
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a particular type of Recurrent Neural Network. This study further will fu rther advance the 

field of applied machine learning by paving the way to predict high fidelity Multiagent 

Dynamical Complex Systems data. 

3. In the final phase of the study, the prediction óindividualô agent dynamics will be considered. 

ESNs unique to each individual agent, respectively, will be used to predict the dynamics of 

individual agents. This investigation will  study the effects of individuality. Time series data 

from respective individual agents will be used to train each agent's individual Echo State 

network. The impact of individuality will advance understanding how homogenous agents 

interact uniquely when a uniform external stimulus is applied in an environment. This study 

will advance the field of applied machine learning when applied to large-scale Multiagent 

Dynamical Complex Systems. 
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CHAPTER 2 

 

ADVERSARIAL SWARMS AS DYNAMICAL SYSTEM  

2.1 Abstract 

 

An Adversarial Swarm model consists of two swarms that are interacting with each other 

in a competing manner. In the present study, an agent-based Adversarial swarm model is 

developed comprising of two competing swarms, the Attackers and the Defenders, respectively. 

The Defenderôs aim is to protect a point of interest in unbounded 2D Euclidean space referred to 

as the Goal. In contrast, the Attackerôs main task is to intercept the Goal while continually trying 

to evade the Defenders, which get attracted to it when they are in a certain vicinity of the Goal, 

termed as the sphere of influence, essentially a circular perimeter. A semi-hybrid approach was 

considered for the simulation by adopting agent compromise and goal compromise criteria to 

introduce realism as per real-world engineering applications.  The interaction of the two swarms 

was studied from a Dynamical systems perspective by changing the number of Agents making 

up each respective swarm. A total of 22 cases were studied for an ascending number of Attackers 

and descending number of Defender agents, starting with a population of 5 Attackers and 100 

Defenders and ending with 100 Attackers agents and 5 Defenders agents. A Monte Carlo analysis 

is also conducted for initial randomized conditions for each run, respectively. The simulations 

were rigorously investigated for the presence of chaos by evaluating the Largest Lyapunov 

Exponent (LLE), implementing phase space reconstruction. Transient chaos was observed for 

some initial cases. The presence of chaotic behavior was also confirmed by plotting the 

Recurrence plot for some instances. The source of chaos in the system was observed to be 

induced by the passively constrained motion of the Defender agents around the Goal. Multiple 
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local equilibrium points existed for the Defenders in all the cases and some instances for the 

Attackers, indicating complex dynamics. LLEs for all the trials of the Monte Carlo analysis in 

all the cases revealed the presence of chaotic and non-chaotic solutions in each case, respectively, 

with most of the Defenders indicating chaotic behavior. Overall, the swarms exist in the óEdge 

of Chaos,ô displaying the existence of complex dynamical behavior. The final system state (the 

outcome of the interaction between the swarms in a particular simulation) was studied for all the 

cases, which indicated the presence of binary final states in some. Finally, to evaluate the nature 

of randomness and the effectiveness of the Semi-Hybrid approach, Multiscale Entropy is 

employed, which revealed a greater degree of randomness for the Defenders compared to 

Attackers. Overall, based on the Multiscale Entropy, the Semi-Hybrid approach of the simulation 

was considered successful as both the swarms exhibited an intermediate level of randomness. 

2.2 Introdu ction 

Swarms, which are a collection of individual autonomous agents, are omnipresent in 

nature ranging from ant colonies [1], flocks of birds [2], schools of fishes [3], and human 

crowds[90]. Swarming in nature provides many advantages, such as ensuring better survival 

chances against predators [91], collective foraging, and hunting [92]. Swarming behavior in 

nature has evolved over many thousands of years to be optimally adapted and prepared for the 

prevailing conditions in the environment. Bioinspired swarm models have been an active area of 

research for the past couple of decades. Mimicking natural swarm behavior for engineering 

applications is inherently problematic as all-natural systems offer inherent flexibility and 

scalability.  The phenomenon of swarming has been exploited in modern-day engineering 

applications ranging from UAVs[93], optimization algorithms[1], robots [6], and spacecrafts[4]. 
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All swarms are essentially complex systems characterized by nonlinear dynamics; an 

accurate physics-based model is essential to have a holistic understanding of the dynamics of 

swarming behavior. Historically physicists have modeled swarms from a Eulerian (Macroscopic) 

approach and a Lagrangian (Individual, agent-based) modeling approach. In the former 

approach, the swarm behavior is generally analyzed based on collective attributes such a flock 

density. In the Lagrangian-based approach, the swarm agents and their interactions with the 

environment are modeled based on simple physics-based rules. Complex emergent behavior is 

observed, which is as a result of simple interactions at the agent level. Craig Reynoldôs s 

[7]seminal paper introduced the idea of swarm modeling, which showed that three simple rules 

could achieve emergent swarming behavior, namely - attraction, collision, and velocity 

alignment. Reynolds [8]subsequently added further rules called ósteering behaviorsô to diversify 

swarming behaviors to achieve specific objectives. Huth et al. [9]introduced a model to describe 

fishesô behavior schools and compared simulated motion produced from his model with real-

world data. Vicsek et al. [10]proposed a discrete-time model on self-governed motion in a system 

of particles. In Vicsekôs model, every autonomous agent modified its velocity by adding the 

weighted mean of the difference in other agentsô velocities. Vicsekôs [10]computer simulations 

showed agents approaching the same velocity with time; that is, the particles behaved like 

swarms having coordinated motion. Vicsek et al.[10] has been studied extensively, and several 

variations were proposed, including the addition of inertia, time-delay, and noise[13]; all of 

Vicsekôs models are kinematic. Viscido et al. [91]studied population size and the neighbors on 

the emergent properties, including polarity, edges, and distinct shapes.  

The swarm models discussed so far consider mostly periodic boundary conditions, which 

are generally inconsistent with nature as most natural swarms flock in free space without any 
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explicit boundary constraints. DôOrsogna et al. [17, 18] proposed a swarming model using a 

generalized Morse potential coupled with Rayleigh friction force to study the structure of rotating 

flocks in free space. Forces derived from the pairwise Morse potential are repulsive at short 

ranges while being attractive at long ranges simultaneously; thus, it entails both close range 

repulsive and long-range attractive forces, which are essential components of any swarm. The 

Morse potential[19] is an integral component of the current work and is discussed in detail at a 

later stage. Vecil et al. [20] performed a 3D numerical simulation based on Orsogaôs [18]model 

which, identified vital parameters that govern the nature of flocking behavior observed as such a 

rigid body rotation, clumps, milling, spheres, and dispersion. Cucker and Smale [21]introduced 

a simple dynamical system to tackle the consensus problem in a leaderless non-hierarchical 

swarmôs constituent agents. The Cucker-Samle[21] type model has been studied extensively, and 

the model has been developed further by adding extensive attributes as the addition of repulsive 

force[23], addition to stochastic white noise[22], interparticle bonding force[24], and Rayleigh 

friction[25]. All the models mentioned above are dynamic in nature and consider unconstrained 

swarming in free space.  

Adversarial swarms, the focus of the current study, are abundant natural environments, 

such as groups of prey engaging with groups of prey, both in aquatic and terrestrial environments 

for foraging purposes. In nature, swarms often interact with other swarms; interactions can be 

symbiotic or adversarial, depending on the nature of the swarms involved. Examples of symbiotic 

swarms found in the animal kingdom include multispecies group [24]hunting, where different 

groups of species team up (cooperation) with each other for hunting groups of prey. Terrestrial 

examples of Adversarial swarms include groups of omnivorous Chimpanzees hunting groups of 

Red Colobus Monkeys[27], groups of predator Lions hunting herds of Zebras[28], etc., in the 
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aquatic environment, a multispecies association of Dolphins with Seals and Dogfish for feeding 

schools of small Fish[29], groups of Killer Whales and tens of tons of Herring, where the former 

would force the later to dive up by almost 150 meters[30]to indulge in more effective foraging. 

Many Adversarial Swarm models have been adopted over the years in which physicists 

have traditionally modeled the adversarial swarms phenomenon as a predator-prey problem. 

Multiple research communities have explored these models, such as ecologists, physicists, 

statisticians, and mathematicians. The current literature reveals three main types of models -

kinematic, lattice-based, and dynamical models. In addition to the computational models, few 

experimental studies have also been conducted in the recent past. In kinematic models, the 

interactions between agents are typically modeled as velocity terms. Angelani [31]investigated 

the collective predation in a simple agent-based model capable of reproducing animal movement 

patterns where the individual agents were modeled based on Vicsekôs self-propelled[10] agents. 

Lin[32] used a self-propelled particle-based model to study the predation of bats on prey. The 

computation domain is divided into uniform 2D grids or lattices in the lattice-based models, 

which have óstatesô associated with them, e.g., empty or filled. Notable lattice-based models 

include Kamimura eta al.[33], where group chase and escape in the lattice-based swarm were 

modeled, and the study concluded the formation of highly self-organized spatial structures. Wang 

et al. [34]extended the predator-prey problem by adding a third species and considered the effects 

of stochastic vision, concluding a direct relationship between the predatorôs vision and the preyôs 

extinction rate. Other notable works on swarms to swarm interaction includes Gaertner et al.[35], 

where an agent-based model based on the MASON library[36] was used to model the 

engagement between two groups of UAVs in 3D space. Strickland[37] studied swarm 

engagement during live experiments with two swarms of UAVs based on different pursuit and 
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evasion strategies.  

Dynamical system-based Adversarial swarm models are explicitly based on Newtonôs 

second law of motion which, can provide accurate insights into the highly complex emergent 

behavior arising between the interaction of two swarms. Zhdankin et al. [38] studied the 

dynamics of a swarming predator-prey model, where each groupôs swarming was based on long-

and short-range forces, and a non-conservative force was used to model the interaction term 

between the swarms. The study concluded the presence of chaos, quasi-periodic, periodic 

behavior, and the existence of singularities. Kolon et al.[39] investigated the collision of two 

swarms made up of homogenous agents by considering the effect of delay in communication 

between various agents; the study demonstrated mutual swarm capturing during the interaction, 

ultimately leading to a ómillingô [18] state of motion. 

Overall, the current literature available in the public domain lacks the presence of an 

Agent-based dynamical Adversarial Swarm model with explicitly defined óinterô and óintraô 

swarm forces, which are based on widely-accepted physics-based potential functions that have 

been historically successful to model the behavior of simple swarming system capable of 

producing highly emergent behavior. This gap in the current literature was addressed by 

developing a physics-based dynamical adversarial homogenous swarm model with very well-

defined intra-swarm and inter-swarm forces. The current literature available lacks an Agent-

based dynamical Adversarial swarm model with explicitly defined óinterô and óintraô swarm 

forces based on physics-based potential functions as many similar models in the literature have 

force terms that are óad-hocô based that are sometimes exclusively dependent on empirical 

observations. Also, most of these models disregard the mass or inertia, which are an integral 

component of such dynamical systems. Moreover, the current model also adopts a Semi-Hybrid 
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approach to model collision and agent compromise. The model consists of two distinct 

interacting swarms: The Attackers and the Defenders, with conflicting objectives in unbounded 

2D Euclidean Space. The Defenders role is to protect the Goal, a point of interest in 2D Euclidian 

space. In contrast, the Attackers' primary objective is to intercept the Goal while continually 

evading the defenders. The Defender swarm tries to protect the Goal by swarming around it and 

blocking any Attackers agent trying to reach the Goal. It is assumed that if an Attacker and 

Defender agents are very close to each other, or, in other words, if the distance between them is 

less than a predefined criterion, they are considered to collide with each other and are 

consequently arrested from participating in the simulation. As a result of the interaction, the 

arrested agentsô count may not always be binary. The arrested agents become inactive for the 

reaming time of the simulation. The simulation is assumed to have a binary outcome or a final 

state, wherein either the Attacker or the Defenders emerge dominant. The Attacker swarm is 

considered dominant if an agent in the swarm can successfully intercept the Goal during the 

simulation. If there are no remaining agents in the Defender swarm at any point in the simulation, 

then the Attackers are also considered dominant. If the Defenders can successfully defend the 

Goal before the end of the simulation or if no Attackers are left in the simulation, the Defenders 

are considered as the dominant swarm. If at any time during a simulation, no agents are left in 

either of the swarms (the agents compromise each other off in the engagement), the Defenders 

are dominant in the simulation as the Goal has been successfully protected from the predation of 

the Attacker swarm. Thus, the simulations can be referred to as being Semi-Hybrid in nature, 

where agent compromise and goal interception are modeled per practical scenarios that may arise 

in engineering applications. To the authorsô knowledge, the current literature lacks the presence 

of such Semi-Hybrid models. 
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In the current study, the dynamical system-based Adversarial Swarm Model simulation 

is carried out on a robustly developed computational platform in C++ to solve Newtonôs second 

law problem. Before running the simulations, a rigorous convergence study is carried out to 

determine the optimal timestep. This aspect is often missing in many ad-hoc based modeling 

approaches found in the current literature. The nonlinear time series data obtained from the 

simulation uses a multitude of tools that include time-series plots, attractor plots, and Largest 

Lyapunov Exponent (LLE) and Recurrence Analysis. The system is strongly investigated for the 

presence of chaos. As a vital parameter of the system, the number of Attackers and the Defender 

agents making up each swarm is varied to study the simulationôs final state. The temporal data 

obtained from the simulation is analyzed using Multiscale Entropy to evaluate the degree of 

randomness in the system as the data comes from a semi-hybrid simulation. This approach will 

help rule out whether the current semi-hybrid approach is successful, and it is also hypothesized 

that the time-series data obtained from the simulations may have an intermediate level of 

randomness. The application of Multiscale entropy is integral to the current work as to the 

author's knowledge it has never been used to evaluate the success of a semi-hybrid simulation 

approach build by an agent-based modeling approach. 

The intellectual contribution of this paper can thus be summarized as follows: 

¶ Development of a generic physics-based Adversarial Swarm using an Agent-based modeling 

approach. 

¶ Model was semi-hybrid in nature as agent compromise, and simulation end criteria were built 

into the model 

¶ Model was solved using a rigorous numerical approach, unlike similar models 

¶ The model was strongly studied from dynamical systems point to view to provide a clear 
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understanding of the physics of interacting swarm behavior 

¶ Multi -scale entropy was used to study the degree of randomness in the data obtained to 

determine the success of the semi-hybrid approach assumed. 

This paper is organized as follows- section 2.3 discusses the numerical model and the 

computational method used for solving the governing equations. Section 2.4 briefly describes 

the nonlinear time series analysis techniques used, followed by the results and discussion in 

section 2.5. The final section 2.6 comprises the conclusion. 

   2.3 Numerical Model and Parameter Descriptions 

    A physics-based agent-based model was derived for studying the dynamics of two 

interacting adversarial swarms: The Attacker Swarm and the Defender Swarm (hence, referred 

to as óAttackersô and óDefendersô respectively). The agents had conflicting objectives; the 

Defenders protected a point of interest in unbounded 2D Euclidean space by swarming around 

the Goal along a sphere of influence. In contrast, the Attackersô main task was to intercept the 

Goal while constantly trying to evade the Defenders, who actively chased the former in a 

perimeter around the Goal or a sphere of influence. The individual swarms in the swarm system 

are modeled based on a Lagrangian-based approach having primarily two types of forces- óinterô 

and óintraô swarm forces; the inter-forces are used to model the interaction between the agents of 

the adversarial swarms, respectively. The intra-forces were used to model the forces between 

members of the same swarm. Each swarm can be generalized as a collection of N agents in a 2-

Dimensional space with position and velocity vectors. The governing equation describing the 

dynamics of the two interacting swarms- the Attackers and the Defenders were derived based on 

Newtonôs second law of motion and are given by the following equations:   
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ὢᴆ ὠᴆ В ᴆɳ•ȟ В ᴆɳὯ ὶ ᴆɳ Ὧ ὶ ‌

‍ȿὠᴆȿὠᴆ  (2.1) 

 ὢᴆ ὠᴆ (2.2) 

 ὢᴆ ὠᴆ В ᴆɳ•ȟ В ᴆɳ Ὧ ὶ ᴆɳ• ‌

‍ȿὠᴆȿὠᴆ   (2.3) 

 ὢᴆ ὠᴆ (2.4) 

Eqns. (2.1-2.4) are the principal equations for the Adversarial Swarm model that, subject to 

given initial conditionsὠᴆὃὭὸ πȟὢὃὭὸ πȟὠᴆὈὮὸ πȟὢὈὮὸ π of individual agents in the 

respective swarms are known. 

The first terms in Eqns. (2.1) and (2..3) respectively are intra-swarm forces that are modeled 

based on the scaled Morse[36] potential. The gradient of the potential was used to derive the 

intra-swarm Morse force; the following equation gives a generalized scaled Morse potential.  

