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ABSTRACT

Adversarial (competitive) swarms consist of two or more systems (each system consisting
of a collection of individuals, interconnected agents) where the goals of each group are conflicting.
This work aims to use an Echo State Network to predict the indiviaehavior of agents in two
adversarial swarms and thereby develop an improved understanding of the dynamics of such
systems. The current study was divided into three phases. Anlegsd Adversarial swarm
model was initially developed comprising of dweompeting swarms, the Attackers, and the
Defenders, respectively. The Defender aimed to protect a point of interest in unbounded 2D
Euclidean space called the Gdaln contr ast , the Attackerds mai |
while continually tryingo evade the Defenders, which get attracted to it when they are in a certain
vicinity of the Goal. The simulation was considered Sklylirid as agent compromise, and goal
compromise criteria were modeled to introduce realism asv@dd engineering apmations.
The final system state was studied tiee varied number of agents making up each swarm. The
effectiveness of the Serriybrid approach was validated by using Multiscale Entropy, which
revealed a greater degree of randomness for the DeferfersAttackers. In the second
investigation, two configurations were used to evaluate the use of Echo State Networks for
predicting group dynamics for each swarm. Configuration 1 employed a single ESN, i.e., the patio
temporal data for all agents of an Ads&rial Swarm model was used input. In configuration 2,
two separate ESNSs, in parallel, were used to predict Defender and Attacker swarm dynamics. It
was concluded that the parallel ESN configuration was more effective in achieving qualitatively
similar predictions of the dynamics for the Adversarial Swarms. In the final investigation, an

instance of an ESN in a massively parallel framework was trained on indigghtadtemporal
ii



data of every agent. The optimal hyperparameters obtained for every iadiaigent in the
framework showed considerable variance that implied every agent in the Adversarial swarm
reacted uniquely when a uniform stimulus was applied and thus reaffirmed the concept of

individuality of agents in a swarm.
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CHAPTER 1
INTRODUCTION

1.1 Background

All swarms are essentially complex systems generally characterized by nonlinear
dynamics; an accurate physicased model is imperative to the holistic understanding of the
underlying dynamics. Savms are a collection of independent, autonomous agents that are
widespread in nature from ranging from ant colddigsflocks of bird$2], and schools of
fisheg3]. Natureinspired swarm models have been an active area of research for the past couple
of decades. Simulating natural swarm behavior for engineering applications is inherently
problematic as alhatural systems offer inherent flexibyliand scalability, often difficult to
attain using digital computers. Swarms form the basis of extensive rdagrengineering
applications ranging from spacecrffis UAVS[5], robot$6], and optimization algorithnig].

Swarms have been historically modeled from a Lagrangian akdlarian (macroscopic)
approach. In the former, the swarm agents and their interactions with the environment are
modeled based on simple physizsed rulesln the former approach, the swarm behavior is
generally analyzed based on collective attributeh s flock density. In the Lagrangtaased
approach, the swarm agents and their interactions with the environment are modeled based on
simple physicdased rulesCr a g R e[y]msetindl paépser first introduced the idea of
swarmng where three simple rules, namel vy, 6attr
were used to model emergent swarming behaviors successfully. R¢ghédtisr introduced

multiple other rules which enabled these agents to achieve a wide range of purpog8$. Huth



introduced a computational model to mimic the behavior or school of fishes and compared
synthetic data to reavorld data. A discretéime model on sel§overned motion in a system was

first introduwced by VicseKL0], where autonowus agents in a group coordinated with others by
modified its velocity by adding to it the weight mean of the difference in velocities of other
agentfll]. Vi [LG] krlerbasic model has been extensively studied by adding pHyasesd
attributes and extensive modifications of the original model. Such changes include acceleration
couplings for the selpropellal agentfl2], the introduction of two types of interacting agents
such as chasers and escapers having inertia, delay of communication, gid@Jnaigplication

of the original model to simulate indoor autonomoys{ robot$14-16].

Swarm models discussed so far contains periodic boundary conditions that are typically
inconsistent with nature as swarming in nature always occurs in free, unconstrained space.
D6 Or s[IvglB]proposed a dynamical systeimased swarming model using a generalized
Morse potential coupled with Rayleigh friction force to study the structure of rotating flocks in
free space. The primary fat¢erm in this model was derived from the Morse potdaf§lwhich
is repulsive at short ranges while being attractive at long ranges simultaneously; thus, it entails
both close range repulsive and leragnge attractive forces, which are essential components of
any swarm preventing agent dispersion at the samedirniding agent collisions. Vecil et al.

[20] performed a 3D numericalmsulation based on Orsog@i8]model which, identifiedital
parameters that govern the nature of flocking behavior observed as such a rigid body rotation,
clumps, milling, spheres, and dispersion. The consensus problem in the swarm made up of
egalitarian agents was first explored by Cucker and 32idlewhich has been studied
extensively by the addition of stochastic white nd&2], repulsive forcR3], interparticle

bonding forc§24], and Rayleigh frictiof25].



In nature, typically, two types of swar interaction are observekdversarial and
Symbiotic, wherein swarms either compete or cooperate over resource utilization. Symbiotic
swarms found in the animal kingdom include multispecies gf@gijnunting, were in different
groups of species team up (cooperation) with each for hunting groups of prey. Adversarial
swarms, which were the focus of the current study, are abundant in natural environments, such
as groups of predators engaging with prey groups, and can be found both in aquatic and terrestrial
environments. Most of such interactions take place for forggimgoses. Natural examples of
Adversarial Swarms include groups of omnivorous Chimpanzees hunting groups of Red Colobus
Monkeyg427] and groups of predator Lions hunting herof Zebra§28].In the aquatic
environment, a multispecies association of Dolphins with Seals and Dogfish for feeding schools
of small fisH29], groups of Killer Whales, and a large number of Herring, where the former
would force the lder to dive up by almost 150 met@@], which would enable more effective
foraging.

Historically, the Adversarial Swarm phenomena have been traditionally modeled as a
predatofprey problem, explored by multiple groups of researchers, including ecologists,
physicists, statistians, and mathematicians. These models can be broadly classified into three
types: kinematic, latticbased, and dynamicdh addition to the computational models, few
experimental studies have also been conducted in the recent past. In kinematic thedels,
interactions between agents are typically modeled as velocity terms. An@dlmvestigated
the collective predation in a simple agéased model capable of repusthg animal movement
patterns where the individual agents were modeled based on Vicseksopelted10] agents.

Lin[32] used a selpropelled articlebased model to study the predation of bats on prey. In the

lattice-based models, the computation domain is divided into uniform 2D grids or lattices, which



have 'states' associated with them, e.g., empty or filled. Notable -ladiseel models inatle
Kamimura et a[33], where group chase and escape in a swarm modeled, and the study concluded
the formation of highly selbrganized spadi structures. Wang et §B4]extended the predator

prey problem by adding a third species and considered the effects of stochastic vision; the study
concluded a direct relationship between the predator's vision and the prey's extinction rate. Other
notable works on swars to swarm interaction includes Gaertner §8%l], where an agefiiased

model based on the MASON libr§Bg] was used to model the engagement between two groups

of UAVs in 3D space. Stricklafi@7] studied swarm engagement during live experiments with
two swarms of UAVs based on different pursuit and evasion strategies.

Dynamical swarm models are explicitly based on Newton's second law of motion, which
offers accurate insights into the highly complex emergent behavior between the two swarms.
Zhdankin et al[38] studied the dynamics of a swarming predst@y model, where each
group's swarming was based on leargl shorrange forces, and a naonservative force was
used to model the interaction term between the swarms. The study concluded the presence of
Chaas, quasiperiodic, periodic behavior, and the existence of singularities. Kolon[&8]al.
investigated the collision of two swarms made up of homogenous agents by considering the effect
of delay incommunication between various agents; the study demonstrated mutual swarm
capturing during the interaction, ultimately leading to the miJli8§state of motion.

The current literature lacks the presence of an doggsed dynamical adversarial swarm model
with explicitly defined ‘inter' and 'intra’ swarm é&s. The first phase of the present study
addressed this gap in the current literature by developing a plfoasies dynamical adversarial
homogenous swarm model with wekfined intraswarm and inteswarm forces. The

Adversarial swarm model consistedtafo distinct interacting swarms: The Attackers and the



Defenders, which had conflicting objectives in unbounded 2D Euclidean Space. The Defender's
primary role was to protect the O0Goal é i, e a
the Attacker's main objective was e to intercept the Goal while continually trying to evade the
Defenders. The Defenders swarms always tried to protect the Goal by swarming around it and
blocking any Attackers agent trying to reach the Goal. It was assumed dmaAifacker and
Defender agents were very close to each other if the distance between them was less than a
predefined criterion, they were assumed to have collided and were consequently arrested from
participating in the simulation. The arrested agentaime inactive for the remainder of the
simulation. The simulation will be assumed to have a binary outcome or a final state, wherein
either the Attacker or the Defenders emerge as the dominant swarm. The Attacker swarm was
considered dominant if an agentthe swarm would successfully intercept the Goal during the
simulation. If there were no remaining agents in the Defender swarm at any point in the
simulation, the Attackers were be considered dominant. If the Defenders will successfully defend
the Goal lefore the end of the simulation or if no Attackers were left in the simulation, the
Defenders were considered the dominant swarm. If no agents were left in either of the swarms
(i,e the agents compromise each other off in the engagement), the Defendecongidered
dominant in the simulation as the Goal will be successfully protected from the predation of the
Attacker swar m. The scenarios mentioned above
Criteriad [ presented in

The model developed in the first phase of this study was essentially a entitygamical
system producing highly nonlinear tirseries data. Traditional Artificial Neural Networks
(ANNSs) have been traditionally limited in predicting nonlinear transient times series data, which

are highly norstationary and noegyclic in nature ANNs have been historically combined with



other techniques such as NARMMA] to predict highly nonlinear chaotic systems such as the
Lorentz systeif@2], Sunspot times seri@s], and downhole pressure for a g#disoil well [44].

Elman et al[45] introduced the idea ofd&urrent Neural Networks, which were proven suitable
for forecasting highly notfinear timeseries data obtained from a dynamic system such as the
Lorentz systerjd6]. However, training RNNs is a difficult task. The backpropagation through
time (BPTT) method has been usedttain RNNs successfullf47, 48] Modified RNNs such

as Long Short Term Memory (LSTM) have been sgstul in predicting high dimensional
spatiotemporal systems in the short t9h, custom architectures such as Deep Neural
Network(DNN) with convolutioal LSTM[50] have also been successful. Oher stéditthe-art

RNN architectures include Gated Recurrent Units (@RUwhich has also been successful in
predicting mitivariate timeseries with missing values by taking two representations of the
missing patter, namely making and time interval. Random Recurrent Neural Network (rRNN)
has also shown in success in predicting the periodic nonlinear Mackey GlasgSijst@me of

the primary limitations with conventional RNN as indicated by Deni#8] is the non
convergence in thigaining process due to existence of bifurcations. Slow convergence and high
computational costs of RNNs also limit its utility for practical applications. However, a
significant limitation of RNNs is the vanishing gradient prole2h which severely limits its
ability to learn long da sequences.