 

 
 • ὅÅØÐ

ȿ ȿ
ÅØÐ

ȿ ȿ

 (2.5) 

 In Eqn. (2.5), C defines the depth of the repulsive potential well, and l is a constant used to 

relate the ratio of the repulsive to attractive length scales. The forces obtained from the scaled 

Morse potential are responsible for the swarming of agents in the Attackers and Defenders. The 

typical intra-swarm Morse force scenario is typically C > 1 and l > 1, which means that the 

repulsive component only acts at close ranges. However, the attractive component works at long 

ranges only, thereby preventing the dispersion of agents making up a swarm, respectively. From 
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DôOrsoga et al.[18], it is known a criterion called H stability is necessary, under which if the 

number of particles increases, the Morse force guarantees that the bounding of the swarm as the 

number of particles increases. The H stability can be achieved by imposing the condition ὅὰ

ρ, lest it might lead to ócatastrophicô behavior [17]. The Morse force constants in both the 

Attackers and Defenders are chosen by imposing the H stability criteria. The Morse potential is 

an ideal choice as it would implicitly impose limits on the range of sense when compared to 

using hard-coded cut-off distances as biological entities and engineered artificial agents would 

have an implicitly limited range of vision or sensing capability. 

 The second term in Eqns. (2.1) and (2.3) is an attractive and repulsive potential. The 

Defenders stop the Attackers from fulfilling their primary objective: the interception of the Goal. 

The Defenders agents use an attractive force derived from the second termôs attractive potential 

in Eqn. (2.3) to intercept the Attacker agents. The Attacker agents try continually to evade the 

Defender agents utilizing a repulsive force derived from the second term of Eqn. (2.1). The 

attractive and repulsive potential found in Eqns. (2.1) and (2.3) are derived from a generalized 

obtained from Espitia et al.[94]. This potential serves a dual purpose, as it can be used to derive 

attractive force and repulsive force by merely changing its sign. The following equation can 

compactly express the attractive/repulsive potential.        

 • Ὧ Ⱦ ὶ  (2.6) 

 Where the first term in Eqn. (2.6) is a positive constant term (with suffix órepô) if a repulsive 

force is derived and negative (with suffix óattô) if an attractive force is derived. The Defender 

agents only get attracted to the Attackers' agents inside the sphere of influence, as depicted by 

the circle in Fig.2.1. It is a necessary step, which ensures that the Defenders do not veer off too 

far from the Goal, as the Defenderôs main aim is to protect the Goal from the Attackers. The 
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following equation defines the attractive force between the Defender agents and the Attackers 

agents inside the sphere of influence: 

  

 Ὂᴆ ȟ ᶯ Ὧ ὶ  ÉÆ ὶ Ὑ   (2.7) 

 Ὂᴆ ȟ π ÉÆ ὶ Ὑ  (2.8) 

 Where ὙὸὬis a threshold radius around the Goal. The sphere of influence also contributes to 

making the system semi-hybrid in nature. The attractive and repulsive forces are inversely 

proportional to the competing agentsô distance, ensuring that the attraction and repulsion are 

strongest between the closest agents. The attraction and the repulsion forces are cut off using 

local distance thresholds, beyond which they would essentially be constants equal to the 

attraction/repulsive force at the threshold distances. The threshold distances prevent these forces 

from getting too large during the very close interaction of Attacker and Defender agents, thereby 

warranting a tractable computation. These distance thresholds are assumed to be the same for 

both classes of agents to ensure fair competition. 

 The third term in equation (2.1) is an attractive potential [94], which is used to obtain an 

attractive goal force between the Attackers and the Goal. The attraction force derived from this 

potential is a linear force that increases as the distance between an Attacker agent and the Goal 

increases and vice versa. 

Where ὙὸὬis a threshold radius around the Goal. The sphere of influence also contributes to 

making the system semi-hybrid in nature. The attractive and repulsive forces are inversely 

proportional to the competing agentsô distance, ensuring that the attraction and repulsion are 

strongest between the closest agents. The attraction and the repulsion forces are cut off using 

local distance thresholds, beyond which they would essentially be constants equal to the 

attraction/repulsive force at the threshold distances. The threshold distances prevent these forces 
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from getting too large during the very close interaction of Attacker and Defender agents, thereby 

warranting a tractable computation. These distance thresholds are assumed to be the same for 

both classes of agents to ensure fair competition. 

The third term in equation (2.1) is an attractive potential [94], which is used to obtain an 

attractive goal force between the Attackers and the Goal. The attraction force derived from this 

potential is a linear force that increases as the distance between an Attacker agent and the Goal 

increases and vice versa. 

The third term in Eqn. (2.3) is also derived from a scaled Morse potential [39] (similar to 

the potential used for deriving the intra-swarm forces) is a force between the Defenders and the 

Goal, which has a repulsive as well as an attractive component. This force prevents the Defender 

agents from wandering too far off from the Goal. The following equation gives the scaled Morse 

potential between the Goal and a Defender agent. 

 • ὅ ÅØÐ
ȿ ȿ

ÅØÐȿὶȿ (2.9) 

Where ὶ  is the distance between a Defender agent and the Goal. ὅὈὋ and ὰὈὋ are constants 

that can control the composition of the attractive and repulsive force between the Defenders and 

the Goal. As discussed in the preceding section, the H stability condition (ὅὰ ρ)is imposed to 

avoid a ócatastrophicô scenario[17, 18].  

The last terms in the Eqns. 2.1 and 2.4 is the self-propelling and frictional force term, which 

is based on Rayleighôs friction. The Rayleigh friction force is derived from the Rayleigh 

Dissipation function [95]. It is a nonlinear damping term with self-acceleration and friction 

mechanisms, which drive all the particles to an equilibrium speed of Ŭ/ɓ [15,36,37]. The Rayleigh 

Friction force is a velocity-based force that is non-conservative and is given by:  
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 Ὂᴆ ȟ ȟ
‌ ‍ȿὠᴆȟȿὠᴆȟ (2.10) 

 Ὂᴆ ȟ ȟ
‌ ‍ȿὠᴆȟȿὠᴆȟ (2.11) 

2.3.1  Initial Conditions, Verification, Validation, Uncertainty Quantification, a nd 

Parameter Selection/description: 

Eqs. (2.1)-(2.4) are numerically integrated using a customized 4th order Runge Kutta 

explicit solver [96] for Newtonôs Second law of motion. The agents are initialized within the 

square domain with four distinct quadrants, as shown in Fig 2.1. The Goal is located at the center 

of the fourth quadrant (0.5, -0.5); in this study, the Goalôs location is considered fixed for all 

numerical experiments. 

 

Figure 2.1.  Illustration of the domain for simulation. 
 

The dashed circle around the Goal represents the sphere of influence found in Eqn (2.7) and 

(2.8), fixed at 0.508 for this study. The Defender positions are initialized randomly inside the 

sphere of influence, in the fourth quadrant, using a low discrepancy Sobolôs sequence[97], the 

velocities are randomly chosen between ±0.1. The Attackers are also randomly generated inside 

the second quadrant using the same technique, and the velocities were also randomly selected 

between Ñ0.1. Low discrepancy Sobolôs sequence is chosen to ensure minimal overlap between 
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the initial position vector of agents making up their respective swarms.  

 

Table 2.1: Various Key Parameters used in the numerical model 

 

Constants Values Description 

AC  1.32 Depth of the potential well for pairwise 

scaled Morse potential for Attackers. 

Al  1.50 The ratio of the repulsive to attractive length 
scales of Attacker agents. 

DC  1.38 Depth of the potential well for pairwise 

scaled Morse potential for Defenders. 

Dl  2.00 The ratio of the repulsive to attractive length 
scales of Defender agents 

repk  
0.054 Constant for pairwise inter-swarm repulsive 

potential between Attackers and Defenders. 

attk  2.82 Constant for pairwise inter-swarm attraction 
potential between Defenders and Attackers. 

objk  
10 Constant for pairwise inter-swarm Goal 

potential between Attackers and the Goal. 

DGC  10.03 The ratio of attraction and repulsive 
potential strength for scaled Morse potential 

between a Defender agent and the Goal. 

DGl  0.5 The ratio of the length scale of attraction and 

repulsion pair for scaled Morse potential 
between a Defender agent and the Goal. 

Aa  1 Constant of the self-propulsion force for 

Attackers. 

Ab  
1 Coefficient of the Rayleigh friction force for 

Attackers. 

Da  
1 Coefficient of the self-propulsion force for 

Defenders. 

Db  
1 Coefficient of the Rayleigh friction force for 

Defenders. 

thR  
0.508 Influence radius for Defenders. 

Am   
1 Mass of Attacker agents. 

Dm  
1 Mass of Defender agents 

Goal breach 

criteria 
1E-4 Threshold distance between Attacker agents 

and the Goal for considering the Goal to be 
breached. 

Agent 

compromise 

criteria 

1E-4 Threshold distance between individual 

Attacker agents and Defender agents to be 
considered collided (hence dead). 

Repulsive 

Force Local 

Cut-off for 

Attacker 

0.05 The minimum distance beyond which the 

repulsive force between an Attacker and a 
Defender agent is treated as constant. 

Attraction 

Force Local 

Cut-off for 

Defenders 

0.05 The minimum distance beyond which the 

attractive force between a Defender and an 

Attacker agent is treated as constant. 

 

The Runge Kutta solver is first verified by testing it against a trivial mass damper system. 

The validation of the custom solver developed for this problem is achieved by numerically 

evaluating the order of accuracy. In time, a comprehensive grid independence study in time is 

carried to evaluate the optimum timestep for solving the underlying governing equations for each 
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agent, respectively, which is depicted in the subsequent section. A relative error threshold of 1% 

was considered in the position vectors for both the agents to perform the grid independence 

analysis in time. 

The various constantsô optimal values were obtained using a combination of trial and error, 

educated guess, and visual inspection (rendering of the simulation) over multiple random and 

non-random numerical experiments. Table 2.1 describes the model constants and values (Note: 

Suffix A denotes Attackers and suffix D represents Defenders). If the distance between two or 

more different agents is equal or less than the óAgent compromise criteriaô, they are considered 

to have collided and are hence arrested from the simulation. The arrested agents become inactive 

for the remainder of the simulation. If the distance between any Attacker agent and the Goal is 

less than the óGoal breach criteriaô, the Goal is considered breached. As stated in the introductory 

section, if any Attacker agent can successfully intercept the Goal, Attackers dominate the 

simulation. If the Defenders can defend the Goal before the end of the simulation or if no 

Attackers are left in the simulation, then the Defenders is considered the dominant swarm. If no 

Attacker or Defender agents are left at any point in the simulation, in that case, the Defenders are 

considered dominant as the Goal has been successfully protected from the Attackerôs predation. 

The various threshold distances discussed so far can be found in Table 2.1. 
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2.4 Results and Discussion 

All the simulations were carried out by developing custom software written in C++ and 

Python, which were run on the University of Alabama High-Performance Computing Network 

and a Desktop Computer having IntelÈ CoreÊ i7-9700 Processor,64 GB RAM, and 1.25 TB of 

storage space. The simulations were carried out for different populations of Attackers and 

Defenders to study the dynamics and the outcome (final state) of the interacting adversarial 

swarms. The interaction between the two adversarial swarms was analyzed with respect to an 

ascending ratio of the number of Attackers to Defenders. The maximum number of Attackers 

and Defenders agents in this study was limited by the computational resources available, which 

was capped at a maximum of 100 for each case. In the initial simulation, the number of attackers  

 

Table 2.2: Case Matrix 

 

Case 

 

NA 

 

ND 

 

NA/ND 

 

Runs 

 

Timestep 

Max Simulation 

Time 

1 5 100 0.05 1000 5.00E-05 100 

2 7 97 0.07 1000 2.50E-05 100 

3 10 95 0.10 1000 2.50E-05 100 

4 15 90 0.16 1000 2.50E-05 100 

5 20 85 0.23 1000 2.50E-05 100 

6 25 80 0.31 1000 2.50E-05 100 

7 30 75 0.4 1000 2.50E-05 100 

8 35 70 0.5 1000 2.50E-05 100 

9 40 65 0.61 1000 2.50E-05 100 

10 45 60 0.75 1000 2.50E-05 100 

11 50 55 0.90 1000 2.50E-05 100 

12 50 50 1 1000 2.50E-05 100 

13 55 50 1.1 1000 2.50E-05 100 

14 60 45 1.33 1000 2.50E-05 100 

15 65 40 1.62 1000 2.50E-05 100 

16 70 35 2 1000 2.50E-05 100 

17 75 30 2.5 1000 1.00E-05 100 

18 80 25 3.2 1000 5.00E-06 100 

19 85 20 4.25 1000 5.00E-06 100 

20 90 15 6 1000 5.00E-06 100 

21 95 10 9.5 1000 5.00E-06 100 

22 100 5 20 1000 2.00E-06 100 



35 

 

was 5; the number of Defenders chosen was 100(case #1); for every subsequent case excepting 

case#2, the Attackers were increased by 5, and the Defenders reduced by 5; which was continued 

until there were 100 Attackers and 5 Defenders left. 

A total of 22 cases were studied in total, as shown in Table 2.2. All simulations had random 

initial conditions for position and velocity; a Monte Carlo study was carried out to understand 

each caseôs outcome holistically. Every case was run 1000 times, determined by the cumulative 

average of each runôs total time. The cumulative average had a maximum change of 0.2% at the 

end of 1000 runs for each case, respectively. The amount of computational resources available 

also limited the total number of runs for each case, respectively. Initial random conditions were 

chosen for each run to implicitly introduce noise into the study of the overall system dynamics 

of the system. It was anticipated that the random initial conditions would cause the system to in 

various dynamical regimes. 

The simulations were studied from a swarm to a swarm interaction perspective. The center 

of mass time-series of the swarm was found out, averaging the x and the y coordinates of the 

position vectors with respect to the total number of active agents at every timestep. The center 

of the momentum of the swarms was found out by averaging the x and the y components of the 

velocity vector with respect to the total number of active agents at every timestep. In the 

preceding calculations, the individual agents' mass making up the respective swarms is 

considered unity 

The largest Lyapunov Exponents (LLEs) of the center of mass time-series for both agents 

were obtained using Wolfôs algorithm [98]by implementing phase space reconstruction by 

evaluating the minimum embedding dimension and time lag from Chen et al.[99]. Lyapunov 

exponent is a useful tool for determining the presence of chaos. Lyapunov exponents were found 
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out for every trial run in each case, respectively. The following equation gives the Largest 

Lyapunov Exponent (LLE): 

 ɤ В ÌÎ  (2.12) 

The Euclidean distance between the initial point and its nearest neighbor ὸ π is given by 

ὒέwhich evolves into ὒὩὺέὰ after ὸ ὸ and ὓὒὉis the minimum embedding dimension of the 

reconstructed phase space.    

Recurrence plots(RP)[100] indicate whether a dynamical system is periodic or chaotic in 

nature are essentially two-dimensional representation techniques of a symmetric binary square 

matrix that brings out distance correlations in a time-series. Binary mapping is used to construct 

the symmetric binary for various values of s and t, representing time. The matrix elements 

correspond to the recurring dynamical state of a system and are given by the following equations 

 Ὑȟ ɡ‐ ȿȿὼ  ὼȿȿȠίȟὸ ρȟςȟσȟȢȢȢȢȟὔ (2.13) 

Eqn. (2.13) is in a phase space consisting of N points ὼίis a point located on the m 

dimensional space,‐is the specified threshold, is the Heaviside step function, and ȿȿȢȿȿindicates 

the ὒς norm. In the current study ‐is fixed at 10% of the diameter of the reconstructed phase 

space. Ὑίȟὸis zero if the distance between the two points ὼίand ὼὸin the phase space is greater than 

‐; otherwise, it is equal to 1. Black and white points are present in the recurrent points 

corresponding to the ones and zeros present in the recurrent matrix. For all RPs, the main 

diagonal is a black line. Various characteristics of the RP can be found in Marwan[101]. The RP 

corresponding to a periodic system is characterized by equally spaced lines parallel to the main 

diagonal, unequally spaced lines parallel to the main diagonal designate quasi-periodic dynamics. 

For chaotic systems, the RP would consist of short, broken diagonal lines parallel to the main 

diagonal along with single isolated points. RP is used in the current study as a secondary measure 
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of quantify chaos in addition to the LLE.  

The center of mass time series obtained for both the swarms was also analyzed from a 

multiscale entropy (MSE) perspective [102], first introduced by Costa et al.[103] as a qualitative 

measure for complexity. MSE can be used to determine whether a time series arises from a highly 

stochastic or a highly deterministic process, or, in other terms, it indicates the orderliness of a 

system. Multiscale Entropy is a very useful tool for evaluating the determinism or randomness 

in a time-series. It also measures the structural complexity in a physical system comprising of 

very high degrees of freedom. The Multivariate Multiscale Entropy (MSampEn) introduced by 

Ahmed [102] et al. is used in this study. The MSampEn algorithm proposed by Ahmed[102] uses 

a separate embedding dimension and time lag for a multivariate time series taken as input and is 

given by the following equation. 