An alternative to gradient descent methods was thus proposed by Jager 468 ldaske
EchoState Network(ESN) and by Md&4] as the Liquid State Machine(LSM) in which only
the synapticonnections form the RNN to output neurons were trained by learning. The idea of
ESNs can be traced back to Neuroscience, Dominey[85]ahresented dearning algorithm

about sequence processing in mammadiains, e.g., speech recognition in the human fajn



56], was the precursor of the actual algorithm of ESNs. ESNs and LSMs were unified into a
common research topic known[57a58]InamESNOtieenaie r voi r
task is to construct an RNN with randomly generated weights. The randomly constructed
complex nonlinear transfmation of temporal data can be extracted from the output layer using
simple techniques such as linear regregS@jn A great deal of art is needed to implement an
ESN successfully. Several global hyperparameters must be tuned effectively. Since the first
decade of the 2000s, RESN has been successfully implemented in a multitude of domains,
including speech recognitif®0], robot contrd6l, 62] forecasting financilamarket$63],
natural language processjg-67], Oil and natural gas sector such as pressure estimation in gas
lift oil wells[68], detrending of nostationary fractal timeserig®] and finally dynamical
systemg53] such as the Mackey Glass sysfgh}. Recent research also reveals that hardware
based Reservoir computers are also possible based on FPGA7&rasl carbon nano
tube$71]. Compared to the current popular cloud computing trend, these computers can be more
effective than traditional software and may be
An ESN working effectively should satisfy have the echo giedperty. It is defined as a
property where the effect of an earlier state or a previous input should vanish on the future state
as time passg32]. Mathematically, the echo state property is assumed to be maintained if the
spectral radius value (the largest eigenvegtty) of the reservoir weights is less than or equal
to a value oflL. However, recent studies showed that the echo state property hgl(#/jod1
for nonzero inputsi(n), so} (W)<1 is not a necessary condition for the echo state pr¢party
74).
The current state of the art revealed that ESNs have been very successful in predicting

chaotic dynamic systems. ESNs in the existing literatumee been found to use three



configurations while predicting chaotic behaviors, namely, observer modea(@mnomous or
predictive mode), where model free prediction is achieved by utilizing limited state variables
[75], the generative (or autonomous) mode in which during the prediction the output of a previous
timestep is fed as the input in the Reser{itr78] and finally custom ensemble methods where
ESNs are used ioconjunction with knowledgéased mode]g9]. The authors of the previously
mentioned works swessfully verified and validated these techniques in the simple Lorentz
systenii76], Lorentz96 systerf80], KuramotaSivashinsky (KS) systejm5, 78] the Rossler
systenii75], and dynamics of excitable media such as the Barkley model and the-Btmrnio-
CherryFenton model[81]. Hardwarebased reservoir computers have also successfully
predicted dpamical systenjg0], such as the Mackeglass systemKrishnagopdB2] studied

the effectivenss of reservoir computing for the separation of chaotic signals and concluded that
their results were better than the Wiener filter obtained from the same training data.

Several studies have also been conducted to have a holistic understanding of arReservo
computerés inherent dynamics, which would enat
systems. CarrdB3] used an REES N a't t he O[&d 8bregionf to fgetioano s 6
predictions and concluded that it does not necigsaprove the performance. Carrg6]also
conducted studies on the dimension of Reservoir computers and concluded the increase of
fraction dimension occarinside the Reservoir with the increase of its dimension, which may
adversely affect the performance of Reservoir Computer, J&fpHlso conducted studies on
the network structure of the RESN. Zhan{88]conducted studies in the sensory phase
coherence of two parallel reservoirs and concluded that short term prediction is possible, but
parallel reservoirs are limited in sensing todlective dynamics of a coupled chaotic dynamic

of the entire system in the long run.



In the second and the third phases of this investigation, ESN played a vital role in meeting
the project objectives. Initial thouse studies showed that &SN successtly predicted large
scale dynamical systems such as Large Eddy simulation of an incompressible turbulent round jet
by implementing massively larggeale parallel reservo[B9]. The second objective outlined in
this study was achieved by using a high dimensional reservoir and two parallel high dimensional
Reservoirs to predict the individual agent dynamics of the Attaged Defenders, respectively.
In this study's final objective, laregeale parallel reservoirs weresed wherein individual
reservoirs were assigned to each agent of the Attackers and the Defenders, respectively. The
respective agents were trained sefgdyaand a comprehensive hyperparameter grid search was
performed. The hyperparameters of the trained massively parallel reservoirs were studied
statistically to explore the concept of o6indiyv
1.2 Motivation

Complex aaptive systems and machine learning are currently both highly active fields

of research due to the widespread occurrence of such systems and to continued increases in
computing power, respectively. Numerouos exampl
complex adaptive system interaction, exist in nature (conflict between individual insect
colonies/species, interactions between predator and prey species, etc.). Such behavior is also seen
in humanrelated activities (team sports, military conflictslifical contests, etc.). An exhaustive
literature survey has revealed that highly complex behavior can result from relatively simple
rules governing the conduct of the individual agents comprising adversarial swarms. To date,
research has focused on appdya single simple rule set to encode the response of all agents in
a given swarm to a specific stimulus. Intuitively, it is known that all organisms (even those of

the same species) do not react to identical stimuli uniforByysing a stegby-step approeh,



the variations in individual response affecting the behavior of a given swarm will be explored,

in addition to its effect on the interaction between two Adversarial Swarms.

Thecurrent studwill benefit society by advancing thmderstanding of a type of system

that, while ubiquitous in the natural world, is increasingly being used to describe behavior

observed in a myriad of disparate human applications. From the military use of drone swarms to

cybersecurity to business analgtidnsight gained from observed adversarial (competitive)
swarms is being used to improve the efficiency and effectiveness of these and other complex
systems. The physiktsased Adversarial swarm model developed in this study represented an
advancement thawill ultimately serve as a benchmark for other researchers in the field.

Successfully applying machine learning to predict complex dugsed swarming behavior also

laid the groundwork for further study into a field that is rapidly changing.

1.3 Obijectives

The current study contributed to the field of Horear applied physics, machine learning,

and complex adaptive systems in the following manner, respectively:

1. A novel physicsbased adversarial swarm systenil be modeled to study the nonlinear
dynamts of the system. This modslll furtheradvancehe understanding of the nature of
dynamics observed during the interaction of two distinct swarms that are adversarial in
nature. ltwill also advancehe knowledge of the final outcome (i, e, the finake} of such
interactions when studied across various populations of agents making up the two swarms,
respectively. Also, iwill validatethe use of a novel serhybrid based assumption to similar
agentbased modelssing Multiscale Entropy.

2. In the second part of this study, the prediction of the group dynamics of eachsilldren

considered as a nonlinear tiraeries prediction problem using Echo State Networks (ESN),

10



a particular type of Recurrent Neural Network. This study furiikgrfu rther advancehe

field of applied machine learning by paving the way to predict high fidelity Multiagent
Dynamical Complex Systems data.

.I'n the final phase of the st udwllbeconkidereghr edi ct i
ESNSs unique to eachdividual agent, respectivelwill be used to predict the dynamics of

individual agents. Thigvestigationwill study the effects of individuality. Time series data

from respective individual agentsill be used to train each agent's individual Echo State

network. The impact of individualitwill advanceunderstanding how homogenous agents
interactuniquely when a uniform external stimulissappliedin an environment. This study

will advancethe field of applied machine learning when applied to lwage Multiagent

Dynamical Complex Systems.
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CHAPTER 2

ADVE RSARIAL SWARMS AS DYNAMICAL SYSTEM
2.1 Abstract

An Adversarial Swarm model consists of two swarms that are interacting with each other
in a competing manner. In the present study, an dgpsed Adversarial swarm model is
developed comprising of two competing swarms, the Attackers and the Defengberstively.
The Defenderds aim is to protect a point of i
as the Goal. In contrast, the Attackero6és main
to evade the Defenders, which get attractetlidien they are in a certain vicinity of the Goal,
termed as the sphere of influence, essentially a circular perimeter. Agernd approach was
considered for the simulation by adopting agent compromise and goal compromise criteria to
introduce realisnas per reaorld engineering applications. The interaction of the two swarms
was studied from a Dynamical systems perspective by changing the number of Agents making
up each respective swarm. A total of 22 cases were studied for an ascending nurtthekefsA
and descending number of Defender agents, starting with a population of 5 Attackers and 100
Defenders and ending with 100 Attackers agents and 5 Defenders agents. A Monte Carlo analysis
is also conducted fanitial randomizedconditions for eachun, respectively. The simulations
were rigorously investigated for the presence of chaos by evaluating the Largest Lyapunov
Exponent (LLE), implementing phase space reconstruction. Transient chaos was observed for
some initial cases. The presence of citabehavior was also confirmed by plotting the
Recurrence plot for some instances. The source of chaos in the system was observed to be

induced by the passively constrained motion of the Defender agents around the Goal. Multiple
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local equilibrium points asted for the Defenders in all the cases and some instances for the
Attackers, indicating complex dynamics. LLEs for all the trials of the Monte Carlo analysis in
all the cases revealed the presence of chaotic andhamiic solutions in each case, respety,
with most of the Defenders indicating chaotic
of Chaos, 6 displaying the existence of compl ex
outcome of the interaction between the swarms in a pkmtistmulation) was studied for all the
cases, which indicated the presence of binary final states in some. Finally, to evaluate the nature
of randomness and the effectiveness of the $#ybrid approach, Multiscale Entropy is
employed, which revealed aegter degree of randomness for the Defenders compared to
Attackers. Overall, based on the Multiscale Entropy, the $rrid approach of the simulation
was considered successful as both the swarms exhibited an intermediate level of randomness.
2.2 Introdu ction

Swarms, which are a collection of individual autonomous agents, are omnipresent in
nature ranging from ant coloni¢s], flocks of birds[2], schools of fishe$3], and human
crowdg90]. Swarming in nature provides manyvadtages, such as ensuring better survival
chances against predatdgl], collective foraging, and huntin@2]. Swaming behavior in
nature has evolved over many thousands of years to be optimally adapted and prepared for the
prevailing conditions in the environment. Bioinspired swarm models have been an active area of
research for the past couple of decades. Mimickiaural swarm behavior for engineering
applications is inherently problematic as-raditural systems offer inherent flexibility and
scalability. The phenomenon of swarming has been exploited in mddgrengineering

applications ranging from UA\[83], optimization algorithni4], robotg6], and spacecraft].
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All swarms are essentially complex systems characterized by nonlinear dynamics; an
accurate physiebased model is essential to havkdistic understanding of the dynamics of
swarming behavior. Historically physicists have modeled swarms from a Eulerian (Macroscopic)
approach and a Lagrangian (Individual, agessed) modeling approach. In the former
approach, the swarm behavior is gatlg analyzed based on collective attributes such a flock
density. In the Lagrangiaibased approach, the swarm agents and their interactions with the
environment are modeled based on simple phsased rules. Complex emergent behavior is
observed, which s as a resul't of simple interactions
[7]seminal paper introduced the idea of swarm modeling, which showed that three simple rules
could achieve emergent swarming behavior, namelttraction, collision, and velocity
alignment. ReynoldB]s ubsequently added further rules cal
swarmingbehaviors to achieve specific objectives. Huth gBéintroduced a model to describe
fishesd behavior schools and compared -si mul at
world dat. Vicsek et all10]proposed discretetime model on sel§overned motion in a system
of particl es. I n Vicsekds model , every autono
wei ghted mean of the diff er eld@cemputer simulatoesr agent
showed agents approaching the same velocitll ime; that is, the particles behaved like
swarms having coordinated motion. Vicsek dtlal. has been studied extensively, and several
variations were proposed, includinige addition of inertia, timalelay, and noigé&3]; all of
Vicsekds model s ar e9ltudie@ populatiort size and tkecneighlmorsent a |
the emergent properties, including polarity, edges, and distinct shapes.

The swarm models discussed so far consider mpstlgdic boundary conditions, which

are generally inconsistent with nature as most natural swarms flock in free space without any
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explicit boundary c oirsl8]praposed aswarniing odelaginga et a
generalized Morse potential coupled with Rayleigh friction force to study the structure of rotating
flocks in free space. Forces derived from the pairwise Morse pdtangiaepulsive at short
ranges while being attractive at long ranges simultaneously; thus, it entails both close range
repulsive and longange attractive forces, which are essential components of any swarm. The
Morse potentidll9] is an integral component of the current work and is discussed in detail at a
later stage. Veciletd20lper f or med a 3D numer i cal[l8modemul at i or
which, identified vital parameters that govern the nature of flockihgwer observed as such a
rigid body rotation, clumps, milling, spheres, and dispersion. Cucker and Rtteroduced
a simple dynamical system to tackle the consensus problem in a leaderldssraarnical
swar més const it u-<Sank2ljtge maded has bedn studiediext&nsively, and
the model has been developed further by adding extensive attributes as the addition of repulsive
forcg23], addition to stochastic white noj&e], interparticle bonding for¢24], and Rayleigh
friction[25]. All the models mentioned above are dynamic in nature and consider unconstrained
swarming in free space.

Adversarial swarmghe focus of the current studgreabundant natural environments,
such as groups of prey engaging with groups of prey, both in aquatic and terrestrial environments
for foraging purposes. In nature, swarms often interact with other swarms; interactions can be
symbiotic or adversarial, depging on the nature of the swarms involved. Examples of symbiotic
swarms found in the animal kingdom include multispecies group [24]huntimgyedifferent
groups of species team up (cooperation) with edlocarfor hunting groups of prey. Terrestrial
exanples of Adversarial swarms include groups of omnivorous Chimpanzees hunting groups of

Red Colobus Monkey27], groups of predator Lions hunting herds of Zef@®s etc., in the
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aguatic environment, a multispecies association of Dolphins with Seals and Dogfish for feeding
schools of small FigR9], groups of Killer Whales and tens of tons of Herring, where the former
would force the later to dive up by almost 150 m¢s&iso indulge in more effective foraging.
Many Adversarial Swarm models have been adopted over the years in which physicists
have traditionally modeled the adversarial swarms phenomenon as a ppedatproblem.
Multiple research communities have explored thesmlets, such as ecologists, physicists,
statisticians, and mathematicians. The current literature reveals three main types of-models
kinematic, latticebased, and dynamical models. In addition to the computational models, few
experimental studies have albeen conducted in the recent past. In kinematic models, the
interactions between agents are typically modeled as velocity terms. An@alpmvestigated
the collectivepredation in a simple agebased model capable of reproducing animal movement
patterns where the individual -prapelediOfagents.r e
Lin[32] used a selpropelled particldbased model to study the predation of bats on prey. The
computation domain is divided into uniform 2D grids or lattices in the latédsed models,
which have O0st at e 4., enpty @ filledaNotlle lattidehseéd models m,
include Kamimura eta §B3], where group chase and escape in the latis®d swarm were
modeled, and the study concluded the formation of highlyosgHnized spatial structures. Wang
et al.[34]extended the predatprey problem by adding a third species and considered the effects
of stochastic vision, concluding a direct relationship between the prédatorvi si on and
extinction rate. Other notable works on swarms to swarm interaction includes Gaertfigslet al.
where an ageritased model based on the MASON Ilibf@B} was used to model the
engagement between two groups of UAVs in 3D space. Stridd@hdtudied swarm

engagement during live experiments with two swarms of UAVs based on different pudsuit an
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evasion strategies.

Dynamical systenbased Adves ar i a l swarm model s are expl it
second law of motion which, can provide accurate insights into the highly complex emergent
behavior arising between the interaction of two swarms. Ztdaet al. [38] studiedthe
dynamics of a swarming predajorr ey model , where each gr-oupdbés s
and shorrange forces, and a na@onservative force was used to model thieraction term
between the swarms. The study concluded the presence of chaospeagicaic, periodic
behavior, and the existence of singularities. Kolon ¢8@linvestigated the collision ofM
swarms made up of homogenous agents by considering the effect of delay in communication
between various agents; the study demonstrated mutual swarm capturing during the interaction,
ul ti mately | e f8]stategof ntotion.a o mi | | i ng o

Overall, the current literature available in the public domain lde&sptesence of an
Agentbased dynamical Adversari al Swarm model Wi
swarm forces, which are based on widatcepted physieBased potential functions that have
been historically successful to model the behavioriwiple swarming system capable of
producing highly emergent behavior. This gap in the current literature was addressed by
developing a physiebased dynamical adversarial homogenous swarm model with very well
defined intraswarm and inteswarm forces. Theurrent literature available lacks an Agent
based dynamical Adversari al swarm mod el wi t h
forces based on physitased potential functions as many similar models in the literature have
force ter m#$o ctdh alt a saerde tohaadt are sometimes exclu
observations. Also, most of these models disregard the mass or inertia, which are an integral

component of such dynamical systems. Moreover, the current model also adopts-ySaini
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approab to model collision and agent compromisghe model consists of two distinct
interacting swarms: The Attackers and the Defenders, with conflicting objectives in unbounded
2D Euclidean Space. The Defenders role is to protect the Goal, a poierest in 2D Euclidian

space. In contrast, the Attackers' primary objective is to intercept the Goal while continually
evading the defenders. The Defender swarm tries to protect the Goal by swarming around it and
blocking any Attackers agent trying toamh the Goal. It is assumed that if an Attacker and
Defender agents are very close to each other, or, in other words, if the distance between them is
less than a predefined criterion, they are considered to collide with each other and are
consequently arsted from participating in the simulation. As a result of the interaction, the
arrested agentsé count may not always be bina
reaming time of the simulation. The simulation is assumed to have a binary outcarfinab

state, wherein either the Attacker or the Defenders emerge dominant. The Attacker swarm is
considered dominant if an agent in the swarm can successfully intercept the Goal during the
simulation. If there are no remaining agents in the Defendemsat any point in the simulation,

then the Attackers are also considered dominant. If the Defenders can successfully defend the
Goal before the end of the simulation or if no Attackers are left in the simulation, the Defenders
are considered as the domim swarm. If at any time during a simulation, no agents are left in
either of the swarms (the agents compromise each other off in the engagement), the Defenders
are dominant in the simulation as the Goal has been successfully protected from the gedation
the Attacker swarm. Thus, the simulations can be referred to as beingHgend in nature,

where agent compromise and goal interception are modeled per practical scenarios that may arise
in engineering applicat i onentliterdture ldcks éhe masdandeor s 6 K

of such SemHybrid models.
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In the current study, the dynamical systbased Adversarial Swarm Model simulation
is carried out on a robustly devel oped comput a
law problem. Bedre running the simulations, a rigorous convergence study is carried out to
determine the optimal timestep. This aspect is often missing in mahgcaddased modeling
approaches found in the current literature. The nonlinear time series data obtainedefrom
simulation uses a multitude of tools that include tseees plots, attractor plots, and Largest
Lyapunov Exponent (LLE) and Recurrence Analysis. The system is strongly investigated for the
presence of chaos. As a vital parameter of the system, ithigenwf Attackers and the Defender
agents making up each swarm is varied to stud)
obtained from the simulation is analyzed using Multiscale Entropy to evaluate the degree of
randomness in the system as theadammes from a serhiybrid simulation. This approach will
help rule out whether the current semybrid approach is successful, and it is also hypothesized
that the timeseries data obtained from the simulations may have an intermediate level of
randomnes. The application of Multiscale entropy is integral to the current work &éseto
authots knowledge it has never been used to evaluate the suca@essrofhybrid simulation
approach build byraagentbasednodeling approach.

The intellectual contribubin of this paper can thus be summarized as follows:

=

Development of a generic physibased Adversarial Swarm usiagAgentbased modeling

approach.

1 Model was semhybrid in nature as agent compromiged simulation end criteriaaxvebuilt
into the model

1 Model was solved using a rigorous numerical approaalike similar models

1 The nodel was strongly studied from dynamical systems point to view to provide a clear
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understanding of the physics of interacting swarm behavior
1 Multi-scale entropy was used taidy the degree of randomness in the data obtained to
determine the success of the sdylorid approach assumed.
This paper is organized as followsection 23 discusses the numerical model and the

computational method used for solving the governing egpstiSectior?.4 briefly describes
the nonlinear time series analysis techniques used, followed by the results and discussion in
section2.5. The final sectior2.6 comprises the conclusion.
2.3 Numerical Model and Parameter Descriptions

A physicsbased agertased model was derived for studying the dynamics of two
interacting adversarial swarms: The Attacker Swarm and the Defender Swarm (hence, referred
to as OAttackersd and O0Defender sod iveg;shpect i vel
Defenders protected a point of interest in unbounded 2D Euclidean space by swarming around
t he Goal along a sphere of i1influence. I n contt
Goal while constantly trying to evade the Defenders, wttovely chasd the former in a
perimeter around the Goal or a sphere of influence. The individual swarms in the swarm system
are modeled based on a Lagrangiased approach having primarily two types of forées nt er 6
and 6intrad s whrcanard used toenedel the interactiomteteveen the agents of
the adversarial swarms, respectively. The Hitraes were used to model the forces between
members of the same swarm. Each swarm can be generalized as a collection of N agents in a 2
Dimensiaal space with position and velocity vectors. The governing equation describing the
dynamics of the two interacting swarntise Attackers and the Defenders were derived based on

Newt onds second | aw of motion and are given by
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T PBs A (2.1)
® @ (2.2)

® ® — B 129 B ™ Qi D e |
T gBsd (23)
® & (2.4)

Egns. (2.12.4) are the principal equations for the Adversarial Swarm model that, subject to
given initial conditiondd.,0 T %0 T hBo, 0 T MY,0 1 ofindividual agents in the
respective swarms are known.

The first terms in Egns. (2.1) and (2..3) respectively are-gviirm forces that are modeled
based on the scaled Moj36] potential. The gradient of the potentialsvased to derive the

intrac=swarm Morse force; the following equation gives a generalized scaled Morse potential.

. - s 8 s s
0A @b Aob 25)

In Eqn. @.5), C defines the depth of the repulsive potential well, and | is a constant used to
relate the ratio of the repulsive to attractive length scales. The forces obtained from the scaled
Morse potential are responsible for the swarming of agents in the Atsaakd Defenders. The
typical intraswarm Morse force scenario is typically C > 1 and | > 1, which means that the
repulsive component only acts at close ranges. However, the attractive component works at long

ranges only, thereby preventing the dispersibagents making up a swarm, respectively. From
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D6 Or s o di&)], itastknown a criterion called H stability is necessary, under which if the
number of particles increases, the Morse force guarantees that the bounding of the swarm as the
number of particles increases. The H stability can be achieved logimgpthe conditio® &
o} | est It mi g ht | e a[@i7]. The Marse &otcex onstardspirh both he b e h a v
Attackers and Defenders are chosen by imposing the H stability criteria. The Morse potential is
an ideal choice as it would implicitly impose limits tve range of seesvhen compared to
using harecoded cuff distances as biological entities and engineered artificial agents would
have an implicily limited range of vision or sensing capability.

The second term in Eqns2.]) and 2.3) is an attractie and repulsive potential. The
Defendersstop the Attackers from fulfilling their primary objective: the interception of the Goal.
The Defenders agents use an attractive force d
in Egn. @.3) to intercepthie Attacker agents. The Attacker agents try continually to evade the
Defender agents utilizing a repulsive force derived from the second term of Zfn.The
attractive and repulsive potential found in Eqsl)(and @.3) are derived from a generalize
obtained from Espitia et §94]. This potential serves a dual purpose, as it can be used to derive
attractive force and repulsive forcg merely changing its sign. The following equation can

compactly express the attractive/repulsive potential.

. T 4 i (2.6)
Where the firstterminEqQm26) i s a positive constant term (
force is derived and neg adforeeas dérived. The Defandef i x 6 a1

agents only get attracted to the Attackers' agents inside the sphere of influence, as depicted by
the circle in Fig2.1. It is a necessary step, which ensures that the Defenders do not veer off too

far from the Goal, asthbef ender 6s main aim is to protect t
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following equation defines the attractive force between the Defender agents and the Attackers

agents inside the sphere of influence:

D n Qi E&E Y (2.7)
O, TEIE Y (2.8

Where'Yyds a threshold radius around the Gddle sphere of influence also contributes to
making the system serhibrid in nature. The attractive and repulsive forces are inversely
proportional to the competing agentsd distanc
strongest between the skst agents. The attraction and the repulsion forces are cut off using
local distance thresholds, beyond which they would essentially be constants equal to the
attraction/repulsive force at the threshold distances. The threshold distances preventabgse for
from getting too large during the very close interaction of Attacker and Defender agents, thereby
warranting a tractable computation. These distance thresholds are assumed to be the same for
both classes of agents to ensure fair competition.

The thirdterm in equation4.1) is an attractive potentig®4], which is used to obtain an
attractive goal force between the Attackers and the.Gb@ attraction force derived from this
potential is a linear force that increases as the distance between an Attacker agent and the Goal
increases and vice versa.