 ὓ ὓȟ†ȟὶȟὔ ÌÎ  (2.14) 

           M is the embedding vector, † is the time lag vector, r is the tolerance level, N is the number 

of data points in the time-series,ὄ ὶis the frequency of occurrence, and ὄ ὶ is the 

multivariate frequency of occurrence. MSampEn is used to find the Multiscale Entropy of the 

2D center of mass time-series obtained from the Attackers and Defenders swarm, respectively. 

The embedding dimension and the time lags for each dimension were determined by a computer 

program developed by Chen[99]. 

 In the subsequent subsections, the simulations are analyzed with respect to the increasing 

NA/ND ratio, as presented in Table 2.2. Each case is analyzed from a dynamical systems point of 

view and is strongly investigated for chaos. The final state of the simulation is also explored in 

each case, respectively. In the last sub-section, Multiscale Entropy analysis was carried out. 
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2.4.1 Analysis of dynamical behavior: Timeseries, phase space, and attractor visualization 

plots. 

         Starting with the first case (case 1) in Table 2.2, it was observed that the number of 

Defenders greatly outnumbered the number of Attacker agents. Case 1 was trivial, as the 

simulation outcome could be easily guessed. Fig.2.1 revealed the snapshot entire simulation; it 

was observed that 4 of the 5 Attacker Agents were killed relatively early in the simulation. It was 

also observed that one Attacker agent and 96 Defenders agents were left until the end of the 

simulation. The survival of one Attacker agent until the end may seem to be a bit counterintuitive; 

the behavior observed could be explained due to the buildup of excessive repulsive force on the 

remaining Attacker agent from the 96 surviving Defender agents, as all agents in this simulation 

are globally coupled with the force terms implicitly controlling the range of vision. 

Figure 2.2: Snapshot of simulation for Case#1. Note: triangles and circles indicate Attacker and 

Defender agents, respectively. 
 

The Defenders were considered dominant as they successfully protected the Goal until 

ssssthe end of total simulation time. The outcome was also common sense, as the Defenders 

greatly outnumbered the Attackers. From the time-series plots in Fig. 2.3, the agentsô behavior 
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was highly transient with periodic and non-periodic changes in amplitude; the rapid changes in 

amplitude of the center indicate close interaction between Attacker and Defender agents resulting 

in agent compromises on either end. After the compromise of agents or agents in each swarm, 

the CMS was calculated only among the active agents in the next timestep, causing the center of 

mass to shift rapidly 

 

Figure 2.3: Center of mass time-series plots for Case#1 
 

The center of mass for case#1 for both the agents of the Adversarial system was 

visualized in 2D space (in Fig. 2.3), revealing the existence of ñtransient chaosò, which is defined 

as a situation where the trajectories leave the chaotic regime after a certain of amount of time has 

passed resulting in the formation of a quasi-periodic pattern of motion[104]. Figs 2.3 and 2.6 

showed that the agent movements looked chaotic initially and then abruptly switched to a quasi-

periodic oscillation, quasi-periodic oscillation, which lasted for the remainder of the simulation.  

The initial chaotic trajectory was attributed due to the engagement between the Attacker 

and the Defender agents, resulting in most of the Attacker agentsô death, which could be observed 

from Fig.2.3. As most of the Attacker agents were compromised in action, the quasi-periodic 
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motion of the center of the Attacker swarm is along around the Goal, suggested the few reaming 

Attacker agents were rotating in a quasi-periodic orbit around the Goal. The Defendersô time 

history indicated (Fig. 2.3) similar behavior with a lesser change in amplitude than the Attacker 

swarm. The Defender swarm was tightly packed due to many agents compared to the Attacker, 

so the swarm centerôs change was considerably less than its competitor.  

In the end, however, as visualized in Fig.6, it was observed that the last two remaining 

Attacker agent moved quasi-periodically outside the sphere of influence leading to their 

existence until the end of the simulation. To quantize the presence of chaos, the Largest 

Lyapunov Exponent (LLE) was computed for the center of mass time series for both the agents 

using Wolfôs algorithm[98] by performing phase space reconstruction. The phase space was 

reconstructed using the x-component of the center of mass time series to evaluate its embedding 

dimension by evaluating the fraction of false nearest neighbors and estimating the time-delayed 

mutual information time-series [99]. The LLE for both the agents converged at 0.022 and 0.024, 

respectively, thus proving the existence of chaos.  

The chaotic behavior was also further quantified by the Recurrence plots (RP) in Figs.2.4 

and 5 for the Attackers and the Defenders, respectively. The RP for the Attackers depicts a main 

diagonal line and short, broken lines parallel to the main diagonal line. Sporadic points were also 

noticed on either side of the diagonal, indicating sustained chaotic dynamics for the Attackers. 

The RP for the Defenders (Fig. 2.5) depicts two distinct time windows indicating ñtransient 

chaosò for the Defenders.  
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Figure 2.4: Recurrence plot of Attackers for Case#1 

 

 
Figure 2.5: Recurrence plot of Defenders for Case#1 
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Figure 2.6: Center of mass of the Adversarial swarms in case#1 visualized in 2D space. 

 
 

Figure 2.7: Attractor visualization for the center of mass for each swarm respectively in Case#1 
 

From Fig. 2.7, it was observed that for the Attackers, there existed more than one 

dynamical attractor leading to the establishment of multiple local equilibrium points for the 

Attacker swarm before it settled down to a quasi-periodic orbit around the Goal. This behavior 

was attributed to the Attackers and Defendersô engagement, resulting in the compromise of 
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agents killed in action. As the compromise of most of the Attacker agents took place quickly in 

the initial part of the simulation, the local equilibrium points of the Attacker agents also changed 

rapidly; in the latter half of the simulation, however, as only one Attacker agent is left, it is almost 

locked in a quasi-periodic orbit around the Goal. In the Defendersô case, however, 3 local 

equilibrium points were observed, among which the central point was much more pronounced 

than the others. The outer points observed from the left plot of Fig.2.7 resulted from initial 

interaction between the Attacker and the Defender swarms, where some of the Defenders initially 

translated towards the attacker swarm due to strong attraction. The Defenders eventually 

traversed out of the sphere of influence and returned to the sphere of influence as they lost their 

attractive force once they ventured out of the sphere of influence.  

 
 

Figure 2.8: Attractor visualization for the center of mass for each swarm respectively in Case#8 
 

Defender agents rotated quasi-periodically around the Goal with the Attacker agentsô 

occasional attraction as it crossed the sphere of influence. The presence of multiple local 

equilibria for both classes of agents suggested the presence of many interdependent thresholds, 

which caused a rapid shift of the dynamical attractors causing rapid and drastic changes in the 
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system, which in the present study can be attributed to the compromise of multiple agents; as the 

two interacting swarms that were globally coupled intrinsically (within the same class of agents) 

and extrinsically (between the members of the two competing swarms). Such interdependent 

thresholds are often observed in the earthôs climatic system, essentially a complex system, 

wherein abrupt changes are persistent and unpredictable [49]. Thus, the current competing swarm 

system under discussion was regarded as a complex system. Similar dynamical behavior was 

also obtained in cases 2 and 3 with multiple dynamical attractors; in these cases, the Defenders 

emerged as the dominant swarm.  

Starting from case#4 (NA=15, ND=90) onwards, a decrease in the number of local 

equilibrium points for the Attackers and an increase in the same for the Defenders was observed, 

which was mainly due to a relative decrease in the total run time of the simulation, which meant 

that all the Defenders were able to intercept the Attacker agents in early on the simulation. There 

was a decrease in the simulationôs average total run time for all the trials (as presented in Table 

2.2), which will again be discussed in detail in this paperôs succeeding subsection. This trend 

was observed in the overall dynamical behavior and continued until case 8(NA=35, ND=70). 

The attractor visualization plot for case#8 can be found in Fig2..8. 

  From case #9 onwards, as the number of Attackers considerably increased and vice 

versa. The Attackersô equilibrium points appeared centrally around the Goal. However, for the 

Defender agents, multiple equilibrium points were still observed, which was due to the high 

degree of interaction of the Attackers with the Defenders, which caused the system to arrive at 

the final state much faster than the initial cases, as outlined in Table 2.2. The Attacker agentôs 

strong interaction was attributed to the decrease of the globally coupled repulsive force between 

an Attacker agent with all the Defender swarm agents, making them more prone to interact with 
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the Defender agents. 

Fig.2.9 revealed the snapshot of the entire simulations taken at 8 equated timestamps 

throughout the simulation. In case 12, the interacting Defender and Attacker swarms were made 

up of an equal number of agents (50 each). Each swarm was made up of 50 agents; respectively, 

it was observed that the Attackers and the Defender swarm interacted actively from the onset of 

the simulation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9: Snapshot of simulation for Case#12. Note: triangles and circles indicate Attacker 

and Defender agents, respectively. 
 

During the engagement, there was a substantial loss of agents from early on. Fig. 2.9 also 

revealed that the loss of agents happened at almost the same proportion, indicating that agents 

were engaging on a one-on-one basis with the spatially closest adversarial counterpart before the 

collision, ultimately resulting in the pairôs loss. This behavior can be found towards the end of 

the subplots in Fig.2.9.The Defenders dominated this simulationôs final state as their ultimate 

objective was to protect the Goal from the Attackers. This case was also run 1000 times like the 

other cases. A detailed study for all the other cases revealed that the agentsô interaction was not 
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always be binary (one-on-one) in nature. Some of the cases during the Monte Carlo analysis 

reveal multiple agent compromise (more than 2). 

The center of mass time histories of both the swarms was plotted in Fig.2.10, revealed 

the presence of highly transient behavior with somewhat irregular-shaped nonsmoothed peaks 

and troughs.  The irregularity in the peaks and troughs was due to the loss of agents in rapid 

progression due to close and rapid engagements. The plots revealed the existence of transient 

chaos like Case#1. The LLE calculated for this case was 0.003 and 0.011 for the Attacker and 

the Defender swarm, respectively. Near the end of the simulation, it was observed that both the 

agentsô trajectories converged to a quasi-periodic orbit around the Goal. This behavior was 

observed from the phase space plots in Fig.2.11. Initially, strong interaction between the Attacker 

and the Defender agents resulted in rapid loss of agents, causing irregularly shaped orbits around 

the Goal. The center of mass shifted rapidly due to the loss of many compromised agents.  

 
Figure 2.10: Center of mass time-series plots for Case#11 
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Figure 2.11: The simulation described in Case#12 is visualized in 2D space. 

 

 
 

Figure 2.12:Center of swarm attractor visualization for Case#11 
 

Fig. 2.12 revealed a single equilibrium point for the Attacker swarm around the Goal and 

multiple local equilibrium points for the Defender swarm. This pattern was caused by the Goal 

being surrounded by the Attacker agents while constantly rotating around it. The Defender 
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swarm center constantly shifted towards the closest Attacker agents, leading to the formation of 

multiple local equilibrium points.  

 
Figure 2.13:Center of swarm attractor visualization for Case#18 (NA=85, ND=15). 

 

A similar pattern of dynamical behavior continued with reducing Defender agents and 

the increase of Attacker agents beyond case#12. The rotation of the Attacker agents around the 

Goal was also significantly reduced as the final simulation state is attained faster. The attractor 

visualization plot for case 18 (NA=85, ND=15) can be visualized in Fig.2.13, revealing the 

shrinkage of the basin of attraction for the Attackers.  
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Figure 2.14: Center of mass time-series plots for Case#21. 

 

 

Case#22 was the last case, essentially the converse of case#1; the Attacker agents vastly 

outnumbered the Defenders. The final state was trivial; it could be observed that all the Defenders 

agents were compromised quite early in the simulation. This behavior was expected as the 

Attacker agents experienced relatively less repulsive force from 5 Defender agents. The 

Attackers initially approached the Defenders with an almost linear trajectory followed by a minor 

rotation around the group (see Fig.2.15). The Defender swarm underwent erratic motion around 

the Goal because it tried to engage with the Attacker agents closest to the Goal, causing the center 

of mass to change rapidly. The close engagement with an outnumbered Defender swarm caused 

the rapid compromise of agents on both sides as the Defender agents could easily intercept 

Attacker agents, which were in a very close formation around the Goal inside the sphere of 

influence. The time histories of the center of mass in Fig.2.14 revealed steep peaks and troughs 

for the Defenders, which was caused due to the rapid compromise of agents in the outnumbered 

Defender swarm, causing the center of swam to shift rapidly. The Attacker swarms comprising 

a much greater number of agents do not show steep peaks or troughs as the center of the swarm 



50 

 

does not appreciably change due to their close formation on the Goal and the death of relatively 

few agents compared to the entire population of agents.  

 

 
Figure 2.15: The simulation described in Case#21 is visualized in 2D space. 

 

2.4.2 Final Simulation State 
 

The system's final state, which is the outcome of the two swarmsô interaction, was of 

immense importance as it determined which class of agent dominated the simulation in the end. 

A flag classified the dominant swarm in the simulation, defined as +1 if the Defenders emerged 

dominant and -1 for the Attackers. As discussed in this paperôs introductory sections, the 

Defenders emerge dominant if the Goal was protected from the Attackers until the end of the 

maximum total time allotted for the simulation or if the Attacker swarm was compromised before 

the total time. On the other hand, the Attackers emerged dominant due to the compromise of the 

Defender swarm or the Goalôs breach.  The final state was found out by defining a Dominant 

Simulation State metric is calculated for each case presented in Table 2.2. The simulation 

Dominant Simulation State metric is defined as the simple product of flag, the average time of 
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run for all the 1000 trials in the Monte Carlo analysis, and the number of times a particular swarm 

emerged dominant(wins). The Dominant Simulation State metric is plotted against the agentsô 

ratio on a semi-log scale (x-axis only), which can be found in Fig 2.17. The random initial 

condition and the high degree of freedom of the system caused the nature of the swarm agentsô 

interaction to be stochastic in nature, making the ending of each simulation unique.  

 
Figure 2.16: Center of swarm attractor visualization for Case#21. 

 
Figure 2.17: Plot of Simulation Winner Outcome versus Population of Attacker and Defenders 

(NA/ND). The x-axis is plotted in a log scale for the clarity of the figure. 
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Initially, the Defender swarm exclusively emerged dominant for cases#1-4, which 

indicated that the Defender swarm could protect the Goal by intercepting Attacker agents or by 

preventing them from reaching the Goal. It was also observed from Fig.2.18 that most of the 

Defender dominance was due to the Goal protection, which meant the Defenders were 

successfully able to protect the Goal until the end of maximum permissible simulation time. This 

behavior was expected due to the excessive repulsive force on relatively few Attacker agents 

compared to the significant number of Defenders. In relatively few cases, the Defender swarm 

was successfully able to intercept and compromise the Attacker swarm as its movement was 

highly constrained around the Goal. It was observed that starting from case#5 through case#12, 

there were binary final states of the system, which means either swarm assert dominance. It was 

also noted that the Defenders emerged as the dominant party in most of these simulations. The 

dominance was profoundly due to the compromise of the Attacker swarm due to the strong 

interaction. In relatively few cases, the Defenders emerged victorious by standing ground until 

the end. This trend continued until case#12. Much of the Attacker swarmôs marginal winning 

until case#12 (NA/ND=1) was caused by the breach of the Goal, while the minority of the wins 

was due to the total compromise of the Defender swarm. Beyond case#12, as the number of 

agents in the Attacker swarm increased considerably, the Attacker swarmôs dominance increased 

mostly by compromising the Defender swarm compared to the Goalôs breach, which continued 

for the remaining cases in Table 2.2. However, the Defender swarm only exerted marginal 

dominance from case#12 onward until case#14 by preventing the breach of the Goal.     
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Figure. 2.18: Plot of Simulation Winner Outcome versus Population of Attacker and Defenders 

(NA/ND). The x-axis is plotted in log scale for clarity 
 

2.4.3 Largest Lyapunov exponent for all the cases presented in Table 2 
 

The Largest Lyapunov Exponent (LLE) for the center of mass time series was calculated 

for the Attacker and Defender agents using Wolfôs algorithm[98] as outlined in Eqn. (2.12) for 

all the 1000 trials as outlined in Table 2.2.  

The average, median, maximum, and minimum LLEs found out from the trials were 

plotted in Fig. 19 and 20 for the Attacker and Defender swarm, respectively. It was observed that 

average LLE hovered in and out of zero for both the agents, indicating that the system was on 

the Edge of Chaos [83-85].  

A dynamical system crosses the boundary between a highly deterministic system and a 

chaotic one in this region. It is believed that at the ñEdge of chaos,ò the complexity of a dynamical 

system increases and it has the greatest computational capacity[83]. From Fig. 2.17 and 2.18, it 

appeared that the average LLE for the Defenders was greater than zero for all the cases presented 

in Table 2.2 and the average LLE for the Attackers is less than zero beyond case 9. The minimum 
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Figure. 2.19: Largest Lyapunov Exponent (LLE) of the center of mass time series of Defender 

swarm versus the Ratio of the Number of agents initially making up the Attacker and Defender 

swarms, respectively, for 1000 trials. 

 
Figure 2.20: Largest Lyapunov Exponent (LLE) of the center of mass time series of Attacker 

swarm versus the Ratio of the Number of agents initially making up the Attacker and the 

Defender swarm, respectively for 1000 trials. 
 

and the maximum LLE for all the cases are positive and negative, respectively, indicating the 

presence of chaotic and non-chaotic solutions. The interacting swarm system, in this case, could 
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be concluded to be in the óEdge of Chaos,ô which caused a rapid change in the dynamics of the 

system. From Fig.2.17, it was evident that from cases #5 through 7, even though the number of 

Defender agents was large compared to the number of agents in the Attackers, it was tempting 

to conclude that the outcome of such cases would be trivial (Defenders exert dominance). On the 

contrary, a marginal number of cases where the Attacker swarm can successfully breach the 

Goal. The system hovers at the óEdge of chaos,ô causing rapid change in the systemôs underlying 

dynamics; thus, it may be concluded that some solutions appear to be chaotic, ultimately affecting 

the systemôs final state.  

Figs. 2.19 and 2.20 also reveal that the highest LLE reorder for the entire study occurs at 

case 13 (NA=55, ND=50), equal to 1.55 was for the Defenders. The RP was also found for this 

case indicated the presence of chaotic behavior as indicated by the broken line parallel to the 

main diagonal line and sporadic points in Fig 2.21. LLEs was obtained for cases 11 through 13 

was notable, as the number of Attackers and Defender agents making up their respective swarms 

was equal or numerically very close to each other. A histogram was plotted for the LLEs calculate 

for both agents in case#12 was plotted in Fig 2.17. It was observed that both the swarm have a 

prominent central peak at -0.006 and 0.010 for the Attackers and Defenders, respectively, 

reaffirming both the swarms are zoning around the edge of chaos. The histogram further 

indicated that most of the Defender swarms for the trials in case#12 had a positive LLE. The 

highly chaotic behavior was due to the Defender swarmôs rapid engagement with the many 

Attacker agents in multiple directions. As a consequence of rapid engagement, multiple agents 

on either side were compromised. Most of the Attacker agents, on the other hand, have negative 

LLE as they mainly exhibit periodic or semi-periodic movement around the Goal while moving 

in and out of the sphere of influence while interacting with the Defenders.  
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Figure 2.21: Recurrence plot for the case where max LLE obtained for Defenders in Fig.19 

 
Figure 2.22: Histogram of LLEs of the center of mass time series for case#12(NA=50, ND=50) 

for 1000 trials. 

2.3.4 Multiscale Entropy  analysis 

 

Multiscale Entropy was used to quantize the degree of randomness of the Defender and 

the Attacker swarm, respectively. Multiscale Entropy was calculated for all the cases in Table 2 

for time scales from 1 to 20, which revealed that it is monotonically increasing. A concise picture 

of the change in MSE for all the simulation cases studied in Table 2.2 was presented by plotting 
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the ratio of the Multiscale Entropy calculated at scales 20 and,1 respectively, and can be found 

in Fig.2.22.  

The MSE of the Defender swarm was greater than the Attacker swarm for all time scale 

indicates that the Defenders were dynamically more complex than the Attackers. The ratio of the 

MSE for the Defenders for all the scales indicated monotonically increasing behavior. The 

Attackers also exhibited the same trend except until case 16, beyond which the ratio of the MSE 

is ~1.01, indicating that the MSE increase was not appreciable across scale 1 to 20. A detailed 

study of these cases revealed that the MSE did not show an appreciable increase when plotted 

from scales 1 through 20. Thus, overall, it can be concluded that the interacting swarm system 

exhibits the behavior of a complex system.  

 
Figure 2.23: Ratio of Multiscale Entropy calculated at scale 20 and scale for the center of mass 

time series for Attacker and Defender swarm respectively, for all the cases presented in Table 

2. The error bars represent the sample standard deviation in each case. 
 

This overall trend can be explained from a philosophical standpoint that a complex 

system is often defined as more than just a regular combination of its constituents. A standalone 
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system constituent cannot explain the complex emergent behavior observed by the system 

overall. In the present problem, the Attackers and Defenders swarm are made of simple agents 

that exhibit highly emergent behavior in swarming while interacting with each other in an 

adversarial manner. The MSE was also used as a measure of the óorderlinessô of a system; the 

MSE indicated that the Defenders were less ordered as a system when compared to the Attackers; 

this was expected because when the Defender swarm engages with the Attacker swarm the 

Defenders are forced to be constrained in a relatively smaller perimeter defined by the influence 

radius used in the Attractive Morse force between the Defender agents and the Goal. The 

phenomenon was also evident from multiple attractor visualization plots presented in the 

previous sections. The Defendersô constrained motion was dynamically more complex than the 

unconstrained motion of the Attackers in 2D Euclidian space. This phenomenon was backed by 

the dynamical behavior observed in Figs. 2.3 and 2.7, respectively.  

It can also be concluded from Fig. 2.23 that the Defenders have higher mean multiscale 

Entropies occur from cases #11 through 16; these cases also had an extensive variation as 

indicated by the standard deviation error bars. On the other hand, the attackers exhibited 

relatively higher mean MSEs from 1 through 6 and then again from 12 through 14. Cases 11 

through 14 exhibited overall the most dynamically complex behavior for both agents; the number 

of Agents in both the swarms were either equal or numerically very close.    These cases also 

exhibited binary final states, as indicated in Fig. 2.17, along with the maximum variation of the 

LLEs is observed from Fig. 2.19 and 2.20. In the initial few cases (cases 1 through 5), the 

Attacker swarm exhibited relatively higher MSEs as the size of the Attacker was considerably 

smaller compared to the Defender swarm, thus causing greater randomness in the overall 

interaction when studied over 1000 trials. Beyond case #15, the Attacker swarm emerged as the 
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dominant swarm in all trials because of being heavily outnumbered by the Defender swarm. Fig. 

23 revealed a drop in the randomness of the simulation for all cased beyond case#15. The 

Attacker swarm quickly exerted it dominance which was expected as the Defender phase plots 

contained erratic trajectories around the Goal as it was overwhelmed by a vast number of 

Attacker agent engaging from all sides, all these factors caused a drop in the MSE of the Attacker 

swarm along with its overall variation in all the trials; as for the Defenders complex dynamics 

also existed for all the cases which lead to a higher degree of random behavior causing the MSE 

to be relatively higher than the Attackers. 

The MSE calculation of the Attacker and Defender Swarm overall indicated the presence 

of complex dynamics which can be used to rule that the current scenario considered for the 

simulation can be referred to as a complex system; the MSE entropy plots for the Attackers and 

the Defenders also exhibits an intermediate level of randomness which lies between a perfectly 

deterministic system and a completely random system. Thus, it can be concluded that the semi-

hybrid approach assumed at the beginning of this paper is successful as the simulation can be 

used for meaningful engineering applications  

2.4 Conclusion 
 

The adversarial swarm model discussed in this paper comprises two types of agents: The 

Attackers and the Defenders, which are interacting in unconstrained 2D Euclidean space. The 

force terms present in Newtonôs second law-based governing equation can be broadly classified 

into two types: óintraô and óinterô respectively, responsible for swarming in the respective swarms 

and their interaction with their competing counterpart. 

The Defenderôs main aim was to protect a point of interest in 2D space referred to at the 

óGoal.ô In contrast, the Attackerôs main objective was to intercept the Goal while continually 

engaging with the Defenders. Semi-Hybrid approach was assumed in the simulations as agent 
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and goal compromise criteria was modelled as per real world scenarios that may arise in 

engineering applications. A total of 22 simulation cases were studied with a decreasing number 

of Defender agents and an increasing number of Attacker agents, as presented in Table 2. A 

Monte Carlo analysis was done by running each case 1000 times to statistically study the final 

state of the simulation, LLE, and the MSE. The following are the main conclusions can be drawn 

from the paper: 

¶ The overall model discussed was a generic dynamical system-based Agent based Adversarial 

Swarm model that was solved using a rigorous numerical procedure. This model is generic 

enough and can be adapted to a wide range of engineering applications. 

¶ In the spectrum of the study conducted, the initial cases (#1-#4) revealed transient chaotic 

behavior with multiple local equilibrium points for both parties that reaffirmed the existence 

of complex dynamics. 

¶ Beyond case #10, the number of local equilibrium points reduces for the Attackers as it 

converges to a central equilibrium point. On the contrary, multiple equilibrium points existed 

for the Defender agents for all the remaining cases. 

¶ The LLEs found out for the Attackers and Defenders from the center of mass time series for 

all the trials in each case, respectively, revealed the existence of both chaotic and non-chaotic 

solutions. The presence of chaotic behavior was also backed up the Recurrence plots. The 

average LLEs indicated that swarms were both on the óEdge of chaos,ô further strengthening 

the presence of complex dynamical behavior. 

¶ Finally, Multiscale Entropy (MSE) was evaluated for the center of mass time-series for the 

swarm from scales 1 to 20. MSE, for both Attackers and Defenders, revealed the MSE the 

existence of complex dynamics. The MSE revealed an intermediate level of randomness for 
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the simulation overall thus proving the effectiveness of the Semi-Hybrid approach assumed 

in the Adversarial swarm model. 

In the current work, the simulations considered the interaction between the Attacker and 

Defender swarm in an ideal environment where the interactions occur; noise effects were not 

explicitly modelled but implicitly considered by using random initial conditions. The work also 

assumed ideal and instantaneous inter and intra swarm communication and did not consider the 

effects of delay in communication. The position of the Goal was also assumed to be fixed for all 

the cases studied. The Attackers and Defenders were also globally coupled without explicit cut-

offs. The forces obtained from the physics based potential functions implicitly imposed the 

limitation of the range of sensing or vision for the agent. Delay in communication between the 

agents was not considered, which is sometimes observed in the real-world case due to various 

external factors. Some of these limitations will serve as the basis of future works.   
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CHAPTER 3 

 

USE OF HYBRID ECHO STATE NETWORKS ON THE PREDICTION OF GROUP 

DYNAMICS OF AN ADVERSARIAL SWARM SYSTEM  

 

3.1 Abstract 

 

A hybrid Echo State Network was used to predict the dynamics of an Adversarial Swarm 

System. The swarm consisted of two agent classes competing for dominance over a point of 

interest in two-dimensional space. The Defendersô primary task was to protect the 'Goal' while 

the Attackersô primary task was to intercept the Goal. The Adversarial Swarm system is 

simulated in a semi-hybrid framework. If the distance between the agents of the Adversarial 

Swarm is less than a predefined criterion, agents are considered compromised. Similarly, if the 

distance between Attacker agents and the Goal is less than a predefined criterion, the Attackers 

are deemed to have intercepted the Goal. Two configurations were used to evaluate the use of 

Echo State Networks for predicting system dynamics. Configuration 1 employed a single ESN, 

i.e., the patio-temporal data for all agents of an Adversarial Swarm model was used input. In 

configuration 2, two separate ESNs, in parallel, were used to predict Defender and Attacker 

swarm dynamics. Based on the results, it was concluded that the parallel ESN configuration was 

more effective in achieving qualitatively similar predictions of the dynamics for the Adversarial 

Swarms. 

3.2 Introduction  

 

Swarms are essentially complex systems generally characterized by non-linear dynamics; 

an accurate physics-based model is imperative to the holistic understanding of the underlying 
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dynamics. Swarms are a collection of independent, autonomous agents that are widespread in 

nature from ranging from ant colonies[1], flocks of birds[2], and schools of fishes[3]. Nature-

inspired swarm models have been an active area of research for the past couple of decades. 

Simulating natural swarm behavior for engineering applications is inherently problematic as all-

natural systems offer inherent flexibility and scalability, often difficult to attain using digital 

computers. The principle of swarming forms the basis of extensive modern-day engineering 

applications ranging from spacecrafts[4], UAVs[5], robots[6], and optimization algorithms[1]. 

Typically, two types of swarm interaction are observed: -Adversarial and Symbiotic, 

wherein two or more swarms either compete or cooperate over resource utilization.  Symbiotic 

swarms found in the animal kingdom include multispecies group [26]hunting, were in different 

groups of species team up (cooperation) with each for hunting groups of prey. Adversarial 

Swarms, which are the focus of the present study, are abundant in natural environments, such as 

groups of predators engaging with prey groups, and can be found in aquatic and terrestrial 

environments. Most of such interactions take place for foraging purposes. Natural examples of 

Adversarial Swarms include groups of omnivorous Chimpanzees hunting groups of Red Colobus 

Monkeys[27] and groups of predator Lions hunting herds of Zebras[28].In the aquatic 

environment, a multispecies association of Dolphins with Seals and Dogfish for feeding schools 

of small fish[29], groups of Killer Whales, and a large number of Herring, where the former 

would force the latter to dive up by almost 150 meters[30], which would enable more effective 

foraging.  

Historically, the Adversarial Swarm phenomena have been modeled as a predator-prey 

problem, explored by multiple researchers, including ecologists, physicists, statisticians, and 

mathematicians. These models can broadly be classified into three types: kinematic, lattice-
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based, and dynamical models. In addition to the computational models, few experimental studies 

have also been conducted in the recent past. In kinematic models, the interactions between agents 

are typically modeled as velocity terms. Angelani [31]investigated the collective predation in a 

simple agent-based model capable of reproducing animal movement patterns where the 

individual agents were modeled based on Vicsek's self-propelled[10] agents. Lin[32] used a self-

propelled particle-based model to study the predation of bats on prey. In the lattice-based models, 

the computation domain is divided into uniform 2D grids or lattices, which have 'states' 

associated with them, e.g., empty or filled. Notable lattice-based models include Kamimura et 

al.[33], where group chase and escape in a swarm modeled, and the study concluded the 

formation of highly self-organized spatial structures. Wang et al. [34]extended the predator-prey 

problem by adding a third species and considered the effects of stochastic vision; the study 

concluded a direct relationship between the predator's vision and the prey's extinction rate. Other 

notable works on swarms to swarm interaction includes Gaertner et al.[35], where an agent-based 

model based on the MASON library[36] was used to model the engagement between two groups 

of UAVs in 3D space. Strickland[37] studied swarm engagement during live experiments with 

two swarms of UAVs based on different pursuit and evasion strategies. 

Dynamical swarm models are explicitly based on Newton's second law of motion, which 

offers accurate insights into the highly complex emergent behavior between the two swarms. 

Zhdankin et al. [38] studied the dynamics of a swarming predator-prey model, where each 

group's swarming was based on long-and short-range forces, and a non-conservative force was 

used to model the interaction term between the swarms. The study concluded the presence of 

Chaos, quasi-periodic, periodic behavior, and the existence of singularities. Kolon et al.[39] 

investigated the collision of two swarms made up of homogenous agents by considering the effect 
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of delay in communication between various agents; the study demonstrated mutual swarm 

capturing during the interaction, ultimately leading to the milling[18] state of motion. 

Gupta et al.[105] developed a physics-based dynamical Adversarial Swarm model with 

well-defined intra-swarm and inter-swarm forces. The model consists of two distinct interacting 

swarms: The Attackers and the Defenders, which have conflicting objectives in unbounded 2D 

Euclidean Space. The Defenders protect the óGoalô a point of interest in unbounded 2D Euclidian 

space. In contrast, the Attacker's main objective is to intercept the Goal while continually evading 

the Defenders. The Defenders' swarms protect the Goal by swarming around it and blocking any 

Attackers agent trying to reach the Goal. If an Attacker and Defender agents are very close to 

each other, if the distance between them is less than a predefined criterion, they were assumed 

to have collided and were consequently arrested for further participation. The arrested agents 

were inactive for the remainder of the simulation. The simulation was assumed to have a binary 

outcome or a final state, wherein either the Attacker or the Defenders emerged as the dominant 

swarm. The Attacker swarm was considered dominant if an agent in the swarm successfully 

intercepted the Goal during the simulation. If there were no remaining agents in the Defender 

swarm at any point in the simulation, then the Attackers were considered dominant. If the 

Defenders successfully defended the Goal before the end of the simulation or if no Attackers 

were left in the simulation, the Defenders were considered as the dominant swarm. If at any time 

during a simulation, no agents were left in either of the swarms (i,e the agents compromise each 

other off in the engagement), the Defenders were considered dominant in the simulation as the 

Goal was successfully protected from the predation of the Attacker swarm. The scenarios 

mentioned above formed the basis of óSimulation Ending Criteriaô presented in [105]. The non-

linear time-series data obtained from the simulations performed in[105] were studied using 
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various tools that included time-series plots, recurrence plots, attractor plots, and the Largest 

Lyapunov Exponent (LLE). The system was strongly investigated for the presence of Chaos. As 

a vital parameter of the system, the number of Attackers and the Defender agents making up each 

swarm is varied to study the simulationôs final state. The Largest Lyapunov Exponent for each 

case is also evaluated to probe the presence of Chaos. The degree of determinism in the data or 

the complexity of the system was found by assessing the Multiscale Entropy of the non-linear 

time series data. 