Where'Ygds a threshold radius around the Goal. The sphere of influence also contbutes
making the system serhybrid in nature. The attractive and repulsive forces are inversely
proportional to the competing agentsd distanc
strongest between the closest agents. The attraction and theorepoitses are cut off using
local distance thresholds, beyond which they would essentially be constants equal to the
attraction/repulsive force at the threshold distances. The threshold distances prevent these forces
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from getting too large during the veriose interaction of Attacker and Defender agents, thereby
warranting a tractable computation. These distance thresholds are assumed to be the same for
both classes of agents to ensure fair competition.

The third term in equatior2(l) is an attractive gential [94], which is used to obtain an
attractive goal force between the Attackers and the Goal. The attraction force derived from this
potential is a linear force thatdreases as the distance between an Attacker agent and the Goal
increases and vice versa.

The third term inEqgn.(2.3) is also derived from a scaled Morse poterj88] (similar to
the potential used for deriving the insavarm faces) is a force between the Defenders and the
Goal, which has a repulsive as well as an attractive component. This force prevents the Defender
agents from wandering too far off from the Goal. The following equation gives the scaled Morse

potential betweethe Goal and a Defender agent
. 6 AopX" AQ@bPs s (2.9)

Wherei is the distance between a Defender agent and the &zpgindd, -@re constants
that can control the composition of the attractive and repulsive force between the Defenders and
the Goal. Adliscussed in the preceding section, the H stability condidian ( p)is imposed to
avoid a o6cat 413,t18lophi cd scenari o

The last terms in the Eqrial and2 4 is the seHpropelling and frictional force term, which
is based on Rayleighés friction. The Rayl ei gl
Dissipation function[95]. It is a nonlinear damping term with selfceleration and friction
mechani sms, which drive all the particles to a

Friction force is a velocitypased force that is nasonservative andgsigiven by:
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O, . | T Brs Bj (2.10)
V., |1 BEs By (2.11)
2.3.1Initial Conditions, Verification, Validation, Uncertainty Quantification, a nd
Parameter Selection/description:
Egs. @.1)-(24) are numerically integrated using a customized 4th order Runge Kutta
explicit solver[96]f or Newt onds S e cleeragentd anewnitialized witbirt theo n . T
square domain with four distinct quadrants, as shown i@ .Eigrhe Goal is located at the center
of the fourth quadrant (0.50 . 5) ; in this study, t he Goal 6s | «

numerical experiments
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Figure 2.1. lllustration of the domain for simulation.
The dashed circle around the Goal represents the sphere of influence fegngdarr) and
(2.8), fixed at 0.508 for this study. The Defender positions are initialized randomly inside the
sphere of i1influence, i n the fourth [9ythedr ant , l
velocities are randomly chosen betwes).1. The Attackers are also randomly generated inside
the second quadrant using the same technique, and the velocities were also randomly selected

bet ween NO. 1. Low discrepancy Sobol s sequence
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the initial po#tion vector of agents making up their respective swarms.

Table 2.1: Various Key Parameters used in the numerical model

Constants Values Description

CA 1.32 Depth of the potential well for pairwise
scaled Morsgotential for Attackers.
|A 1.50 The ratio of the repulsive to attractive leng
scales of Attacker agents.
Co 1.38 Depth of the potential well for pairwise
scaled Morse potential for Defenders.
|D 2.00 The ratio of the repulsive to attractive leng
scales of Defender agents
k 0.054 Constant for pairwise inteswarm repulsive
rep potential between Attackers and Defender.
k 2.82 Constant for pairwise inteswarm attraction
at potential between Defenders and Attacker
k.. 10 Constant for pairwise inteswarm Goal
obj potential between Attackers and the Goal.
C 10.03  The mtio of attraction and repulsive

potential strength for scaled Morse potenti
betweera Defender agent and the Goal.
0.5 The rtio ofthelength scale of attraction an

repulsion pair for scaled Morgmtential
between a Defender agent and the Goal.
a, 1 Constant of the selfropulsion force for
Attackers.
b 1 Coefficient of the Rayleigh friction force fol
A Attackers.
a, 1 Coefficient of the sefpropulsion force for
Defenders.
b 1 Coefficient of the Rayleigh friction force fol
b Defenders.
Rh 0.508 Influence radius for Defenders.
m, 1 Mass of Attacker agents.
m, 1 Mass of Defender agents
Goal breach 1E4 Threshold distance between Attacker ager
eriteria and the Goal for considering the Goal to b
breached.
Agent 1E4 Threshold distance between individual
Ctapromise Attacker agents and Defender agents to b
considered collided (hence dead).
Repulsive 0.05 The minimum distance beyond which the
Force Local repulsive force between aitacker and a
Attacker Defender agent is treated as constant.
Attraction 0.05 The minimum distance beyond which the
Ezicfﬁﬁzfal attractive force between a Defender and a
Defenders Attacker agent is treated as constant.

The Runge Kuttaolver is first verified by testing it against a trivial mass damper system.
The validation of the custom solver developed for this problem is achieved by numerically
evaluating the order of accuracy. In time, a comprehensive grid independence stowyis ti

carried to evaluate the optimum timestep for solving the underlying governing equations for each
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agent, respectively, which is depicted in the subsequent section. A relative error threshold of 1%
was considered in the position vectors for both thentggto perform the grid independence
analysis in time.

The various constantsd optimal values were o
educated guess, and visual inspection (rendering of the simulation) over multiple random and
nonrrandom numecal experiments. Tabl2.1 describes the model constants and values (Note:

Suffix A denotes Attackers and suffix D represents Defenders). If the distance between two or
more different agents is equal or toesgeredt han th
to have collided and are hence arrested from the simulation. The arrested agents become inactive

for the remainder of the simulation. If the distance between any Attacker agent and the Goal is

|l ess than the 0Goal onsideecd rdachedrAs statded in thedintroduckoey Go a |
section, if any Attacker agent can successfully intercept the Goal, Attackers dominate the
simulation. If the Defenders can defend the Goal before the end of the simulation or if no
Attackers are left in #asimulation, then the Defenders is considered the dominant swarm. If no

Attacker or Defender agents are left at any point in the simulation, in that case, the Defenders are
considered dominant as the Goal h asprettadoe.n s ucc e

The various threshold distances discussed so far can be found ir2Table
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2.4 Results and Discussion

All the simulations were carried out by developing custom software written in C++ and
Python, which were run on the University of Alabama Hrgrformance Computing Network
and a Desktop Comput €700 Precesson6éd GB RAMeahdEL.25aBr e E
storage space. The simulations were carried out for different populations of Attackers and
Defenders to study the dynamics and the outcome (final state) of the interacting adversarial
swarms. The interaction between the two adversarial swarms wagezhalith respect to an
ascending ratio of the number of Attackers to Defenders. The maximum number of Attackers
and Defenders agents in this study was limited by the computational resources available, which

was capped at a maximum of 100 for each cageelimitial simulation, the number of attackers

Table 2.2: Case Matrix

Max Simulation

Case NA ND NA/ND Runs Timestep Time
1 5 100 0.05 1000 5.00E05 100
2 7 97 0.07 1000 2.50E05 100
3 10 95 0.10 1000 2.50E05 100
4 15 90 0.16 1000 2.50E05 100
5 20 85 0.23 1000 2.50E05 100
6 25 80 0.31 1000 2.50E05 100
7 30 75 0.4 1000 2.50E05 100
8 35 70 0.5 1000 2.50E05 100
9 40 65 0.61 1000 2.50E05 100
10 45 60 0.75 1000 2.50E05 100
11 50 55 0.90 1000 2.50E05 100
12 50 50 1 1000 2.50E05 100
13 55 50 1.1 1000 2.50E05 100
14 60 45 1.33 1000 2.50E05 100
15 65 40 1.62 1000 2.50E05 100
16 70 35 2 1000 2.50E05 100
17 75 30 25 1000 1.00E05 100
18 80 25 3.2 1000 5.00E06 100
19 85 20 4.25 1000 5.00E06 100
20 90 15 6 1000 5.00E06 100
21 95 10 9.5 1000 5.00E06 100
22 100 5 20 1000 2.00E06 100
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was 5; the number of Defenders chosen was 100(case #1); for every subsequent case excepting
case#2, the Attackers were increased by 5, and the Defenders reduced by 5; which was continued
until there were 10 Attackers and 5 Defenders left.

A total of 22 cases were studied in total, as shown in TaRIAR simulations had random
initial conditions for position and velocity; a Monte Carlo study was carried out to understand
each caseds o uEverycasewasran 1008 timeg, detetmined by the cumulative
average of each rundés total time. The cumul at.
end of 1000 runs for each case, respectively. The amount of computational resources available
also limted the total number of runs for each case, respectively. Initial random conditions were
chosen for each run to implicitly introduce noise into the study of the overall system dynamics
of the system. It was anticipated that the random initial conditianddrxcause the system to in
various dynamical regimes.

The simulations were studied from a swarm to a swarm interaction perspective. The center
of mass timeseries of the swarm was found out, averaging the x and the y coordinates of the
position vectors wh respect to the total number of active agents at every timestep. The center
of the momentum of the swarms was found out by averaging the x and the y components of the
velocity vector with respect to the total number of active agents at every timestidye In
preceding calculations, the individual agents' mass making up the respective swarms is
considered unity

The largest Lyapunov Exponents (LLES) of the center of masssemes for both agents
were obtained usi9lhy impMenmentibgsphaael space recorstraction by
evaluating the minimum embedding dimension and time lag from Cher{9].aLyapunov

exponent is a useful tool for determining the presence of chaos. Lyapunov exponents were found
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out for every trial run in each se, respectively. The following equation gives the Largest

Lyapunov Exponent (LLE):

B I — (2.12

The Euclidean distance between the initial point and its nearest netghbmis given by
Ogwhich evolves intdg , @fterdo 6 andD ; d¢s the minimum embedding dimension of the
reconstructed phase space.

Recurrence plots(RR)00] indicate whether a dynamical system is periodic or chaotic in
nature ag essentially twalimensional representation techniques of a symmetric binary square
matrix that brings out distance correlations in a tsages. Binary mapping is used to construct
the symmetric binary for various values of s and t, representing tilvee m&trix elements
correspond to the recurring dynamical state of a system and are given by the following equations

Yy g- s os  photssh) (2.13

Eqn. (2.13) is in a phase space consisting of N poigtss a point located on the m
dimensional spaces the specified threshold,is the Heaviside step function, agggindicates
the 0. norm. In the current studyis fixed at 10% of the diameter of the reconstructed phase
spacely;iis zero if the distance between the two poiptndwin the phase space is greater than
-, otherwise, it is equal to 1. Black and white points are present in the recurrent points
corresponding to the ones and zeros present in the recurrent matrix. For all RPs, the main
diagonal is a black line. Various characteristics of the RP can be foltawarj101]. The RP
corresponding to a periodic system is characterized by equally spaced lines parallel to the main
diagond, unequally spaced lines parallel to the main diagonal designateppraxiic dynamics.

For chaotic systems, the RP would consist of short, broken diagonal lines parallel to the main
diagonal along with single isolated points. RP is used in the csitght as a secondary measure
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of quantify chaos in addition to the LLE.

The center of mass time series obtained for both the swarms was also analyzed from a
multiscale entropy (MSE) perspectij®?2], first introduced by Costa et[dl03] as a qualitative
measure for complexity. MSE can be used to determine whether a time series arises from a highly
stohastic or a highly deterministic process, or, in other terms, it indicates the orderliness of a
system. Multiscale Entropy is a very useful tool for evaluating the determinism or randomness
in a timeseries. It also measures the structural complexityphyasical system comprising of
very high degrees of freedom. The Multivariate Multiscale Entropy (MSampEn) introduced by
Ahmed[102] et al. is used in this study. The MSampEn algorithm proposed by Ah@#dses
a separate embedding dimension and time lag for a multivariate time series taken asdgput

given by the following equation.

-

O ORAR I — (2.14)

M is the embedding vector s the time lag vector, r is the tolerance level, N is the number
of data points in the timseries) 1 is the frequency of occurrence, add 1 is the
multivariate frequency of occurrence. MSampEn is used to find the Multiscale Entropy of the
2D center of mass tirgeries obtained from the Attackers and Defenders swarm, respectively.
The embedding dimension and the time lags for each dimensrerdetrmined by a computer
program developed by CH&9].

In the subsequent subsections, the simulations are analyzed with respect teéseigcr
Na/Np ratio, as presented in Table22Each case is analyzed from a dynamical systems point of
view and is strongly investigated for chaos. The final state of the simulation is also explored in

each case, respectively. In the last-sabtion, Muliscale Entropy analysis was carried out.
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2.4.1Analysis of dynamical behavior: Timeseries, phase space, and attractor visualization
plots.

Starting with the first case (case 1) in TaBlg, it was observed that the number of
Defenders greatly winumbered the number of Attacker agents. Case 1 was trivial, as the
simulation outcome could be easily guessed.2Higevealed the snapshot entire simulation; it
was observed that 4 of the 5 Attacker Agents were killed relatively early in the simulaivas
also observed that one Attacker agent and 96 Defenders agents were left until the end of the
simulation. The survival of one Attacker agent until the end may seem to be a bit counterintuitive;
the behavior observed could be explained due to tidupuof excessive repulsive force on the
remaining Attacker agent from the 96 surviving Defender agents, as all agents in this simulation

are globally coupled with the force terms implicitly controlling the range ofnisio
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Figure2.2: Snapshot of simutan for Case#1. Note: triangles and circles indicate Attacker and
Defender agents, respectively.

The Defenders were considered dominant as they successfully protected the Goal until
sssthe end of total simulation time. The outcome was also common sense, as the Defenders

greatly outnumbered the Attackers. From the tgages plots in Fie.3,theag nt s 6 behavi o
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was highly transient with periodic and npariodic changes in amplitude; the rapid changes in
amplitude of the center indicate close interaction between Attacker and Defender agents resulting
in agent compromises on either end. After themgmise of agents or agents in each swarm,

the CMS was calculated only among the active agents in the next timestep, causing the center of

mass to shift rapidly
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Figure 2.3: Center of mass tirseries plots for Case#1

The center of mass for case#1 for both the agents of the Adversarial system was
visualized in 2D space (in Fig.3),reveangt he exi st ence of Atransient
as a situation where the trajectories leave the chaotic regime afteain oéamount of time has
passed resulting in the formation of a gyasiiodic pattern of motida04]. Figs2.3 and2.6
showed that the agent movements looked chaotic initially and then abruptly switched te a quasi
periodic oscillation, quagieriodic oscillation, which lasted for the remainder of the simulation.

The initial chaotic trajectory was attributed due to thgagement between the Attacker
and the Defender agents, resulting in most of

from Fig2.3. As most of the Attacker agents were compromised in action, the pprasiic
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motion of the center of the Attaakewarm is along around the Goal, suggested the few reaming
Attacker agents were rotatinginaqupse r i odi ¢ or bit around the Goe
history indicated (Fig2.3) similar behavior with a lesser change in amplitude than the Attacker
swarm The Defender swarm was tightly packed due to many agents compared to the Attacker,
so the swarm centerdés change was considerably
In the end, however, as visualized in Fig.6, it was observed that the last two remaining
Attacker agent moved quagieriodically outside the sphere of influence leading to their
existence until the end of the simulation. To quantize the presence of chaos, the Largest
Lyapunov Exponent (LLE) was computed for the center of mass time series for boglert® a
usi ng Wol f[98kby petfognong phade mpace reconstruction. The phase space was
reconstructedising the xcomponent of the center of mass time series to evaluate its embedding
dimension by evaluating the fraction of false nearest neighbors and estimating theltyes
mutual information timeserieg99]. The LLE for both the agents converged at 0.022 and 0.024,
respectively, thus proving the existence of chaos.
The chaotic behavior was also further quantified by the RecurrenceRRtin(Figs2.4
and 5 for the Attackers and the Defenders, respectively. The RP for the Attackers depicts a main
diagonal line and short, broken lines parallel to the main diagonal line. Sporadic points were also
noticed on either side of the diagonal,igading sustained chaotic dynamics for the Attackers.
The RP for the Defenders (Fig.5) depicts two distinct time wi.

chaoso for t he Defenders.
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Figure2.7: Attractor visualization for the center of mass for each swarm respectively in Case#1

From Fig. 2.7, it was observed that for the Attackers, there existed more than one

dynamical attractor leading to the establishment of multiple local equilibrium points for the

Attacker swarm before it settled down to a gyaeiodic orbit around the Goal. This behavior

was attb ut e d t

(0]

t he Attacker s
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agents killed in action. As the compromise of most of the Attacker agents took place quickly in

the initial part of the simulation, the local equilibrium points of the Attaakents also changed

rapidly; in the latter half of the simulation, however, as only one Attacker agent is left, it is almost

locked inaquasperi odi c orbit around the Goal. I n th
equilibrium points were observed, angowhich the central point was much more pronounced

than the others. The outer points observed from the left plot a2.Figesulted from initial

interaction between the Attacker and the Defender swarms, where some of the Defenders initially
translated towrds the attacker swarm due to strong attraction. The Defenders eventually
traversed out of the sphere of influence and returned to the sphere of influence as they lost their

attractive force once they ventured out of the sphere of influence.

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6
T T T T T T T T T T T T T T T

—
T

-2F --2

X-component Center of Momentum Vector Attackers
X-component Center of Momentum Vector Defenders

—3 = -3 _al - / 4
“ AVAV; '

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6

X-component Center of Mass Vector Attackers X-component Center of Mass Vector Defenders

Figure2.8: Attractor visualization for the center of mass for each swarm respectively in Case#8
Defender agents rotated quase r i odi cal ly around the Goal v

occasional attraction as it crossed the sphere of influence. The presence ple nhdtal

equilibria for both classes of agents suggested the presence of many interdependent thresholds,

which caused a rapid shift of the dynamical attractors causing rapid and drastic changes in the
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system, which in the present study can be attribut¢loet compromise of multiple agents; as the
two interacting swarms that were globally coupled intrinsically (within the same class of agents)
and extrinsically (between the members of the two competing swarms). Such interdependent
thresholds are often obse ed i n the earthdés <climatic systel
wherein abrupt changes are persistent and unpredictable [49]. Thus, the current competing swarm
system under discussion was regarded as a complex system. Similar dynamical behavior was
alsoobtained in cases 2 and 3 with multiple dynamical attractors; in these cases, the Defenders
emerged as the dominant swarm.

Starting from case#4 (NA=15, ND=90) onwards, a decrease in the number of local
equilibrium points for the Attackers and an increashe same for the Defenders was observed,
which was mainly due to a relative decrease in the total run time of the simulation, which meant
that all the Defenders were able to intercept the Attacker agents in early on the simulation. There
was adecreasen t he si mul ationbs average tot al run ti
22 ) , which will again be discussed in detail [
was observed in the overall dynamical behavior and continued until dd8e3g, ND=70).
The attractor visualization plot for case#8 can be found iB.Big

From case #9 onwards, as the number of Attackers considerably increased and vice

versa. The Attackerso6é equilibrium points appes
Defender agents, multiple equilibrium points were still observed, which wasodihe high
degree of interaction of the Attackers with the Defenders, which caused the system to arrive at
the final state much faster than the initial cases, as outlinedinZable The Attacker a
strong interaction was attributed to the deaeezghe globally coupled repulsive force between

an Attacker agent with all the Defender swarm agents, making them more prone to interact with
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the Defender

agents.

Fig.2.9 revealed the snapshot of the entire simulations taken at 8 equated timestamps

throughout the simulation. In case 12, the interacting Defender and Attacker swarms were made

up of an equal number of agents (50 each). Each swarm was made up of 50 agents; respectively,

it was observed that the Attackers and the Defender swarm interactedlysctim the onset of

the simulation.
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Figure2.9: Snapshot of simulation for Case#12. Note: triangles and circles indicate Attacker

During the engagement, there was a substantial |leggeotdrom early on. Fig2.9 also

and Defender agents, respectively.

revealed that the loss of agents happened at almost the same proportion, indicating that agents

were engaging on a otmgrone basis with the spatially closest adversarial counterpart before the

collision, ultimately resut i ng i
the subplots in Fig9 . T h e

objective was to protect the Goal from the Attackers. This case was also run 100kérties

ot her

cases.
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always be binary (omen-one) in nature. Some of the cases during the Monte Carlo analysis
reveal multiple agent compromise (more than 2).

The cengr of mass time histories of both the swarms was plotted i.Fig.revealed
the presence of highly transient behavior with somewhat irreghlgved nonsmoothed peaks
and troughs. The irregularity in the peaks and troughs was due to the loss ofiragepis
progression due to close and rapid engagements. The plots revealed the existence of transient
chaos like Case#1. The LLE calculated for this case was 0.003 and 0.011 for the Attacker and
the Defender swarm, respectively. Near the end of the dimula was observed that both the
agentso6é6 traject or-peicic orlotraouwnd thee @Goal.tThis bahavipruveas |
observed from the phase space plots in2FEg. Initially, strong interaction between the Attacker
and the Defender agents riésd in rapid loss of agents, causing irregularly shaped orbits around

the Goal. The center of mass shifted rapidly due to the loss of many compromised agents.
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Figure 2.12:Center of swarm attractor visualization for Case#11

Fig. 2.12 revealed a single equilibrium point for the Attacker swarm around the Goal and
multiple local equilibrium points for the Defender swarm. This pattern was caused by the Goal

being surrounded by the Attacker agents while constantly rotating around iDéfamder

a7



swarm center constantly shifted towards the closest Attacker agents, leading to the formation of

multiple local equilibrium points.
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Figure 2.13:Center of swarm attractor visualization for Case#18 (NA=85, ND=15).
A similar pattern of dynamicdlehavior continued with reducing Defender agents and
the increase of Attacker agents beyond case#12. The rotation of the Attacker agents around the
Goal was also significantly reduced as the final simulation state is attained faster. The attractor
visualization plot for case 18 (NA=85, ND=15) can be visualized in2Hi§, revealing the

shrinkage of the basin of attraction for the Attackers
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Figure 2.14Center of mass timseries plots for Case#21.

Case#22 was the last case, essentially the convecsse#1; the Attacker agents vastly
outnumbered the Defenders. The final state was trivial; it could be observed that all the Defenders
agents were compromised quite early in the simulation. This behavior was expected as the
Attacker agents experienceglatively less repulsive force from 5 Defender agents. The
Attackers initially approached the Defenders with an almost linear trajectory followed by a minor
rotation around the group (see Rid5). The Defender swarm underwent erratic motion around
the Goal because it tried to engage with the Attacker agents closest to the Goal, causing the center
of mass to change rapidly. The close engagement with an outnumbered Defender swarm caused
the rapid compromise of agents on both sides as the Defender agddteasily intercept
Attacker agents, which were in a very close formation around the Goal inside the sphere of
influence. The time histories of the center of mass irRHig.revealed steep peaks and troughs
for the Defenders, which was caused due tadpal compromise of agents in the outnumbered
Defender swarm, causing the center of swam to shift rapidly. The Attacker swarms comprising

a much greater number of agents do not show steep peaks or troughs as the center of the swarm
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does not appreciably chge due to their close formation on the Goal and the death of relatively

few agents compared to the entire population of agents.
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Figure 2.15: The simulation described in Case#21 is visualized in 2D space.

24.2Final Simulation State

Thesystem's final state, which is the outco
immense importance as it determined which class of agent dominated the simulation in the end.
A flag classified the dominant swarm in the simulation, defined as +1 if trenBefs emerged
dominant and1 f or the Attackers. As discussed in t
Defenders emerge dominant if the Goal was protected from the Attackers until the end of the
maximum total time allotted for the simulation or if theeakker swarm was compromised before
the total time. On the other hand, the Attackers emerged dominant due to the compromise of the
Defender swarm or the Goal s breach. The fin
Simulation State metric is calaied for each case presented in Tahle The simulation

Dominant Simulation State metric is defined as the simple product of flag, the average time of
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run for all the 1000 trials in the Monte Carlo analysis, and the number of times a particular swarm

emg ged

domi nant (wi ns) .