Traditional Artificial Neural Networks (ANNs) have been traditionally limited in 

predicting non-linear transient times series data, which are highly non-stationary and non-cyclic 

in nature. ANNs have been traditionally combined with other techniques such as NARMAX[41] 

for predicting highly non-linear chaotic dynamics such as the Lorentz system[42], Sunspot times 

series[43], and downhole pressure for a gas-lift oil well [44]. Elman et al.[45] introduced the idea 

of Recurrent Neural Networks, which were proven to be suitable for forecasting highly non-

linear time-series data obtained from a dynamic system such as the Lorentz system[46]. Training 

a conventional Recurrent Neural Network (RNN) is a complicated process. The backpropagation 

through time (BPTT) method has been partially successful in training RNNs [47, 48]. Modified 

RNNs such as Long Short Term Memory (LSTM) have been successful in predicting high 

dimensional spatiotemporal systems in the short term[49], custom architectures such as Deep 

Neural Network(DNN) with convolutional LSTM[50] have also been successful. Oher state-of-

the-art RNN architectures include Gated Recurrent Units (GRU-D), which has also successfully 

predicted multivariate time-series with missing values by taking two representations of the 

missing patter, namely making and time interval. Random Recurrent Neural Network (rRNN)  

has also predicted the periodic non-linear Mackey Glass system[51]. One of the primary 
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limitations with conventional RNN as indicated by Demiris [48] is the non-convergence in the 

training process due to existence of bifurcations. Slow convergence and high computational costs 

of RNNs severely limit its engineering applications. Vanishing gradient problem[52] which 

severely limits the ability of a RNN to learn long data sequences.  

An alternative to conventional gradient descent methods applied to RNNS was 

independently proposed by Jager and Hass[53] as the Echo State Network(ESN) and by 

Maas[54] as the Liquid State Machine(LSM) in which only the synaptic connections from the 

RNN to output neurons were trained by learning. The idea of ESNs can be traced back to 

Neuroscience, Dominey et al.[55] presented a learning algorithm about sequence processing in 

mammalian brains, e.g., speech recognition in the human brain[55, 56], was the precursor of the 

actual algorithm of ESNs. ESNs and LSMs were unified into a common research topic known as 

the óReservoir Computingô (RC) [57, 58]. In an ESN, the main task is to construct an RNN with 

randomly generated weights. The randomly constructed complex non-linear transformation of 

temporal data can be extracted from the output layer using simple techniques such as linear 

regression[59]. A great deal of art is needed to implement an ESN successfully, including the 

effective turning of many hyperparameters. Since the first decade of the 2000s, RC-ESN has 

been successfully implemented in a multitude of domains, including speech recognition[60], 

robot control[61, 62], forecasting financial markets[63], natural language processing[106], Oil 

and natural gas sector such as pressure estimation in gas-lift oil wells[68], detrending of non-

stationary fractal timeseries[69] and finally dynamical systems [53] such as the Mackey Glass 

system[51]. Recent research also reveals that hardware-based Reservoir computers are also 

possible based on FPGA arrays[70] and carbon nano tubes[71]. These computers can be more 

effective than traditional software and may be suited for óedge computingô[70] in contrary to the 
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current popular cloud computing trend. 

The current state of the art reveals that ESNs have been very successful in predicting 

chaotic dynamic systems. ESNs in the contemporary literature have been found to use 3 

configurations while predicting chaotic behaviors, namely, observer mode (non-autonomous or 

predictive mode), where model free prediction is achieved by utilizing limited state variables 

[75], the generative (or autonomous) mode in which during the prediction the output of a previous 

time-step is fed as the input in the Reservoir [76-78] and finally custom ensemble methods where 

ESNs are used in conjunction with knowledge-based models[79]. The authors of the previously 

mentioned works successfully verified and validated these techniques in the simple Lorentz 

system[76], Lorentz-96 system[80], Kuramoto-Sivashinsky (KS) system[75, 78], the Rössler 

system[75], and dynamics of excitable media such as the Barkley model and the Bueno-Orovio-

Cherry-Fenton model [81]. ESNs have also successfully predicted large-scale dynamical systems 

such as Large Eddy simulation of an incompressible turbulent round jet by implementing 

massively large scale parallel reservoirs[89]. Hardware-based reservoir computers have also 

successfully predicted dynamical systems[70], such as the Mackey-Glass system. 

Krishnagopal[82] studied the effectiveness of a reservoir computer to separate chaotic signals 

and concluded that their results were better than the Wiener filter obtained from the same training 

data. 

Several studies have also been conducted to have a holistic understanding of a Reservoir 

computerôs inherent dynamics, which would enable its effective use while predicting dynamic 

systems. Carroll[83] used an RC-ESN at the óEdge of Chaosô[84, 85] region to perform 

predictions and concluded that it does not necessarily improve the performance. Carroll [86]also 

conducted studies on the dimension of Reservoir computers and concluded the increase of 
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fraction dimension occurs inside the Reservoir with the increase of its dimension, which may 

adversely affect the performance of Reservoir Computer, Carroll[87] also conducted studies on 

the network structure of the RC-ESN. Zhang[88]conducted studies in the sensory phase 

coherence of two parallel reservoirs and concluded that short-term prediction is possible, but 

parallel reservoirs are limited in sensing the collective dynamics of a coupled chaotic dynamic 

of the entire system in the long run. 

In the current work, Echo State Networks (ESN) code available from an open-source 

GitHub repository NeuronalX[107] and open-source python library ReservoirPy[108] was 

modified extensively to accommodate the prediction of the group dynamics of the interacting 

Adversarial Swarms by implementing two ESN configurations. The first configuration consisted 

of a high dimensional ESN used to predict the agent level dynamics of both the Attackers and 

Defenders. The second configuration comprised two parallel reservoirs, each individually 

assigned to the Attackers swarm and the Defenders swarm, respectively. These configurations 

worked in the generative (or data-driven) mode of operation. The following are the main 

intellectual contributions of this paper: 

¶ Use of  ESN in two configurations to predict the dynamics of an agent-based highly non-

linear Adversarial Swarm System. 

¶ The two Configs are hybrid in nature as simulation end criteria, goal beach criteria, and 

agent compromise criteria are forces upon the ESN. 

¶ In the first Config, a single high dimensional hybrid ESN was used for predicting the 

dynamics of the Adversarial Swarm System 

¶ In the second Config, a novel parallel hybrid ESN was used where independent ESNs 

were used to predict the dynamics of Adversarial Swarms. 
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This paper is organized as follows- section 3.3 discusses the methods and formulations, 

which contains the Adversarial Swarm model formulations and the formulations for various 

proposed ESN configurations. Section 3.4 includes the verification and validation of the ESN. 

Section 3.5 covers the results and discussion, followed by the conclusion in section 3.6.  

3.3 Methods and Formulations 

In this section, the detailed formulations of the Adversarial Swarm model can be found 

along with an in-depth approach for solving the same to obtain the simulated data. A precise 

formulation of a base ESN model is also presented, followed by the formulations of the two ESN 

configurations.  

3.3.1 Adversarial Swarm model 

A physics-based agent-based model is developed to study the dynamics of two interacting 

Adversarial Swarms: The Attacker Swarm and the Defender Swarm (hence, referred to as 

óAttackersô and óDefendersô respectively). The agents have conflicting objectives; the Defenders 

protect a point of interest in unbounded 2D Euclidean space by swarming around the Goal along 

a sphere of influence. In contrast, the Attackersô main task is to intercept the Goal while 

constantly trying to evade the Defenders. They actively chase the former in a perimeter around 

the Goal or a sphere of influence. The individual swarms in the swarm system are modeled based 

on a Lagrangian-based approach having primarily two types of forces- óinterô and óintraô swarm 

forces; the inter-forces are used to model the interaction between the agents of the Adversarial 

Swarms, respectively. The intra-forces are used to model the forces between members of the 

same swarm. Each swarm can be generalized as a collection of N agents in a 2-Dimensional 

space with position and velocity vectors. The governing equation describing the dynamics of the 

two interacting swarms- the Attackers and the Defenders are derived based on Newtonôs second 
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law of motion and are given by the following equations[23]: 

 ὢᴆȟ ὠᴆȟ
ȟ
В •ɳȟ В ᶯὯ ὶ ᶯ Ὧ ὶ ‌

‍ȿὠᴆȟȿὠᴆȟ  (3.1) 

 ὢᴆȟ ὠᴆȟ (3.2) 

 ὢᴆȟ ὠᴆȟ
ȟ
В •ɳȟ В ᶯ Ὧ ὶ ᶯ• ‌

‍ȿὠᴆȟȿὠᴆȟ  (3.3) 

 ὢᴆȟ ὠᴆȟ (3.4) 

Eqns. (3.1-3.4) are the principal equations for the Adversarial Swarm model that is 

subject to given initial conditions ὠᴆȟὸ πȟὢȟὸ πȟὠᴆȟὸ πȟὢȟὸ π of individual 

agents in the respective swarms are known. Eqs. (3.1)-(3.4) are numerically integrated using a 

customized fixed time-step 4th order Runge-Kutta explicit solver [69]. 

 

Figure 3.1: Illustration of the domain for Adversarial Swarm Simulation. 

 

A total of 22 cases were studied for an ascending number of Attackers and descending 

number of Defender agents, starting with a population of 5 Attackers and 100 Defenders and 

ending with 100 Attackers agents and 5 Defenders agents. A Monte Carlo analysis was conducted 
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for initial randomized conditions to study the dynamics statistically for each case, respectively. 

The simulations were intensely investigated for the presence of Chaos by evaluating the Largest 

Lyapunov Exponent (LLE) of the center of mass time-series of each swarm, respectively, using 

phase space reconstruction[70] and Wolfôs algorithm[71]. 

Table 3.1: Case Matrix for Adversarial Swarm Simulation 

 

 

 

 

 

 

 

 

 

 

 

 

Transient Chaos [72] was also observed for some initial cases. The overall source of 

Chaos in the system for all the cases studied was observed to be induced by the passively 

constrained chaotic motion of the Defender agents around the Goal. Multiple local equilibrium 

points existed for the Defenders in all the cases and some instances for the Attackers, indicating 

complex dynamics. LLEs for all the trials in each case revealed chaotic and non-chaotic 

solutions, with most Defenders exhibiting chaotic behavior. 

Overall, the results of the LLE indicated that both the swarm exists in the óEdge of chaos,ô 

displaying complex dynamical behavior. The final system state studied for all the cases indicated 

Case NA ND NA/ND Max Sim Time 

1 5 100 0.05 100 

2 7 97 0.07 100 

3 10 95 0.10 100 

4 15 90 0.16 100 

5 20 85 0.23 100 

6 25 80 0.31 100 

7 30 75 0.4 100 

8 35 70 0.5 100 

9 40 65 0.61 100 

10 45 60 0.75 100 

11 50 55 0.90 100 

12 50 50 1 100 

13 55 50 1.1 100 

14 60 45 1.33 100 

15 65 40 1.62 100 

16 70 35 2 100 

17 75 30 2.5 100 

18 80 25 3.2 100 

19 85 20 4.25 100 

20 90 15 6 100 

21 95 10 9.5 100 

22 100 5 20 100 
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binary final states for some cases in Table.3.1. Multiscale Entropy(MSE)[73, 74] was also 

evaluated from the center of mass time-series to study the complexity of the interacting swarms. 

The MSE results (Fig. 3.2) revealed a greater degree of randomness for the Defenders compared 

to Attackers due to the nature of the former's role in the simulation. Overall, the maximum value 

of MSE obtained was ~1.40 for both the Attackers and Defenders combined. The average MSE 

for the Attackers and Defenders is 1.04 and 1.25, respectively when calculated over time scales 

from 1 to 20. As a result of the medium degree of randomness of the non-linear center of mass 

time-series for both classes of agents, the prediction of the time-series data was plausible.   

 
 

Figure 3.2: The ratio of Multiscale Entropy calculated at scale 20 and scale for the center of 

mass time series for Attacker and Defender swarm, respectively 
 

 

3.2.2 Echo State Networks 
 

In a general Echo State Network (ESN) shown in Fig.3.2, an input vector (training data) 

u(t) with K units (or nodes) is fed into a dynamic óReservoirô with N units (or nodes). The 
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Reservoir is then coupled to an output layer y(t) with L units(or nodes)[53]. It is assumed that 

the Reservoir receives an input at discrete time t and is combined with the reservoir state to 

produce its output ὸ ‬ὸ.  

 
Figure 3.3: Training and Testing of an Echo State Network. 

 

Echo State Networks typically use an RNN with leaky-integrated discrete-time continuous 

value units[75]. The equations of update used in this study are obtained from[59, 76] and are 

given by the following equations: 

 ὼὲ ÔÁÎÈὡ ρȠόὲ ὡὼὲ ρ  (3.5) 

 ὼὲ ρ ‌ὼὲ ρ ‌ὼὲ (3.6) 

Where ὼὲᶰᴙ  represents neuron activations of the Reservoir and ὼὲᶰᴙὔὢ is its 

update at every time step n. The tanh() function is used as the sigmoid wrapper for the neurons. 

‌ᶰ πȟρ is the leaking rate, [;] represents a vertical vector (or matrix) concatenation ὡὭὲᶰ

ᴙὔὢ ρὔὟ  and ὡὔὢ ὔὢis the input weight matrix and recurrent weight matrix, respectively[76]. 

Once the Reservoir is trained, the output weight matrix is generated using linear regression. The 

linear readout layer is defined as, 

 ώὲ ὡ ρȠόὲȠὼὲ  (3.7) 

Where ώὲᶰᴙ  represents the network output ὡέόὸᶰᴙὔώ ρ ὔό ὔὢ  is the output 

weight matrix, and [;] represents a vertical vector concatenation. The network output weight 
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matrix is learned by comparing the network output y(n) with the target output ytarget(n). This task 

is achieved by minimizing the Root Mean Square Error (RMSE) between the network output and 

the target output[76, 77]. 

 Ὁώȟώ В В ώὲ ώ ὲ  (3.8) 

In Eqn. (3.10), N represents the total dimension of the output matrix. The operation of the 

ESN, as defined by[36], can be briefly summarized by the following steps: 

I. Generation of a random reservoir with a given input weight matrix ὡὭὲ, recurrent 

weight matrix W, and a given leaking rate Ŭ. 

II.  The training input u(n) drives the network, and reservoir activation units x(n) are 

collected. 

III.  A linear readout layer obtains the network output. The output weights Wout are 

computed by minimizing the error between the network output ώὲ and the target 

output ώὸÁÒÇὩὸὲ. 

IV.  Finally, compute output in the prediction phase using the trained network on the 

recycled data (i, e, the data obtained in the previous time-step) in case of generative 

mode or a limited component time-series in predictive mode. 

To produce a highly accurate network capable of predicting the output data, the 

hyperparameters of the RC-ESN viz, spectral radius scaling factor, leaking rate, probability of 

non-zero connections, and regularization coefficients must be tuned. This task was achieved by 

performing a comprehensive uniform grid search essential to producing a well-trained network 

capable of predicting the highly transient dynamical behavior of the Adversarial Swarm system. 

The readouts from the ESN in Eqn. (3.7) can be rewritten using matrix notation as: 

 ὣ ὡ ὢ (3.9) 
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Where ὣᶰᴙ are isώὲ and ὢᶰᴙ  are all ρȠόὲȠὼὲ  produced by 

presenting the Reservoir with όὲ , both collected into respective matrices by concatenating the 

column-vectors horizontally over the training period n=1,éé, T. For notational simplicity, X 

is used instead of ρȠ ὟȠ ὢ 

The optimized weights ὡέόὸ minimize the RMSE between ώὲ and ώὸÁÒÇὩὸὲ are obtained 

by solving the following set of linear equations, which are overdetermined in nature.  

 ὣ ὡ ὢ (3.10) 

Where ὣὸÁÒÇὩὸᶰᴙὔώ Ὕa stable solution to Eqn. (10) is obtained by Ridge Regression, also 

known as Linear Regression[78] with Tikhonov Regularization. 

 ὡ ὣ ὢ ὢὢ ‍Ὅ  (3.11) 

The output weights ὡέόὸ in equation (11) are found out by minimizing the RMSE in Eqn. 

(8) by the following equation: 

 ὡ ÁÒÇÍÉÎВ В ώὲ ώ ὲ ‍ȿȿὡ ȿȿ  (3.12) 

Where ύὭ
έόὸ is the ith row of ὡέόὸ and ||.|| stands for the Euclidian norm. The above 

equation's objective function includes a regularization term ‍ȿȿύ ȿȿ penalizing large sizes 

ὡέόὸ to the square error between the predicted data ώὲ and the target dataώὸÁÒÇὩὸὲ . The 

regularization term aims to bring about a compromise between training errors and output 

weights.  
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3.2.3 Echo State Networks (ESN): Configuration 1 

 

Figure 3.4: Training and Testing of ESN Config#1. 

 

In this configuration, a single high-dimensional reservoir will be used to predict the 

dynamics of the individual agent (Fig. 3.3). The spatial time-series data of the position vectors 

obtained from the Attackers and the Defenders from [79] will form the basis of the training and 

the testing set. The position vectors for all the agents of the Attacker and the Defender swarm, 

respectively, are denoted by όᴂὃὲand όᴂὈὲ. The position vectors of the agents of both the 

swarm are further concatenated and presented as a single input to the Reservoir by means of the 

vector ό ὲ. This vector is essentially the position vector for all the agents taken together as one 

high-dimensional concatenated vector. During the training phase, the data is first passed through 

with an external module called the óDiscriminator,ô which preprocesses the training data for input 

into the ESN. The preprocessor's main aim is to modify the position vector data for compromised 

agents to maintain uniformity in the dimension of the data input to the ESN. In the prediction 
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phase, the preceding time step is used to predict every successive time step. In the prediction 

phase, the óDiscriminatorô is used to enforce the simulation end criteria as presented in [79] to 

serve three principal purposes,-first to stop the prediction in case the outcome of the simulation 

is determined (i,e to declare whether the Attackers or the Defenders emerge as the dominant 

party); second to post-process the predicted output by implementing the agent collision criteria 

in comparing the distances between all Attacker and Defender agents respectively to the agent 

compromise criteria and third, if any agent collides, post-process the predicted data further for 

input into the RC-ESN for the prediction of the subsequent time-step as it is operating in the 

generative mode.  

3.2.4  Echo State Networks (ESN): Configuration 2 

In the second configuration, two RC-ESNs work in parallel, wherein each is responsible for 

handling the Attackers and Defenders swarm data, respectively (Fig. 3.4). In both these cases, 

the ESN will be coupled with an external óDiscriminatorô that will play the same role as that first 

configuration, as discussed in the preceding paragraph. The input to each parallel Reservoir is 

the same όᴂὲ όᴂὲȡόᴂὲ . In contrast, the output is only trained against ώ
ὃ
ὸÁÒÇὩὸὲ and 

ώ
Ὀ
ὸÁÒÇὩὸὲ which is the concatenation of position vector of all the Attacker and the Defender 

agents, respectively. The target data is obtained from the Discriminator (See Fig. 3.4,ώ
ὃ
ὖὲ & 

ώ
Ὀ
ὖὲ)  as it is a part of the training data; the Discriminator would also ensure that the target 

data is also preprocessed. The common input ensures that the respective ESNs can learn the 

interaction of the Adversarial Swarms while predicting the dynamics of each swarm during the 

prediction phase. The ESN in this configuration will be operated in generative mode (Fig.4 with 

feedback from the previous time-step). The LLE of the respective Attacker and Defender swarm 

were calculated from the reservoir of the ESN, which was essentially an Nth dimensional discrete-
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time dynamical system. The equations for the evolution of the tangent map of Eqn.5 and a set of 

n mutually orthogonal tangent vectors were evaluated. The LLE was computed from the among 

n Lyapunov exponents of the dynamical reservoir of ESN in the testing phase, as shown in Fig.3 

based on QR decomposition. The details of this method can be found in Verstraeten[40], and 

Pathak[53]; The LLE of the predicted data in the ESN will be compared to that obtained from 

the simulation in[79] employing attractor phase space reconstruction[70] and Wolfôs 

algorithm[71].  

 

Figure 3.5. Parallel ESN architecture (configuration #2). 
 

3.4 Verification and validation of ESN 

   The Echo State Network was verified and validated by training the classical Lorentz time 

series[80], a benchmark example of a chaotic time-series. The ESN is trained on the data obtained 

by solving the Lorentz system„ ρπȟ” ρππȟ‍ ψȾσ for initial conditions ὼ ςȢφυȟώ

ςȢπȟᾀ ςπ from 0 to 125 using a fixed time-step ode45solver. A time-step of 0.0001 was 

considered. The Lorentz time-series was used to train an ESN from time 0 to 100, and the system 

was predicted from 100 to 125. The prediction is made in the so-called generative mode of 

operation, where the predicted data from the previous time step was used to drive the ESN to get 
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the prediction in the subsequent time-step, as shown in Figure 4. A comprehensive 

hyperparameter search of the size of the Reservoir, leak rate and probability of non-zero 

connections, and the regularization coefficient was conducted to optimize the ESN on the training 

data only. 

 

Figure 3.6. Verification and Validation of ESN. 

 



85 

 

The best Normalized Mean Square Error (MSE) of the prediction is 0.1187. The 

hyperparameters of the ESN used for predicting the Lorentz time series are reservoir nodes 750, 

leak rate 0.1, probability of non-zero connections 0.1, and regularization coefficient 1e-05. It is 

observed that the ESN was able to generate correct predictions initially in the short term. After 

the initial portion of the graph, as indicated in Fig. 6, the prediction deviates as the error grows 

exponentially as the output at every time-step is obtained by feeding in the output at the preceding 

time-stepwise in the generative mode of operation. Nonetheless, the long-term dynamics of the 

system resemble that of the original system. These results are in affirmation of the results found 

in the literature [53]. The ESN code developed for the current work can be thus considered to be 

verified and validated. The ESNôs ability to qualitatively predict a dynamical system will be 

exploited in the later sections of this paper.  

3.5 Results and Discussion 

A total of 22 cases of the Adversarial Swarm was studied in [23] as presented in Section 

3.3 of this paper. Among these 22 cases, 3 primary cases were chosen to predict using the Echo 

State Network. These 5 cases were deemed enough to prove the robustness and the reliability of 

the ESN to achieve a hybrid prediction for the Adversarial Swarm System. A total of 2 ESN 

configurations were considered, as discussed before. The predictions from each configuration 

are discussed comparatively for each case respectively in the preceding subsections.  

 Three primary cases were chosen among the 22 cases of the numerical experiment are Case 

1 with 5 Attacker and 100 Defenders, Case 12 with 50 Attackers and 50 Defenders, and Case 22 

with 5 Defenders and 100 Attackers. The cases simulate three critical situations that may arise 

in the interacting Adversarial Swarms based on their population: a vast number of Defenders and 

relatively few Attackers, Attacker and Defender numbers comprising respective swarms are 
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equal Attacker swarm vastly outnumber the Defender swarm. These cases will be used to 

establish the robustness and the reliability of the hybrid ESN model discussed before. 

 A comprehensive hyperparameter search was conducted for each of the cases in both 

configuration 1 and 2, respectively, and the best combination of hyperparameters was found out 

by minimizing the NRMSE in each case, respectively. 44% of the available data was used to 

train the ESN, and the rest, 56%, was used as the testing set by the ESN in the generative or 

autonomous mode of operation; this ratio was empirically determined as the best ratio over 

repeated numerical experiments. The results for every case in both the configurations are 

depicted in Tables 3.1 and 3.2, which are explored on a case-by-case basis in the subsequent 

subsections. 

In Config 1, a single high dimensional hybrid ESN was used to achieve the prediction for the 

Adversarial Swarm System as a whole. The spatial time-series data for individual Attacker and 

Defender agents of the Attacker and Defender swarm was used to train the network. During the 

testing phase, the outputs of all the agents were also considered individually. The center of mass 

time-series was generated by taking the mean of the 2D spatial coordinates of active agents at 

every time-step for the Attackers and the Defenders, respectively. The ESN was trained on the 

first 

44% of the available time-series data of every individual agent in both swarms respectively; 

the trained ESN is subsequently used for prediction by using the prediction at every time-step as 

the driving signal to predict the subsequent time-step, the Discriminator is used to post-process 

the output prediction at every time-step before it is then fed back into ESN for the prediction at 

the next time-step. The purpose of the discriminator is to enforce the agent 
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collision and simulation end criteria on the prediction at every time-step, respectively, as 

outlined in Gupta et al[23]. The center of mass time-series of the prediction is calculated by 

averaging the 2D spatial coordinates of active agents at every time-step. The center of mass time-

series prediction results can be found in Fig.3.7, the network is trained until the left of the vertical 

line, and the prediction starts from the right of the vertical line; this convention is followed for 

other time-series prediction plots in this paper.  

 

 

Table 3.2: Configuration 1 ESN hyperparameters and NRMSE 

                                                      Case# 

  1 12a 12b 22 

Outcome Defenders Win Defenders Win Attackers Win Attackers Win 

Simulation End 

Time 100 11.48 11.27 0.604 

Prediction End 

Time 100 11.48 5.9 0.604 

Number of 

Reservoir Nodes 310 100 310 100 

Probability of 

non-zero 

connections 0.05 0.1 0.1 0.05 

Leak Rate 0.05 0.1 0.1 0.1 

Regularization 

Coefficient 1.00E-05 1.00E-05 1.00E-05 1.00E-04 

NRMSE 0.11 0.18 0.08 0.79 

Table 3.3: Configuration 2 ESN hyperparameters and NRMSE 

                                                      Case# 

  1 12a 12b 22 

Outcome Defenders Win Defenders Win Attackers Win Attackers Win 

Simulation End 

Time 100 11.48 11.27 0.604 

Prediction End 

Time 73 11.48 8.1 0.4905 

Number of 

Reservoir Nodes 310 100 310 100 

Probability of 

non-zero 

connections 0.05 0.1 0.1 0.05 

Leak Rate 0.05 0.1 0.1 0.1 

Regularization 

Coefficient 1.00E-05 1.00E-05 1.00E-05 1.00E-04 

NRMSE 0.05 0.23 1.7 0.11 
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Figure 3.7. Hybrid ESN Config 1 prediction for case1  

 

Initial very short-term prediction indicates a good match, thereafter the error grew 

exponentially, as the prediction deviates considerably from the original data. However, it was 

observed that the prediction is qualitatively similar to the original data. In case the number of 

agents of the Defender swarm is 100 whereas the number of agents in the Attacker swarm is 5, 

thus case 1 is a trivial case where the outcome of the interaction can easily be guessed; as 

indicated in Table 3.3, the simulation ending time for case 1 is 100, the same end condition was 

met exactly by the ESN in Config 1 in Fig. 3.7 (right). The prediction indicated that the ESN was 

able to capture the dynamics of the system to a large extent. The NRMSE obtained was 0.11 

(Table 3.1). The same prediction task was also conducted by Config 2. 
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Figure 3.8. Hybrid ESN Config 2 prediction for case1 
  

The case 1 data was also used to train the hybrid ESN in Config 2, the training and the 

prediction was obtained in the same way as that of Config 1, the results of the predicted center 

of mass time-series were depicted in Fig. 3.8, it was observed that the prediction is better 

compared to Config 1. In Config 1, a single high dimensional ESN was used to achieve the 

prediction task; the hybrid ESN in Config 1 could not effectively capture the dynamics of the 

interacting adversarial system as these two systems are essentially independent to each other, and 

their interaction is external in nature. In Config 2, however, two ESNs assigned to each agent are 

trained with a common input that is the Attacker and Defender data taken together and are trained 

against the Attackers and Defenders separately. This process is conducted in parallel as depicted 

in Fig. 5 using mpi4py across two parallel processes, and a third process is assigned to 

óDiscriminatorô, which preprocessed the input during training and post-processes(enforcing 

simulation end criteria) the output at every time step to create the driving signal for predicting 

the subsequent time-step.  
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Figure 3.9.  Visualization in 2D space: original and predicted center of mass time-series in 

Config 1. 

 

Figure 3.10.  Visualization in 2D space: original and predicted center of mass time-series in 

Config 2 
 

The interaction between the two swarms can be visualized in 2D space by plotting the 2D 

spatial coordinates of the center of mass time-series and evolving them over time; Fig. 9 and 10 

represent the 2D phase space visualization of the Attackers and the Defenders in Config 1 and 

Config 2 respectively. It can be observed that the attractors in the original and the predicted plots 

are similar to each other for both Config 1 and Config 2.  However, for the reasons mentioned in 

the preceding paragraph, it can be concluded from Fig 3.9 and 3.10 that the hybrid ESN in Config 

2 was effectively able to capture the dynamics of the interacting swarm system when compared 
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to the ESN in Config 1, especially this is true for the Attackers, and it can be easily observed that 

for case 1 the Attackers seemed to clutter near the Goal for Config 1 when compared to the semi-

periodic motion of the Attackers observed for Config 2. 

 The hybrid ESN in Config 1 and Config 2 was similarly used to predict the remaining 12 

and 22. In case 12, the number of Attacker and Defender agents are equal to 50 each; in this case, 

however, there can be two outcomes, either the Defenders or the Attackers emerge as the 

dominant swarm. The binary outcomes in case 12 was found out by conducting a Monte Carlo 

Simulation of case 12 in [23] Gupta et al. For the current study, these two distinct outcomes were 

considered distinctly and were labeled as 12a (where Defenders emerge dominant) and 12b 

(where Attackers arise dominant), these two cases are investigated by the hybrid ESN setup in 

config1 and config2 respectively.  

 The hybrid ESN setup was trained in Config 1 mode using the same procedure as described 

in the preceding subsections for case 12; the prediction of the center of mass time series was 

depicted below. In case 12, however, binary final states existed, which means either the Attackers 

or the Defenders emerged as the dominant swarm in the 1000 trial Monte Carlo Simulation 

conducted in Gupta et al. [23]. Two distinct trials where the Defenders and Attackers occurred 

separately as the dominant swarm was considered two test cases (12a and 12b), respectively. 

This approach was considered as it is imperative that the ESN is able to predict the final state of 

the system correctly. The hybrid ESN in Config 1 and 2 was used to train the data for case 12a 

(Defenders won) in Table 1. The ESN in both the configurations was correctly able to predict the 

final outcome of the simulation; that is, the Defenders emerged as the dominant swarm both in 

the final simulation and the prediction as all the Defender swarm was able to compromise the 

agents of the Attacker swarm ultimately. The NRMSE of this prediction in Fig 11 was 0.18. 
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Figure 3.11.  Hybrid ESN Config 1 prediction for case12a (Defenders emerged dominant) 

 

Figure 3.12.  Hybrid ESN Config 2 prediction for case12a (Defenders emerged dominant) 
 

The data in case 12a was also used to train the hybrid ESN setup in Config 2 mode. The results 

of the center of mass time-series predictions are depicted in Fig.3 .12; the ESN was correctly 

able to predict the final outcome of the simulation; that is, the Defenders emerged as the dominant 

swarm. The NRMSE for Config 2 was 0.23 when compared to 0.18 of Config 1. The prediction 
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plots for Config 2 reveals that the ESN in Config 2 performed moderately when capturing the 

dynamics of the Attackers when compared to the Defenders. Overall, this behavior may be 

attributed to the high degree of randomness in the data for case 12, as the average MSE for the 

Adversarial Swarm system in case 12 (see Fig 3.2) was much higher when compared to the other 

cases.  

 In case 12b, both Config 1 and Config 2 were used for the prediction task using the same 

training and testing prediction as indicated before. The hybrid ESN was correctly able to predict 

the final outcome of the simulation in both configurations. The prediction of the center of mass 

times series for case 12b using Config 1 is depicted in Figure 13; it was also observed that the 

Attacker swarm is able to engage with the Defender swarm and intercept the Goal quite early on 

the prediction. The prediction was discontinued after the Goal was unreasonable to continue the 

prediction thereafter. The original simulation ended at 11.27, where the simulation is called off 

at 5.9; there is a time difference of around 49%. It is clear from Fig. 3.13 that the hybrid ESN in 

Config 1 cannot capture the dynamics of the swarm effectively and s able to predict the final 

state of the system partially.  
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Figure 3.13.  Hybrid ESN Config 1 prediction for case12b (Attackers won) 

 

Figure 3.14.  Hybrid ESN Config 2 prediction for case12b (Attackers won) 
 

However, in the case of Config 2, the hybrid ESN performed much better in capturing the 

dynamics of both the Defenders and the Attackers, respectively (see, Fig.3.14). The simulation 

end time is 8.1 compared to 11.27 for the original simulation, which was much better when 

compared to Config 1. 
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In case 22, the number of agents making up the Attacker swarm was 100, whereas the number 

of agents making up the Defender swarm was just 5; the outcome of such a simulation is trivial 

as the Defenders are heavily outnumbered by the Attackers. In both the Config(s) of the hybrid 

ESN, it was observed that the final outcome is predicted correctly. However, Config 2 indicated 

better performance over Config 1 the NRMSE(s) are 0.11 and 0.79, respectively. The MSE of 

case 22 is lower when compared to the other cases (see, Fig 3.2). Thus ESN in Config 2 was 

observed to be better than Config 1, although there was minimal difference between the total 

predicted time of Config 2 when compared to Config 1.  