The Domi nant

Si

mu |

ratio on a semmiog scale (xaxis only), which can be found in F®§17. The random initial

ati

on

condition and the high degree of freedom of the system caused the ndtuneeof s war m agent

interaction to be stochastic in nature, making the ending of each simulation unique.
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Figure 2.16: Center of swarm attractor visualization for Case#21.
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Initially, the Defender swarm exclusively emerged dominant for casgs#ihich
indicated that the Defender swarm could protect the Goal by intercepting Attackeradants
preventing them from reaching the Goal. It was also observed frol8ghat most of the
Defender dominance was due to the Goal protection, which meant the Defenders were
successfully able to protect the Goal until the end of maximum permissrhlétion time. This
behavior was expected due to the excessive repulsive force on relatively few Attacker agents
compared to the significant number of Defenders. In relatively few cases, the Defender swarm
was successfully able to intercept and comprentie Attacker swarm as its movement was
highly constrained around the Goal. It was observed that starting from case#5 through case#12,
there were binary final states of the system, which means either swarm assert dominance. It was
also noted that the Defders emerged as the dominant party in most of these simulations. The
dominance was profoundly due to the compromise of the Attacker swarm due to the strong
interaction. In relatively few cases, the Defenders emerged victorious by standing ground until
theend. This trend continued wuntil case#12. Mu c
until case#12 (NA/ND=1) was caused by the breach of the Goal, while the minority of the wins
was due to the total compromise of the Defender swarm. Beyond case#i€,rasniber of
agents in the Attacker swarm increased consi de
mostly by compromising the Defender swarm co0mg
for the remaining cases in Takk2. However, the Defendeswarmonly exered marginal

dominance from case#12 onward until case#14 by preventing the breach of the Goal.
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24.3Largest Lyapunov exponent for all the cases presented in Table 2

The Largest Lyapunov Exponent (LLE) for the center of mass time series was calculated
for the Attacker and Def e[98Has outliredjieEghX%12)fos i ng Wo l
all the 1000 trials as outlined in Talde.

The average, median, maximum, and minimum LLEs doant from the trials were
plotted in Fig. 19 and 20 for the Attacker and Defender swarm, respectively. It was observed that
average LLE hovered in and out of zero for both the agents, indicating that the system was on
the Edge of Chad83-85].

A dynamical system crosses the boundary between a highly deterministic system and a
chaotic one in this region. It i s believed t ha
system increases and it g greatest computational capa@8]. From Fig.2.17 and2.18, it
appeared that the average LLE for the Defenders was greater than zero for all the cases presented

in Table 22 and the average LLE for the Attackers is less than zero beyond case 9. The minimum
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Figure2.20: Largest Lyapunov Exponent (LLE) of the center of mass time series of Attacker
swarm versus the Ratio of the Number of agents initially making up the Attacker and the
Defender swarnrespectively for 1000 trials.
and the maximum LLE for all the cases are positive and negative, respectively, indicating the

presence of chaotic and nohaotic solutions. The interacting swarm system, in this case, could
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be concluded ©® Bbabse, bhehb&EHgeaused a rapid c
system. From Fi@.17, it was evident that from cases #5 through 7, even though the number of
Defender agents was large compared to the number of agents in the Attackers, it was tempting
to condude that the outcome of such cases would be trivial (Defenders exert dominance). On the
contrary, a marginal number of cases where the Attacker swarm can successfully breach the
Goal. The system hovers at the Yy&Etdgmbéofurchaolky
dynamics; thus, it may be concluded that some solutions appear to be chaotic, ultimately affecting
the systembés final state.

Figs.2.19 and2.20 also reveal that the highest LLE reorder for the entire study occurs at
case 13 (NA=55, ND50), equal to 1.55 was for the Defenders. The RP was also found for this
case indicated the presence of chaotic behavior as indicated by the broken line parallel to the
main diagonal line and sporadic points in Bigl. LLEs was obtained for cases 11 tigb 13
was notable, as the number of Attackers and Defender agents making up their respective swarms
was equal or numerically very close to each other. A histogram was plotted for the LLEs calculate
for both agents in case#12 was plotted inZEky. It was observed that both the swarm have a
prominent central peak a0.006 and 0.010 for the Attackers and Defenders, respectively,
reaffirming both the swarms are zoning around the edge of chaos. The histogram further
indicated that most of the Defender swarfar the trials in case#12 had a positive LLE. The
highly chaotic behavior was due to the Defend
Attacker agents in multiple directions. As a consequence of rapid engagement, multiple agents
on either side were cqmomised. Most of the Attacker agents, on the other hand, have negative
LLE as they mainly exhibit periodic or seiperiodic movement around the Goal while moving

in and out of the sphere of influence while interacting with the Defenders.
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Figure2.21: Recurrence plot for the case where max LLE obtained for Defenders in Fig.19
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Figure2.22: Histogram of LLEs of the center of mass time series for case#12(NA=50, ND=50)
for 1000 trials.

2.3.4Multiscale Entropy analysis

Multiscale Entropy was used to quiae the degree of randomness of the Defender and
the Attacker swarm, respectively. Multiscale Entropy was calculated for all the cases in Table 2
for time scales from 1 to 2@hichrevealed that it is monotonically increasing. A concise picture

of the change in MSE for all the simulation cases studied in Bebleas presented by plotting
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the ratio of the Multiscale Entropy calculated at scales 20 and,1 respectively, and cardbe foun
in Fig.2.22.

The MSE of the Defender swarm was greater than the Attacker swarm for all time scale
indicates that the Defenders were dynamically more complex than the Attackers. The ratio of the
MSE for the Defenders for all the scales indicated moncadlgi increasing behavior. The
Attackers also exhibited the same trend except until case 16, beyond which the ratio of the MSE
is ~1.01, indicating that the MSE increase was not appreciable across scale 1 to 20. A detailed
study of these cases revealed tine MSE did not show an appreciable increase when plotted
from scales 1 through 20. Thus, overall, it can be concluded that the interacting swarm system

exhibits the behavior of a complex system
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Figure2.23: Ratio of Multiscale Entropy calculatedstale 20 and scale for the center of mass
time series for Attacker and Defender swarm respectively, for all the cases presented in Table
2. The error bars represent the sample standard deviation in each case.

This overall trend can be explained from al@wphical standpoint that a complex

system is often defined as more than just a regular combination of its constituents. A standalone
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system constituent cannot explain the complex emergent behavior observed by the system
overall. In the present problenmet Attackers and Defenders swarm are made of simple agents

that exhibit highly emergent behavior in swarming while interacting with each other in an
adversarial manner. The MSE was also used as :
MSE indicatedhat the Defenders were less ordered as a system when compared to the Attackers;

this was expected because when the Defender swarm engages with the Attacker swarm the
Defenders are forced to be constrained in a relatively smaller perimeter definedridjudree

radius used in the Attractive Morse force between the Defender agents and the Goal. The
phenomenon was also evident from multiple attractor visualization plots presented in the
previous sections. The Def endeadrescompextmsthe ai ned
unconstrained motion of the Attackers in 2D Euclidian space. This phenomenon was backed by

the dynamical behavior observed in Fig8 and2.7, respectively.

It can also be concluded from Fig23 that the Defenders have higher meaiitiscale
Entropies occur from cases #11 through 16; these cases also had an extensive variation as
indicated by the standard deviation error bars. On the other hand, the attackers exhibited
relatively higher mean MSEs from 1 through 6 and then agam 1® through 14. Cases 11
through 14 exhibited overall the most dynamically complex behavior for both agents; the number
of Agents in both the swarms were either equal or numerically very close. These cases also
exhibited binary final states, as indiedtin Fig.2.17, along with the maximum variation of the
LLEs is observed from Fig2.19 and2.20. In the initial few cases (cases 1 through 5), the
Attacker swarm exhibited relatively higher MSEs as the size of the Attacker was considerably
smaller compad to the Defender swarm, thus causing greater randomness in the overall

interaction when studied over 1000 trials. Beyond case #15, the Attacker swarm emerged as the
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dominant swarm in all trials because of being heavily outnumbered by the Defender Bigarm.

23 revealed a drop in the randomness of the simulation for all cased beyond case#15. The
Attacker swarm quickly exerted it dominance which was expected as the Defender phase plots
contained erratic trajectories around the Goal as it was overwhelmadvagt number of
Attacker agent engaging from all sides, all these factors caused a drop in the MSE of the Attacker
swarm along with its overall variation in all the trials; as for the Defenders complex dynamics
also existed for all the cases which lea@tigher degree of random behavior causing the MSE

to be relatively higher than the Attackers.

The MSE calculation of the Attacker and Defender Swarm overall indicated the presence
of complex dynamics which can be used to rule that the current scennsmlared for the
simulation can be referred to as a complex system; the MSE entropy plots for the Attackers and
the Defenders also exhibits an intermediate level of randomness which lies between a perfectly
deterministic system and a completely randontesys Thus, it can be concluded that the semi
hybrid approach assumed at the beginning of this paper is successful as the simulation can be
used for meaningfugngineeringapplications
2.4 Conclusion

The adversarial swarm model discussed inghfger comprises two types of agents: The
Attackers and the Defenders, which are interacting in unconstrained 2D Euclidean space. The
force terms pr es e n-based govehmgwenuatiod an e breadlyncthssified w
into two tyipretser@imesmdcuaaindelby, responsible fo
and their interaction with their competing counterpart.

The Defenderd6s main aim was to protect a po
6Goal . 6 | n cont rnaobjéctive wab te intertept she &aalrwdile contiaually

engaging with the Defenders. SeHRybrid approach was assumed in the simulations as agent
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and goal compromise criteria was modelled as per real world scenarios that may arise in

engineering applicatits. A total of 22 simulation cases were studied with a decreasing number

of Defender agents and an increasing number of Attacker agents, as presented in Table 2. A

Monte Carlo analysis was done by running each case 1000 times to statistically studgi the fin

state of the simulation, LLE, and the MSE. The following are the main conclusions can be drawn

from the paper:

1 The overall model discussed was a generic dynamical s\yseetd Agent based Adversarial
Swarm model that was solved using a rigorous numesrogedure. This model is generic
enough and can be adapted to a wide range of engineering applications.

1 In the spectrum of the study conducted, the initial case#4}#tevealed transient chaotic
behavior with multiple local equilibrium points for bgthrties that reaffirmed the existence
of complex dynamics.

1 Beyond case #10, the number of local equilibrium points reduces for the Attackers as it
converges to a central equilibrium point. On the contrary, multiple equilibrium points existed
for the Defendr agents for all the remaining cases.

1 The LLEs found out for the Attackers and Defenders from the center of mass time series for
all the trials in each case, respectively, revealed the existence of both chaotic-ahdatan
solutions. The presence dfiaotic behavior was also backed up the Recurrence plots. The
average LLEs indicated that swarms were both
the presence of complex dynamical behavior.

1 Finally, Multiscale Entropy (MSE) was evaluated for the eeof mass timeseries for the
swarm from scales 1 to 20. MSE, for both Attackers and Defenders, revealed the MSE the

existence of complex dynamics. The MSE revealed an intermediate level of randomness for
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the simulation overall thus proving the effectiesa of the Sentilybrid approach assumed
in the Adversarial swarm model.

In the current work, the simulations considered the interaction between the Attacker and
Defender swarm in an ideal environment where the interactions occur; noise effects were not
explicitly modelled but implicitly considered by using random initial conditions. The work also
assumed ideal and instantaneous inter and intra swarm communication and did not consider the
effects of delay in communication. The position of the Goal wasaalsumed to be fixed for all
the cases studied. The Attackers and Defenders were also globally coupled without explicit cut
offs. The forces obtained from the physics based potential functions implicitly imposed the
limitation of the range of sensing oision for the agent. Delay in communication between the
agents was not considered, which is sometimes observed in thworédhicase due to various

external factors. Some of these limitations will serve as the basis of future works.
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CHAPTER 3

USE OF HYBRID ECHO STATE NETWORKS ON THE PREDICTION OF GROUP
DYNAMICS OF AN ADVERSARIAL SWARM SYSTEM

3.1 Abstract

A hybrid Echo State Network was used to predict the dynamics of an Adversarial Swarm
System. The swarm consisted of two agent classes tmggder dominance over a point of
interestintwed i mensi onal space. The Defendersd pri mar
the Attackersodé primary task was to intercept
simulated in a serhybrid framework. fl the distance between the agents of the Adversarial
Swarm is less than a predefined criterion, agents are considered compromised. Similarly, if the
distance between Attacker agents and the Goal is less than a predefined criterion, the Attackers
are deemedb have intercepted the Goal. Two configurations were used to evaluate the use of
Echo State Networks for predicting system dynamics. Configuration 1 employed a single ESN,
i.e., the patieemporal data for all agents of an Adversarial Swarm model wakinget. In
configuration 2, two separate ESNSs, in parallel, were used to predict Defender and Attacker
swarm dynamics. Based on the results, it was concluded that the parallel ESN configuration was
more effective in achieving qualitatively similar predias of the dynamics for the Adversarial
Swarms.