 

Figure 3.15.  Hybrid ESN Config 1 prediction for case 22 
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Figure 3.16.  Hybrid ESN Config 2 prediction for case 22 

 

Table 3.4: Lyapunov Exponent comparison 

  Wolf's method ESN 

  A D A D 

Case1 2.00E-04 5.00E-03 -0.013 -0.0015 

Case12 -2.00E-03 1E-02 -0.01 -0.01 

Case22 3.00E-04 4.00E-02 5.00E-02 2.00E-02 

 

Lastly, the Largest Lyapunov Exponent (LLE) to the center of mass time-series was calculated 

for each case respectively using Wolfôs Algorithm[71] and is compared to the LLEs obtained 

from for each of the parallel ESNs used in Config 2 that were assigned to the Attackers and the 

Defenders respectively. The LLE from the ESN is obtained by considering the Reservoir in the 

ESN as a discrete-time Dr dimensional system; the detailed method of LLE evaluation can be 

found in [53] . The LLE obtained from the hybrid ESN in Config 2 only is compared to that of 

the center of mass times series and can be found in Table 3.3; overall, the results seem to be in 

good consideration. The ESN appears to be near the óEdge of Chaosô, which is the same case for 

the majority of the data obtained from the Adversarial Swarm system. 
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3.6 Conclusion 

In the current work, a hybrid ESN was developed in two configurations, namely Config 1 and 

Config 2 to predict the dynamics of an interacting Adversarial Swarm system. The swarm 

consists of two distinct agents, namely the Attackers and the Defenders, who have conflicting 

objectives in 2D space. The Defender's main task was to protect the Goal by swarming around it 

around a perimeter termed as the sphere of influence, and the Attackers are constantly trying to 

intercept the Goal.  An Echo state network was first verified and validated against the classical 

Lorentz system. The results indicated that the ESN was successful in predicting a qualitatively 

similar dynamical behavior. 

Two hybrid ESN prediction methods were developed-Config 1 and Config 2, respectively, 

which were used for predicting Adversarial Swarm dynamics for three distinct cases. These cases 

were made up of a varied number of Attackers and Defenders, respectively. The three distinct 

cases were chosen keeping in mind scenarios of interest that may arise in various engineering 

applications.  

The hybrid ESN in Config 1 consisted of a very high dimensional ESN where both the 

Attacker and Defender agent are taken as common input via the Discriminator during training. 

During testing, the ESN predicted the Spatio-temporal data for every individual agent making up 

the Attacker and the Defender swarm. This output was then fed into the Discriminator, wherein 

agent compromise criteria and goal breach criteria are enforced during the prediction phase. 

 In Config 2, two parallel hybrid ESNs worked in conjunction with a common Discriminator. 

Each ESN was assigned to the Attackers and Defenders, respectively. This configuration was 

developed as the Attacker, and the Defender swarm interaction was extrinsic in nature and was 

modeled by the inter swarm forces as described in the introductory sections. The parallel hybrid 
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ESN had a common input, the Spatio-temporal data for both swarms, to map the interaction of 

the swarms, whereas the output for each swarm was trained against the individual spatio-

temporal data of individual swarms. Thus, the idea was to force the ESN to learn the dynamics 

of individual swarms, including the goal breach criteria, agent compromise criteria, and 

simulation end criteria. 

 The following main conclusions can be drawn from the current work: 

¶ ESNs are overall capable of learning the dynamics of highly nonlinear agent-based 

Adversarial Swarm System 

¶ Among the two configurations developed in this work, Config 2 showed better overall 

performance when compared to Config 1 to achieve the prediction task. 

¶ Config 2 was able to achieve a better prediction as it consisted of two parallel 

independent ESNs, which were successfully able to learn the dynamics of individual 

swarms, which are essentially independent of each other and are only coupled by 

external rules of engagement. 

¶ The LLEs obtained from the ESNs and phase space reconstruction were in good 

agreement with each other, further implying the success of the ESN to map the 

interacting swarm dynamics successfully. 
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CHAPTER 4 

 

EFFECT OF INDIVIDUALITY ON ADVERSARIAL SWARM BEHAVIOUR: A 

HYBRID PARALLEL ECHO STATE NETWORKS APPROACH  

4.1 Abstract 

 

In the current work, a massively parallel Echo State Network was developed to predict 

the dynamics of an Adversarial Swarm system. The Adversarial Swarm system consisted of two 

types of agents-the Attackers and the Defenders who had conflicting objectives in 2D Euclidean 

space. Each instance of ESN in the massively parallel framework was trained n individual spatio-

temporal data of every agent. The large-scale ESN was successfully able to capture the dynamics 

of the interacting adversarial swarm system. The hyperparameters for each ESN were evaluated 

using a uniform grid search. The optimal hyperparameter obtained for every individual agent 

showed considerable variance that indicated that each ESN was qualitatively different from one 

another, which further implied that every agent the Adversarial swarm reacted uniquely when a 

uniform stimulus was applied across them.   

 

4.2 Introduction  
 

Swarms are fundamentally complicated systems with non-linear dynamics that a physics-

based model may accurately represent. Independent, autonomous agents are the constituents of 

a swarm that is widespread in nature from ranging from ant colonies [1], flocks of birds [2], and 

schools of fishes[3]. Swarms form the basis of extensive modern-day engineering applications 

ranging from spacecraft [4], UAVs [5], robots [6], and optimization algorithms[1]. Simulating 

natural swarm behavior for engineering applications is fundamentally problematic since natural 
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systems have intrinsic flexibility and scalability, sometimes impossible to achieve with digital 

computers. 

In nature, there are two forms of swarm interactions: adversarial and symbiotic, in which 

swarms compete or collaborate for resource utilization. Symbiotic swarms found in the animal 

kingdom include multi-species group [7](Bailey et al., 2013)hunting, were in different groups of 

species team up (cooperation) with each for hunting groups of prey. Adversarial swarms are 

abundant in natural environments, such as predators engaging with prey groups, and can be found 

both in aquatic and terrestrial environments. Most of such interactions take place for foraging 

purposes. Natural examples of Adversarial Swarms include groups of omnivorous Chimpanzees 

hunting groups of Red Colobus Monkeys[8] and groups of predator Lions hunting herds of 

Zebras[9].In the aquatic environment, a multi-species association of Dolphins with Seals and 

Dogfish for feeding schools of small fish[10], groups of Killer Whales, and a large number of 

Herring, where the former would force the later to dive up by almost 150 meters[11], which 

would enable more effective foraging.  

Gupta et al.[12], developed a physics-based dynamical Adversarial Swarm model with 

well-defined intra-swarm and inter-swarm forces. In unbounded 2D Euclidean Space, the model 

consists of two separate interacting swarms: the Attackers and the Defenders, who have opposing 

agendas. The Defenders protect the óGoalô a point of interest in unbounded 2D Euclidian space. 

In contrast, the Attacker's main objective is to intercept the Goal while continually evading the 

Defenders. The Defenders' swarms protect the Goal by swarming around it and blocking any 

Attackers agent trying to reach the Goal. If an Attacker and Defender agents are very close to 

each other, if the distance between them is less than a predefined criterion, they were assumed 

to have collided and were consequently arrested for further participation. The arrested agents 
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were inactive for the remainder of the simulation. The simulation was assumed to have a binary 

outcome or a final state, wherein either the Attacker or the Defenders emerged as the dominant 

swarm. The Attacker swarm was considered dominant if an agent in the swarm successfully 

intercepted the Goal during the simulation. If there were no remaining agents in the Defender 

swarm at any point in the simulation, the Attackers were considered dominant. If the Defenders 

successfully defended the Goal before the end of the simulation or if no Attackers were left in 

the simulation, the Defenders were considered as the dominant swarm. If no agents were left in 

either of the swarms (i,e the agents compromise each other off in the engagement), the Defenders 

were considered dominant in the simulation as the Goal was successfully protected from the 

predation of the Attacker swarm. The scenarios mentioned above formed the basis of óSimulation 

Ending Criteriaô presented in[13] . The non-linear time-series data obtained from the simulations 

performed in[13] were studied using various tools that included time-series plots, recurrence 

plots, attractor plots, and the Largest Lyapunov Exponent (LLE). The system was strongly 

investigated for the presence of Chaos. As a vital parameter of the system, the number of 

Attackers and the Defender agents making up each swarm is varied to study the simulationôs 

final state. The Largest Lyapunov Exponent for each case is also evaluated to probe the presence 

of Chaos. The degree of determinism in the data or the complexity of the system was found by 

assessing the Multiscale Entropy of the non-linear time series data. 

The current state of the art reveals that ESNs have been very successful in predicting 

chaotic dynamic systems. ESNs in the contemporary literature have been found to use three 

configurations while predicting chaotic behaviors, namely, observer mode (non-autonomous or 

predictive mode), where model free prediction is achieved by utilizing limited state variables 

[14], the generative (or autonomous) mode in which during the prediction the output of a previous 
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time-step is fed as the input in the Reservoir [15-18] and finally custom ensemble methods where 

ESNs are used in conjunction with knowledge-based models[17]. The authors of the previously 

mentioned works successfully verified and validated these techniques in the simple Lorentz 

system[19] , Lorentz-96 system[20], Kuramoto-Sivashinsky (KS) system[16, 18], the Rössler 

system[18], and dynamics of excitable media such as the Barkley model and the Bueno-Orovio-

Cherry-Fenton model[21]. ESNs have also successfully predicted large-scale dynamical systems 

such as Large Eddy simulation of an incompressible turbulent round jet by implementing 

massively large-scale parallel reservoirs. Hardware-based reservoir computers have also 

successfully predicted dynamical systems[22] , such as the Mackey-Glass system. Krishnagopal 

[23] studied the effectiveness of a reservoir computer to separate chaotic signals and concluded 

that their results were better than the Wiener filter obtained from the same training data. Several 

studies have also been conducted to have a holistic understanding of a Reservoir computerôs 

inherent dynamics, which would enable its effective use while predicting dynamic systems. 

Carroll[24] used an RC-ESN at the óEdge of Chaosô[25, 26] region to perform predictions and 

concluded that it does not necessarily improve the performance. Carroll [27] also conducted 

studies on the dimension of Reservoir computers and concluded the increase of fraction 

dimension occurs inside the Reservoir with the increase of its dimension, which may adversely 

affect the performance of Reservoir Computer, Carroll [28] also conducted studies on the 

network structure of the RC-ESN. Zhang [29] conducted studies in the sensory phase coherence 

of two parallel reservoirs and concluded that short-term prediction is possible, but parallel 

reservoirs are limited in sensing the collective dynamics of a coupled chaotic dynamic of the 

entire system in the long run. Chang [30] used Reservoir Computing to study temperature 

fluctuations in a Rayleigh-Bernard convection problem. Gupta et al,[12] used two parallel hybrid 
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ESNs to predict the group dynamics of Adversarial Swarms[13], where each ESN was assigned 

to Attackers and Defenders, respectively. 

An ESN capable of predicting spatio-temporal systems with high accuracy must have 

perfectly hyperparameters, including spectral radius scaling factor, leaking rate, probability of 

non-zero connections, and regularization coefficients. This task can be achieved by performing 

a uniform or random grid search that is essential to produce a well-trained network capable of 

predicting the highly transient dynamical systems. A large-scale parallel ESN setup was 

developed in the current work wherein individual reservoirs will be assigned to each agent of the 

Attackers and the Defenders, respectively. The respective agents were trained separately, and a 

comprehensive hyperparameter random search was performed. Random grid search was 

preferred over a comprehensive grid search as owing to limitations of computing resources. Also, 

it was found in the literature that the former does not always yield the best possible results [31]. 

 To date, research has focused on applying a single simple rule set to encode the response 

of all agents in each swarm to a specific stimulus. Intuitively, it is known that all organisms (even 

those of the same species) do not react to identical stimuli uniformly. By using a step-by-step 

approach, the variations in individual responses affecting the behavior of a given swarm will be 

explored, in addition to its effect on the interaction between two adversarial swarms. The 

following are the main intellectual contributions of this paper: 

¶ Examine how the dynamics of the two Adversarial Swarms will change when each agent is 

represented as an individual by a unique Echo State Network, trained using data specific to 

a given agent. 

¶ Uniform grid searches to obtain the optimal hyperparameter of each ESN corresponding to 

each agent in the massively parallel ESN framework.  
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¶ Statistical analysis of hyperparameter data for each hybrid ESN assigned to each ESN to 

explore the idea of Individuality in agents. 

This paper is organized as follows- section 4.3 discusses the methods and formulations, 

which contains the Adversarial Swarm model formulations and the massively parallel ESN 

configurations. Section 4.4 includes the verification and validation of the ESN. Section 4.5 

covers the results and discussion, followed by the conclusion in section 4.6. 

4.3.  Formulations 

4.3.1 Adversarial Swarm Model 

A physics-based agent-based model is developed to study the dynamics of two interacting 

Adversarial Swarms: The Attacker Swarm and the Defender Swarm (hence, referred to as 

óAttackersô and óDefendersô respectively). The agents have conflicting objectives; the Defenders 

protect a point of interest in unbounded 2D Euclidean space by swarming around the Goal along 

a sphere of influence. In contrast, the Attackersô main task is to intercept the Goal while 

constantly evading the Defenders. They actively chase the former in a perimeter around the Goal 

or a sphere of influence. The individual swarms in the swarm system are modeled based on a 

Lagrangian-based approach having primarily two types of forces- óinterô and óintraô swarm 

forces; the inter-forces are used to model the interaction between the agents of the Adversarial 

Swarms, respectively. The intra-forces are used to model the forces between members of the 

same swarm. Each swarm can be generalized as a collection of N agents in a 2-Dimensional 

space with position and velocity vectors. The governing equation describing the dynamics of the 

two interacting swarms- the Attackers and the Defenders are derived based on Newtonôs second 

law of motion and are given by the following equations[13]. 
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 ὢᴆȟ ὠᴆȟ
ȟ
В •ɳȟ В ᶯὯ ὶ ᶯ Ὧ ὶ

‌ ‍ȿὠᴆȟȿὠᴆȟ                                                                                                                  (4.1) 

 ὢᴆȟ ὠᴆȟ (4.2) 

 ὢᴆȟ ὠᴆȟ
ȟ
В •ɳȟ В ᶯ Ὧ ὶ ᶯ• ‌

‍ȿὠᴆȟȿὠᴆȟ (4.3) 

 ὢᴆȟ ὠᴆȟ (4.4) 

Eqns. (4.1-4.4) are the principal equations for the Adversarial Swarm model that is 

subject to given initial conditions  of individual agents in 

the respective swarms are known. Eqs. (4.1)-(4.4) are numerically integrated using a customized 

fixed time-step 4th order Runge-Kutta explicit solver[32].  

 

Figure 4.1: Illustration of the domain for Adversarial Swarm Simulation. 
 

Multiscale Entropy(MSE)[33, 34] was also evaluated from the center of mass time-series 

to study the complexity of the interacting swarms. The MSE results (Fig. 4.2) revealed a greater 

degree of randomness for the Defenders compared to Attackers due to the nature of the former's 

, , , ,( 0), ( 0), ( 0), ( 0)A i A i D i D iV t X t V t X t= = = =
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role in the simulation. Overall, the maximum value of MSE obtained was ~1.40 for both the 

Attackers and Defenders combined. The average MSE for the Attackers and Defenders is 1.04 

and 1.25, respectively when calculated over time scales from 1 to 20. As a result of the medium 

degree of randomness of the non-linear center of mass time-series for both classes of agents, the 

prediction of spatio-temporal data was reasonable.  

Table 4.1: Case matrix for Adversarial Swarm simulation 

 

 

 

 

 

 

 

 

 

 

4.3.1: Echo State Networks Preliminaries 

An input vector u(t) with K units was fed into a dynamic 'Reservoir' with N units in a 

generic Echo State Network (ESN). The Reservoir was connected to an output layer y(t)with L 

units. At discrete time t, the Reservoir receives input, which is subsequently coupled with the 

reservoir state to produce output at .In Echo State Networks, an RNN with leaky-integrated 

discrete-time continuous value units is employed. The following are the ESN equations: 

 

Figure 4.2: Training and Testing of a generic Echo State Network. 
 

t t+µ

Case NA ND NA/ND Max Sim Time 

A 2 18 0.11 100 

B 5 15 0.33 100 

C 7 13 0.53 100 

D 10 10 1 100 

E 13 7 1.85 100 

F 15 5 3.0 100 

G 18 2 9.0 100 
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Echo State Networks typically use an RNN with leaky-integrated discrete-time continuous 

value units[35](Lukoġeviļius et al., 2012). The equations of update used in this study are 

obtained from[35] and are given by the following equations: 

 

 ὼὲ ÔÁÎÈὡ ρȠόὲ ὡὼὲ ρ  (4.5) 

 ὼὲ ρ ‌ὼὲ ρ ‌ὼὲ (4.6) 

Where  represents neuron activations of the Reservoir and  is its 

update at every time step n. The tanh() function is used as the sigmoid wrapper for the neurons. 

 was the leaking rate, [;] represents a vertical vector (or matrix) concatenation 

 and is the input weight matrix and recurrent weight matrix, respectively[35, 

36]. Once the Reservoir is trained, the output weight matrix is generated using linear regression. 