3.2 Introduction
Swarms are essentially complex systems generally characterized-biyesrdynamics;

an accurate physidzased model is imperative to the holistic understanding of the underlying
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dynamics Swarms are a collection of independent, autonomous agents that are widespread in
nature from ranging from ant colonj&k flocks of bird$§2], and schools of fishE3. Nature
inspired swarm models have been an active area of research for the past couple of decades.
Simulating natural swarm behavior for engineering applications is inherently problematic as all
natural systems offer inherent flexibility asdalability, often difficult to attain using digital
computers. The principle of swarming forms the basis of extensive mddgrangineering
applications ranging from spacecrffis UAVS[5], robot$6], and optimization algorithni].

Typically, two types of swarm interaction are observ&dlversarial and Symbiotic,
wherein two or more swarms either compete or cooperate over resource utilization. Symbiotic
swarms found in the animal kingdom include multispeciesgf26]hunting, were in different
groups of species team up ¢peration) with each for hunting groups of prey. Adversarial
Swarms, which are the focus of fesentstudy, are abundant in natural environments, such as
groups of predators engaging with prey groups, and can be found in aquatic and terrestrial
environnents. Most of such interactions take place for foraging purposes. Natural examples of
Adversarial Swarms include groups of omnivorous Chimpanzees hunting groups of Red Colobus
Monkeyg427] and groups of predator Lions hunting herds of ZdBBjdn the aquatic
environment, a multispecies association of Dolphins with Seals and Dogfish for feeding schools
of small fisH29], groups of Killer Whales, and a large number of Herring, where the former
would force the latteto dive up by almost 150 metf88], which would enable more effective
foraging.

Historically, the Adversarial Swarm phenomena have been modsladredateprey
problem, explored by multiple researchers, including ecologists, physicists, statisticians, and

mathematicians. These models can broadly be classified into three kypssatic, lattice
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based, and dynamical moddlsaddition to the amputational models, few experimental studies
have also been conducted in the recent past. In kinematic models, the interactions between agents
are typically modeled as velocity terms. Angelg@iilinvestigated the collective predation in a
simple agenbased model capable of reproducing animal movement patterns where the
individual agents were modeled based on Vicsek'spgsefielled10] agents. Lif32] used a self
propelled particldbased model to study the predation of bats on prey. In the izl models,

the computation domain is divided into uniform 2D grigis lattices, which have 'states’
associated with them, e.g., empty or filled. Notable latb@sed models include Kamimura et
al[33], wheregroup chase and escape in a swarm modeled, and the study concluded the
formation of highly selorganized spatial structures. Wang ef3d]extended the predatprey
problem by adding a third species and considered the effects of stochastic vision; the study
concluded direct relationship between the predator's vision and the prey's extinction rate. Other
notable works on swarms to swarm interaction includes GaertngB8{,akhere an agertiased

model based on the MASON libr§Bp] was used to model the engagement between two groups
of UAVs in 3D space. Stricklad7] studied swarm engagement during live experiments with
two svarms of UAVs based on different pursuit and evasion strategies.

Dynamical swarm models are explicitly based on Newton's second law of motion, which
offers accurate insights into the highly complex emergent behavior between the two swarms.
Zhdankin et al[38] studiedthe dynamics of a swarming predapey model, where each
group's swarming was based on leargl shorrange forces, and a nawonservative force was
used to model the interactiagarm between the swarms. The study concluded the presence of
Chaos, quasperiodic, periodic behavior, and the existence of singularities. Kolon[8%]al.

investigated the collision of two swarmsde up of homogenous agents by considering the effect
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of delay in communication between various agents; the study demonstrated mutual swarm
capturing during the interaction, ultimately leading to the miJli8§state of motion.

Gupta et a[105] developed a physidsased dynamical Adversarial Swarm moaéh
well-defined intraswarm and inteswarm forces. The model consists of two distinct interacting
swarms: The Attackers and the Defenders, which have conflicting objectives in unbounded 2D
Eucli dean Space. The Def enderunbopnded 2DeEadidiah he 06 Go
space. In contrast, the Attacker's main objective is to intercept the Goal while continually evading
the Defenders. The Defenders' swarms protect the Goal by swarming around it and blocking any
Attackers agent trying to reach the &kdf an Attacker and Defender agents are very close to
each other, if the distance between them is less than a predefined criterion, they were assumed
to have collided and were consequently arrested for further participation. The arrested agents
were ina&tive for the remainder of the simulation. The simulation was assumed to have a binary
outcome or a final state, wherein either the Attacker or the Defenders emerged as the dominant
swarm. The Attacker swarm was considered dominant if an agent in the swecessfully
intercepted the Goal during the simulation. If there were no remaining agents in the Defender
swarm at any point in the simulation, then the Attackers were considered dominant. If the
Defenders successfully defended the Goal before the et aimulation or if no Attackers
were left in the simulation, the Defenders were considered as the dominant swarm. If at any time
during a simulation, no agents were left in either of the swarms (i,e the agents compromise each
other off in the engagemgnthe Defenders were considered dominant in the simulation as the
Goal was successfully protected from the predation of the Attacker swarm. The scenarios
menti oned above formed the basi s[l@fThén8nt mul at i o

linear timeseries data obtained from the simulations performgt0%) were studied using
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various tools that included tirrseries plots, recurrence plots, attractor plots, and the Largest
Lyapunov Exponent (LLE). The system was strongly investigatethéoprtesence of Chaos. As
a vital parameter of the system, the number of Attackers and the Defender agents making up each
swarm is varied to study the simulationds fi nce
case is also evaluated to probe the presef Chaos. The degree of determinism in the data or
the complexity of the system was found by assessing the Multiscale Entropy of theeaon
time series data.

Traditional Artificial Neural Networks (ANNs) have been traditionally limited in
predicting nodinear transient times series data, which are highlystationary and nonyclic
in nature. ANNs have been traditionally combined with other techniques such as NARMAX
for predicting highly nodinear chaotic dynamics such as the Lorentz syI2jnSunspot times
serie$43], and downhole pressure for a giisoil well [44]. EIman efal.[45] introduced the idea
of Recurent Neural Networks, which were proven to be suitable for forecasting highlty non
linear timeseries data obtained from a dynamic system such as the Lorentz[4g$t@naining
a conventional Recurrent Neural Network (RNN) is a complicated process. The backpropagation
through timeg(BPTT) method has been partially sessful in training RNN§47, 48] Modified
RNNs such as Long Short Term Memory (LSTM) have beenesséal in predicting high
dimensional spatiotemporal systems in the short[#&mcustom architectures such as Deep
Neural Network(DNN) with convoluticd LSTM[50] have also been successful. Oher stdite
the-art RNN architectures include Gated Recurrent Units (&RUvhich has also successfully
predicted multivariate timeeries with missing values by taginwo representations of the
missing patter, namely making and time interval. Random Recurrent Neural Network (rRNN)

has also predicted the periodic Horear Mackey Glass syst¢fi]. One of the primary
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limitations with conventional RNN as indited by Demirig48] is the norconvergence in the
training process due to existence of bifurcations. Slow convergence and high computational costs
of RNNs severelyimit its engineering applications. Vanishing gradient prolfhwhich
severely limits the ability of a RNN to learn long data sequences.

An alternative to conventional gradient descent methods applied to RNNS was
independently proposed by Jager and Fé§sas the Echo State Network(ESN) and by
Maag54] as the Liquid State Machine(LSM) in which only the synaptic connections from the
RNN to output neurons were trained by learning. The idea of ESNs can be traced back to
Neuroscience, Dominey et [&l5] presented a learning algorithm about sequence processing in
mammaliarbrains, e.g., speech recognition in the human [5ajb6] was the precursor of the
actual algorithm of ESNs. ESNs and LSMs were unified into a common research topic known as
t he OReser voi 157,68 mpruBSN, thg rdainaBkds)to construct an RNN with
randomly generated weights. The randomly constructed complekneam transformation of
temporal data can be extracted from the output layer wingle techniques such as linear
regressiofb9]. A great deal of art is needed to implement an ESN successfully, including the
effective turning of manyyperparameters. Since the first decade of the 2000&$Chas
been successfully implemented in a multitude of domains, including speech rec@g@ijtion
robot contro[61, 62] forecasting financial markg63], natural language processihg6], Oil
and natural gas sector such as pressure estimation-lit galswells[68], detrending of non
stationary fractal timesex§69] and finally dynamical systenj83] such as the Mackey Glass
systenfb1]. Recent research also reveals that harddwased Reservoir computers are also
possible based on FPGA arrB§@ and carbon nano tudg4]. These computers can be more

effective than traditional s o f [TOjimcorgranatmtde ma y
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current popular cloud computing trend.

The current state of the art reveals that ESNs have been very successful in predicting
chaotc dynamic systems. ESNs in the contemporary literature have been found to use 3
configurations while predicting chaotic behaviors, namely, observer modea(emnomous or
predictive mode), where model free prediction is achieved by utilizing limiteel wtaiables
[75], the generative (or autonomous) mode in which during the prediction the output of a previous
time-step is fed as the input in the Reseryoé-78] and finally custom ensemble methods where
ESNSs are used in conjunction with knowledgesed mode]g9]. The authors of the previously
mentioned works successfully verified and validated these techniques in the simple Lorentz
systenii76], Lorentz96 systerf80], KuramotaSivasinsky (KS) systefr5, 78] the Rossler
systenii75], and dynamics of excitable media such as the Barkley model and the-Btmrnio-
CherryFenton mod€i81]. ESNs have also successfully predicted lagpge dynamical systems
such as Large Eddy simulation of an incompressible turbulent round jet by implementing
massively large scale parallel reserf@8. Hardwarebased reservoir computers have also
successfully predicted dynamical systgr$, such as the Mackeglass system.
KrishnagopdB2] studied the effectiveness of a reservoir computer to separate chaotic signals
and conclude that their results were better than the Wiener filter obtained from the same training
data.

Several studies have also been conducted to have a holistic understanding of a Reservoir
computerdéds inherent dynamics, vpredicting dymamic | d e n att
systems. CarrdB3] used an REES N a't t he O[&4d 8kregionf to getioamo s 6
predictions and concluded that it does not necessarily improve the performance [€&]aislb

conducted studies on the dimension of Reservoir computers and concluded the increase of

72



fraction dimension occurs inside the Reservoir with the increase of its dimension, which may
adversty affect the performance of Reservoir Computer, C4dB8d]lalso conducted studies on

the network structure of the RESN. Zhan{88]conducted studies in the sensory phase
coherence of two parallel reservoirs and concluded that-sdrartprediction is possible, but
parallel reservoirs are limited in sensing the collective dynamicsofipled chaotic dynamic

of the entire system in the long run.

In the current work, Echo State Networks (ESN) code available from ansopece
GitHub repository Neuronal07] and opersource python library ReservoirR98] was
modified extensively to accommodate the prediction ofgitweip dynamics of the interacting
Adversarial Swarms by implementing two ESN configurations. The first configuration consisted
of a high dimensional ESN used to predict the agent level dynamics of both the Attackers and
Defenders. The second configuratioomprisedtwo parallel reservoirs, each individually
assigned to the Attackers swarm and the Defarglgarm, respectively. These configurations
worked in the generative (or dadaiven) mode of operation. The following are the main
intellectual contribubns of this paper:

1 Use of ESN in two configurations to predict the dynamics of an dgpex@d highly non

linear Adversarial Swarm System.

1 The two Configs are hybrid in nature as simulation end criteria, goal beach caitetia
agent compromise criteraae forces upon the ESN.