The linear readout layer is defined as, 

 ώὲ ὡ ρȠόὲȠὼὲ  (4.7) 

Where  represents the network output  is the output weight 

matrix, and [;] represents a vertical vector concatenation. The network output weight matrix is 

learned by comparing the network output y(n) with the target output ytarget(n). This task is 

achieved by minimizing the Root Mean Square Error (RMSE) between the network output and 

the target output [35, 37]. 

 Ὁώȟώ В В ώὲ ώ ὲ  (4.8) 

The operation of the ESN, as defined by[38], can be briefly summarized by the following 

steps: 

A. Generation of a random reservoir with a given input weight matrix ὡὭὲ, recurrent 

weight matrix W, and a given leaking rate Ŭ. 

( ) XN
x n Í ( ) XN

x n Í

(0,1]aÍ

(1 )X UN NinW
³ +

Í X XN N
W

³
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y n Í
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Í
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B. The training input u(n) drives the network, and reservoir activation units x(n) are 

collected. 

C. A linear readout layer obtains the network output. The output weights Wout are 

computed by minimizing the error between the network output ώὲ and the target 

output ώὸÁÒÇὩὸὲ. 

D. Finally, compute output in the prediction phase using the trained network on the 

recycled data (i, e, the data obtained in the previous time-step) in case of generative 

mode or a limited component time-series in predictive mode. 

A ESN capable of forecasting with high accuracy can be produced by effectively tuning its 

critical hyperparameters. This task was achieved by performing a comprehensive uniform grid 

search essential to producing a well-trained network capable of predicting the highly transient 

dynamical behavior of the Adversarial Swarm system. The critical hyperparameters of the ESN 

- spectral radius scaling factor, leaking rate, probability of non-zero connections, and 

regularization coefficients were chosen for the grid search. 

The readouts from the ESN in Eqn. (4.8) can be rewritten using matrix notation as: 

 ὣ ὡ ὢ (4.9) 

Where are is  and  are all  produced by presenting 

the Reservoir , both collected into respective matrices by concatenating the column-vectors 

horizontally over the training period n=1,éé, T. For notational simplicity, X is used instead 

of . The optimized weights  minimize the RMSE between  and  are 

obtained by solving the following overdetermined linear equations. 

 ὣ ὡ ὢ (4.10) 

The output weights  in equation (11) are found out by minimizing the RMSE in 

YN T
Y

³
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Eqn. (8) by the following equation: 

 ὡ ÁÒÇÍÉÎВ В ώὲ ώ ὲ ‍ȿȿὡ ȿȿ  (4.11) 

4.3.3: Hybrid Echo State Networks (ESN): Massively Parallel Configuration 

 

Figure 4.3: Massively parallel hybrid ESN setup 

A massively parallel hybrid ESN architecture was operated to operate in the autonomous 

(or generative) mode. The position vector for each individual agent[13] was used to train a 

separate instance of ESN, which ran parallelly using multiple cores using a mpi4py (Message 

Passing Interface) architecture in python[39] . The purpose of the óDiscriminatorô is to preprocess 

the data during the training phase and to post-process the data at the end of every respective time-

step to enforce the simulation ending criteria, check agent compromise criteria, and in case of 

any agent collision post-process, the data further for input into the massively parallel hybrid ESN 

for the prediction of the subsequent time step. 

Each ESN was provided with a standard input consisting of the position vector data for 

all the agents taken together in this massively parallel ESN configuration. In contrast, the target 

data used during the training phase corresponded to that of individual agents. This novel training 
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and testing scheme enabled the ESN to learn the interaction of a particular agent to the agents of 

its own swarm as well as to the agent of its competing counterpart, which is also the case in the 

Adversarial Swarm simulation performed in [13] where all the agents were globally coupled. 

During the prediction (or testing) phase, the predicted data of all the individual agents of the 

swarm in the preceding time step was passed as the driving signal to generate a future prediction. 

The training of the reservoirs used in this setup was carried out independently. 

A comprehensive grid search was performed to tune hyperparameters of the hybrid ESN. 

It was hypothesized that even though the Adversarial system in the authorôs model [13] consisted 

of homogenous agents, each agent would respond differently when a uniform stimulus was 

applied. In the simulation environment, all the agents in the respective swarm were assumed to 

be globally coupled both intrinsically (within the members of the same swarm) and extrinsically 

(within the members of the competing swarm), thus making their reaction to any engagement or 

stimuli nonuniform. It is hypothesized that, in phase 3, the hyperparameters for every respective 

trained ESN would be unique, further strengthening the idea of the Individuality of every 

autonomous agent in a complex adaptive system. A detailed statistical analysis of the 

hyperparameter data obtained from all the independently trained parallel ESNs was carried out 

to investigate the central hypothesis of the final phase of this investigation.  

4.4. Results and Discussion 

4.4.1 Prediction of the Dynamics of Adversarial Swarms  

In the current study, 7 cases were simulated (as described in table 2), and the 

corresponding spatiotemporal data for every individual agent was used to train and test the 

massively parallel echo state network as described in the preceding sections. A comprehensive 

hyperparameter search was conducted for each individual agent. The primary hyperparameters 
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considered for the grid search were ï number of reservoir nodes, leak rate, and the probability of 

non-zero connections; another hyperparameter-the regularization coefficient was dropped for 

this study as it was found out from several numerical experiments that it does not have a 

substantial contribution towards the hybrid ESNôs performance. 

Table 4.2: Prediction outcome of the test cases outlined in Table 4.1 

 

 

The hyperparameter search was achieved by first generating all the possible unique 

combinations of the hyperparameters for all the agents combined. The massively parallel hybrid 

ESN framework was then trained and subsequently used for the prediction task for each 

combination respectively. The hyperparameter combination with the least NRMSE and the least 

percentage error in total time was the best solution. As determined from earlier numerical 

experiments in Gupta et al. (Soham Gupta, 2021), 44% of the available time-series data of every 

individual agent in both swarms respectively were used to train each instance of ESN in a 

massively parallel setup. The center of mass time-series was considered the comparison metric 

as it can demonstrate an overall interaction of the swarm interaction. The NRMSE for each case 

is described in Table 4.2. The following paragraphs discuss the results of each case in detail. 

             In the case of A, the number of Defenders was 18 compared to just 2, making up the 

Attacker swarm. It was observed that the Defenders were easily able to compromise the Attacker 

Case NA ND Average NRMSE % Time Difference Predicted End Actual Simulation End 

A 2 18 0.086 0.0 Defenders Won Defenders Won 

B 5 15 0.017 0.0 Defenders Won Defenders Won 

C 7 13 0.279 0.0 Defenders Won Defenders Won 

D 10 10 0.234 0.0 Defenders Won Defenders Won 

E 13 7 0.253 0.0 Attackers Won Attackers Won 

F 15 5 0.068 0.0 Attackers Won Attackers Won 

G 18 2 
0.016 

0.0 Attackers Won Attackers Won 
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agents quite early in the simulation; the massively parallel hybrid ESN predicted the same 

consequence, the NMSE obtained was 0.086 for the center of mass time-series plots as visualized 

in Fig 4.4. The outcome of the simulation and the prediction were the same; the Defenders were 

easily able to emerge as the dominant party in the simulation.   

 

Figure 4.4: Swarm interaction trajectories for the center of mass time-series (both 

original and predicted) for Case A. 
 

In case B (Fig.4.5), similar behavior was observed as the Defenders emerged as the 

dominant swarm, easily compromising the agents of the attacker swarm. The prediction from the 

ESN agreed with the original simulation; the NRMSE for this was 0.017 (Table 4.2). 
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Figure 4.5: Swarm interaction trajectories for the center of mass time-series (both 

original and predicted) for Case B. 
 

In case C (Fig. 4.6), the Defenders also emerged as the victorious swarm easily 

comprising the Attacker agents. The Defenders were able to do so by protecting the Goal from 

the interception of the Attacker agents until the end by also compromising the former in the 

process. Fig.4.6 revealed the ESN was able to capture the dynamics of the Defenders to a greater 

extent than the Attacker agents; however, it must be noted that the overall ergodic properties of 

the system remained the same, and the outcome of the simulation was predicted correctly by the 

ESN. 
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Figure 4.6: Swarm interaction trajectories for the center of mass time-series (both 

original and predicted) for Case C. 
 

In case D (Fig. 4.7), it was observed that the Defenders were able to again emerge as the 

dominant party in the simulation by compromising the Attacker agents in action. The ESN 

successfully captured the dynamics of the overall interaction as seen from the center of mass 

time-series plot for Case D. 

 

Figure 4.7: Swarm interaction trajectories for the center of mass time-series (both 

original and predicted) for Case D. 
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In case E (Fig. 4.8), the Attackers emerged as the victorious swarm by compromising 

the Defender agents early in the simulation. The ESN was also able to predict the outcome 

correctly, as it captured the overall dynamics of the interacting swarms.  

 

Figure 4.8: Swarm interaction trajectories for the center of mass time-series (both 

original and predicted) for Case E. 

 

Figure 4.9: Swarm interaction trajectories for the center of mass time-series (both 

original and predicted) for Case F. 
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Figure 4.10: Swarm interaction trajectories for the center of mass time-series (both 

original and predicted) for Case G. 
 

In case G and case F (Figs 4.9, Fig 4.10), the Attacker emerged as the victorious swarm 

by compromising the Defender agents in action. The novel was able to predict the outcome of 

the simulation successfully. The NRME(s) for these cases are 0.068 and 0.016, respectively, 

indicating the prediction was of good quality.  

 

4.4.2 Uniform Hyperparameter search and Individuality of agents 

A comprehensive uniform hyperparameter search was conducted for the significant 

hyperparameters of the massively parallel hybrid ESN-number of reservoir nodes, leak rate, and 

probability of non-zero connections. These hyperparameters were important as they affected the 

ESN ability to map a high dimensional dynamical system, the information flow inside an ESN, 

and the ability to forget past information to predict the future. The minimum, maximum, and step 

size of the significant hyperparameters used in the uniform search can be found in Table 4.3. 
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Table 4.3: Significant Hyperparameter Ranges used in the Uniform Grid search 

 

 
Figure 4.11: Histogram and probability distribution plot for Number of Reservoir Nodes 

(Hyperparameter) for Cases A through G for all Attackers and Defenders combined. Cases A 

through G are arranged in a row-wise sequence. 
 

 

 

 

 

 

 

 

 

Hyperparameter Min  Max Step 

Number of Reservoir Nodes 300 450 5 

Leak Rate 0.05 0.20 0.02 

Probability of non-zero connections 0.05 0.20 0.02 
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Table 4.4: Significant Hyperparameter Statistics for all cases taken together 

 

 

 

 

 

 

 

Figure 4.12: Histogram and probability distribution plot for Leak Rate 

(Hyperparameter) for Cases A through G for all Attackers and Defenders combined. Cases A 

through G are arranged in a row-wise sequence. 
 

A comprehensive uniform gird search was conducted for the significant hyperparameters 

of each ESN of the massively parallel hybrid model revealed that the hyperparameters were not 

the same for all the agents. However, they were the same for some. The spatio-temporal data 

coming from every individual agent might be qualitatively the same; however, this is hardly the 

Hyperparameter Mean Median  Standard Deviation 

Number of Reservoir Nodes 341.61 337.5 34.16 

Leak Rate 0.107667 0.11 0.040185 

Probability of non-zero connections 0.088 0.07 0.03 
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case in real-world complex (natural and engineered) systems. Every agent reacts in a swarm 

reacts slightly differently when a uniform stimulus is applied. Thus, the presence of heterogeneity 

in homogenous agents was observed; the ESN ideally should have had the same hyperparameters 

as the agents making up the Adversarial Swarm, as these agents were fundamentally similar, 

having conflicting objectives. Thus, the ESN needed to be trained for each agent separately so 

as have the best possible prediction. The massively parallel ESN setup captured the Individuality 

of every agent, whereas the two parallel hybrid ESNs working in parallel would have fallen short. 

This behavior was observed from the histograms of the hyperparameters- Reservoir Node  

 

Figure 4.13: Histogram and probability distribution plot for Probability of Non-Zero 

Connections (Hyperparameter) for Cases A through G for all Attackers and Defenders 

combined. Cases A through G are arranged in a row-wise sequence 
 

Number (Fig. 4.11), Leak Rate (Fig. 4.12), and Probability of non-zero connections (Fig. 4.13), 
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respectively. The descriptive statistics of these hyperparameters can be found in Table 4. The 

probability density plots of these histograms revealed that the distributions are slightly 

multimodal, further strengthening those mere approximations that cannot be considered while 

assigning the hyperparameters to perform the prediction task.  

 

4.5. Conclusion 

In the current work, a novel massively parallel hybrid ESN was developed to predict the 

dynamics of every agent in an interacting Adversarial Swarm. Every agent in the system was 

assigned to a hybrid ESN which was trained and tested separately. The output of the ESNs at 

every time step during the training and the prediction phase as passed through an external module 

termed as the discriminator, which was pre- and post-processing the spatio-temporal data. The 

following are the main conclusions of the current work 

¶ The massively parallel hybrid ESN setup was demonstrated to be a well-suited tool for 

tackling the prediction of multiagent dynamics. 

¶ The massively parallel hybrid ESN setup developed, and its external module are generic 

enough to easily be modified to predict a wide range of engineering problems. 

¶ The massively parallel ESN validated the concept of the Individuality of agents in the 

multiagent system as every agent was mapped uniquely by the ESN. 

¶ The concept of Individuality will pave the way for further studies in this field, which will 

enable effective control and use of multiagent systems. 
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CHAPTER 5 

CONCLUSION 

The current work investigated the dynamics of complex adaptive systems in the form of 

an interacting Adversarial swarm system and studied the predictability of such systems using 

Machine Learning. The work also explored the idea of individuality in a multiagent system, 

where each individual agent reacts slightly differently when a uniform stimulus is applied. The 

work was divided into three main phases to achieve the goals and objectives of this investigation. 

The following are the conclusions of the first investigation: 

¶ A generic semi-hybrid dynamical system-based Agent-based Adversarial Swarm model was 

developed using a rigorous numerical procedure. This model is generic enough to adapt to 

various engineering applications with minor changes to force terms or potential functions. 

¶ In the spectrum of the study conducted for the various population of agents making up each 

swarm, some test cases revealed transient chaotic behavior with multiple local equilibrium 

points for both swarms that reaffirmed the existence of complex dynamics. 

¶ The LLEs found out for the Attackers and Defenders for all the trials, respectively, revealed 

the existence of both chaotic and non-chaotic solutions. The average LLEs indicated that 

swarms were both on the óEdge of chaos,ô further strengthening the presence of complex 

dynamical behavior. The Recurrence plots also backed up the presence of chaotic and non-

chaotic behavior. 

¶ Finally, Multiscale Entropy (MSE) was evaluated for the center of mass time-series for the 

swarm from scales 1 to 20. MSE, for both Attackers and Defenders, revealed the existence 
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of complex dynamics. The MSE revealed an intermediate level of randomness for the 

simulation overall, thus proving the effectiveness of the Semi-Hybrid approach assumed in 

the Adversarial swarm model.  

In the second and third investigations conducted, ESNs were found to be a useful tool that 

could be effectively used to predict a highly nonlinear dynamical system. The following were 

the conclusions from the second investigation: 

¶ Among the two configurations developed in the second investigation, Config 2 showed better 

overall performance when compared to Config 1 to achieve the prediction task. 

¶ Config 2 achieved a better prediction. It consisted of two parallel independent ESNs that 

successfully learned the dynamics of individual swarms that are essentially independent of 

each other and are only coupled by external rules of engagement. 

¶ The LLEs obtained from the ESNs and phase space reconstruction were in good agreement 

with each other, further implying the success of the ESN to map the interacting swarm 

dynamics successfully. 

In the third and final phase of this study, the following were the main conclusions: 

¶ The massively parallel hybrid ESN setup was demonstrated to be a well-suited tool for 

tackling the prediction of multiagent dynamics. 

¶ The current massively setup was developed, and its external module was generic enough to 

easily be modified to predict a wide range of engineering problems. 

¶ The massively parallel ESN validated the concept of the Individuality of agents in the 

multiagent system as every agent was mapped uniquely by the ESN. 

¶ Individuality is a factor that must be considered for designing large-scale time-series 

prediction frameworks using machine learning. 