1 In the first Config a single high dimensional hybrid ESN was used for predicting the
dynamics of the Adversarial Swarm System

1 In the second Configa novel parallel hybrid ESN wasedwhere independent ESNs

were used to prediché dynamics of Adversarial Swarms.
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This paper is organized as followsection3.3 discusses the methods and formulations,
which contains the Adversarial Swarm model formulations and the formulations for various
proposed ESN configurations. Secti®d includes the verification and validation of the ESN.
Section3.5covers the results and discussion, followed by the conclusion in s8diion

3.3  Methods and Formulations

In this section, the detailed formulations of the Adversarial Swarm model can be found
along with an irdepth approach for solving the same to obtain the simulated data. A precise
formulation of a base ESN model is also presented, followed by the formulations of the two ESN
configurations.

3.3.1 Adversarial Swarm model

A physicsbased agertased model is developed to study the dynamics of two interacting
Adversarial Swarms: The Attacker Swarm and the Defender Swarm (hence, referred to as
OAttackersd and O0Defendersd respecdbDefengldrsy) . The
protect a point of interest in unbounded 2D Euclidean space by swarming around the Goal along
a sphere of influence. I n contrast, t he Atta
constantly trying to evade the Defenders. They activedgelthe former in a perimeter around
the Goal or a sphere of influence. The individual swarms in the swarm system are modeled based
on a Lagrangiafbased approach having primarily two types of forées nt er 6 and &6i nt r
forces; the inteforces araused to model the interaction between the agents of the Adversarial
Swarms, respectively. The intfarces are used to model the forces between members of the
same swarm. Each swarm can be generalized as a collection of N agent®imengional
space wih position and velocity vectors. The governing equation describing the dynamics of the

two interacting swarmghe Attackers and the Defenders are deriveedbe d o n Newt onbs s
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law of motion and are given by the following equat{@8%

B Ay — B Ne B nQ i nooQ i
I gBrs Bj (3.1)
Br Bj (3.2)
dp ABp — B Ne B no Qi n e |
I 9Brs By (3.3)
dr, ABp (3.9

Eqgns. 8.1-34) are the principal equations for the Adversarial Swarm model that is
subject 6 given initial conditions®; 6 ThyR 0 ThB; 0 Thdy 6 T of individual
agents in the respective swarms are known. ByE)-(3.4) are numerically integrated using a

customized fixed timetep 4th order Rungiéutta explicit solve[69].

(-1.1) (0.1) (L,1)

Attackers
(-1,0)

@), =5, (1.0)

(-1-1) 0,0) “remeee | (@)

Figure3.1 lllustration of the domain for Adversarial Swarm Simulation.
A total of 22 cases were studied for an ascending numb&itaxtkersand descending
number of Defender agents, starting with a population Aftackersand 100Defendersand

ending with 10Attackersagents and Befendersagents. A Monte Carlo analysiss conducted
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for initial randomized conditions to study the dynamics statistically for each case, respectively.

The simulations were intensely investigated for the presence of Chaos by evaluating the Largest

Lyapunov Exponent (LLEYf the center of masgte-series of each swarm, respectively, using

phase space reconstrucfiod] a n d

Wol f §[8l]. al gor it hm

Table 31: Case MatriXor Adversarial Swarm Simulation

Case Na Np Na/Np Max Sim Time
1 5 100 0.05 100
2 7 97 0.07 100
3 10 95 0.10 100
4 15 90 0.16 100
5 20 85 0.23 100
6 25 80 0.31 100
7 30 75 0.4 100
8 35 70 0.5 100
9 40 65 0.61 100
10 45 60 0.75 100
11 50 55 0.90 100
12 50 50 1 100
13 55 50 1.1 100
14 60 45 1.33 100
15 65 40 1.62 100
16 70 35 2 100
17 75 30 2.5 100
18 80 25 3.2 100
19 85 20 4.25 100
20 90 15 6 100
21 95 10 9.5 100
22 100 5 20 100

Transient Chao$72] was also observed for some initial cases. The overall source of

Chaos in the system for all the cases studied was observed to be induced by the passively

constrained chaotic motion of the Defender agents around the Goal. Multiple local equilibrium

pointsexisted for thédefendersn all the cases and some instances folAti@ckers indicating

complex dynamics. LLEs for all the trials in each case revededtic and nowchaotic

solutions, with mosbefendersexhibiting chaotic behavior.

Overall, theres | t s o f

t he

LLE

ndi

cated

t hat

bot h

displaying complex dynamical behavior. The final system state studied for all the cases indicated
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binary final states for someasesin Table3.1. Multiscale Entropy(MSEY3, 74] was also
evaluated from the center of mass tigeies to study the complexity of the interacting swarms.
The MSE results (Fig.2) revealed a greater degree of ramthess for th®efendersompared

to Attackersdue to the nature of the former's role in the simulation. Overall, the maximum value
of MSE obtained was ~1.40 for both tAtackersandDefendersombined. The average MSE

for the AttackersandDefenderds 1.04 and 1.25, respectively when calculated over time scales
from 1 to 20.As a result othe medium degree of randomne$she nonlinear center of mass

time-series for both class of agents, thprediction of the timeseries data was plausible.
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Figure 3.2 The ratio of Multiscale Entropy calculated at scale 20 and scale for the center of
mass time series for Attacker and Defender swarm, respectively

3.2.2 Echo State Networks
In a general Echo State Network (ESN) shown ind2g.an input vector (training data)

u(t) with K units (or nodes) iI's fed i nto a d\y
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Reservoir is then coupled to an output layer y(t) with L units(or nfisijs)t is assumed that
the Reservoir receives an input at discrete time t and is combined with the reservoir state to

produce its outpud T O

Training Testing
W W W, W
O . e :O O - ‘-‘—’"O
u(m) i - i ¥(m) u(n) I ’ } ‘ y(m)
—_ ! ! . e ———r i =_
K units N units L units E \ Kunits N units \ Lunits E

A
:_1“'”(11)

Figure 3.3 Training and Testing of an Echo State Network.
Echo State Networks tygally use an RNN with leakjntegrated discretéme continuous
value unit§75]. The equations of update used in this study are obtaine{b®oi#6]and are
given by the following equations:
wé OATGE prp ¢ WWE p (3.5
wE p | weE p | wE (3.6)
Wherew ¢ N 9 represents neuron activations of the Reservoir@adN 5 Yo s its
update at every time step n. The tanh() function is used as the sigmoid wrapper for the neurons.
| N Tip is the leaking rate, [;] represents a vertical vector (or matrix) concatermation
596 P 0 gande ¥ Yois the input weight matkiand recurrent weight matrix, respectii@h.
Once the Reservoir is trained, the output weight matrix is generated using linear regression. The
linear readout layer is defined as,
wE w ppenpe (3.7)
Wherey¢ N s represents the network outpit ©® q%¢ P 6 0o s the output

weight matrix, and [;] represents a vertical vector concatenation. The network output weight
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matrix is learned by comparing the network output y(n) with the target olit{€ifn). This task
is achieved by minimizing the Root Mean Squam®ERMSE)between the network output and

the target outplit6, 77]

0 oo -B -B w& & (3.8)

In Egn.(3.10), N represents the total dimension of the output matrix. The operation of the
ESN, as defined j86], can be briefly summarized by the following steps:
I.  Generation of a random reservoir with a given input weight metri¥ recurrent

weight matrix W, and a given | eaking rate

II.  The training input u(n) drives the network, and reservoir activation units x(n) are
collected.

lll. A linear readout layer obtainke network output. The output weightso)\are
computed by minimizing the error between the network oufptit and the target
outputd)“A @y

IV.  Finally, compute output in the prediction phase using the trained network on the
recycled data (i, éhe data obtained in the previous tistep) in case of generative
mode or a limited component tirseries in predictive mode.

To produce ahighly accurate network capable of predicting the output, dédte
hyperparameters of the RESN viz, spectral radius scaling factor, leaking rate, probability of
nontzero connections, and regularization coefficients must be tuned. This task was achieved by
performing a comprehensive uniform grid search essential to producing-aiedd network
capableof predicting the highly transient dynamical behavior of the Adversarial Swarm system.

The readouts from the ESN in EqB.7) can be rewritten using matrix notation as:

O 0w 0 (3.9
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Where®N s are iso€ and@n s are all pI'p € ¢ produced by
presenting the Reservoir with¢ , both collected into respectineatrices by concatenating the
coumnvectors horizontally over the training per
is used instead opN"™ Y&

The optimized weighté ¢ ¢ finimize the RMSE between ¢ anda ¥®¢  are obtained
by solving the following set of linear equations, which are overdetermined in nature.

@ W ® (3.10

Whered® & g% "G stable solution to Eqgn. (10) is obtained by Ridge Regression, also
known as Linear Regressiai8] with Tikhonov Regularizatio.

w @ ® W T O (3.11)

The output weights’oé °fh equation (11) are found out by minimizing the RMSE in Eqn.
(8) by the following equation:

) AOCiBI B wt& g fsw s (312

Where 0% 9s the I" row of & ® &nd |||| stands for the Euclidian norm. The above
equation's objective function includes a regularization feggd s penalizing large sizes
6 ¢ © %o the square error between the predicted deta and the target daffh ¥®¢ . The
regulaization term aims to bring about a compromise between training errors and output

weights.
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3.2.3Echo State Networks (ESN): Configuration 1
'

Training
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Figure3.4: Training and Testing of ESN Config#1.

In this configuration, a single higtdimensional reservoir will be used to predict the
dynamics of the individual agent (Fig.3). The spatial timeeries data of the position vectors
obtained from the Attackers and the Defenders ffeg®@hwill form the basis of the training and
the testing set. The position vectors for all the agents of the Attackehemkefender swarm,
respectively, are denoted lbge € andoag € . The position vectors of the agents of both the
swarm are further concatenated and presented as a single input to the Reservoir by means of the
vectoré ¢ . This vector is essentiglthe position vector for all the agents taken together as one
high-dimensional concatenated vector. During the training phase, the data is first passed through
with an external module called the OoDipstcr i mi
into the ESN. The preprocessor's main aim is to modify the position vector data for compromised

agents to maintain uniformity in the dimension of the data input to the ESN. In the prediction
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phase, the preceding time step is used to predict everyssiaaedime step. In the prediction
phase, the oO0Discriminatordé is used t[®]t,enforce
serve three principal purposdsst to stop the prediction in case the outcome of the simulation
is determined (i,e to declare whether the Attackers or the Defenders emerge as the dominant
party); second to pogtrocess the predicted output by implementing the agent collision criteria
in comparing the distances between all Attacker and Defender agents respectively to the agent
compromise criteria and third, if any agent collides, qpostess the predicted data further
input into the REESN for the prediction of the subsequent tistep as it is operating in the
generative mode.
3.2.4Echo State Networks (ESN): Configuration 2

In the second configuration, two RESNs work in parallel, wherein eachrésponsible for
handling the Attackers and Defenders swarm data, respectively3(#gln both these cases,
the ESN will be coupled with an external o6Disc
configuration, as discussed in the precegiagagraph. The input to each parallel Reservoir is
the same&ax o0x ¢ o= £ . In contrastthe output is only trained again%t")& @¢  and
dbM @¢  which is the concatenation of position vector of all the Attacker and thenBef
agents, respectively. The target data is obtained from the Discriminator (Séeﬂfﬁgﬁ £ &
d)of’ ¢ ) asitis a part of the training data; the Discriminator would also ensure that the target
data is also preprocessed. The common inpuireashat the respective ESNs can learn the
interaction of the Adversarial Swarms while predicting the dynamics of each swarm during the
prediction phase. The ESN in this configuration will be operated in generative mode (Fig.4 with
feedback from the preous timestep). The LLE of the respective Attacker and Defender swarm

were calculated from the reservoir of the E&MNich was essentially anNlimensional discrete

82



time dynamical system. The equations for the evolution of the tangent map of Eqn&eanfl a

n mutually orthogonal tangent vectors were evaluated. The LLE was computed from the among

n Lyapunov exponents of the dynamical reservoir of ESN in the testing, pag®wn in Fig.3

based on QR decomposition. The details of this method can bd flowerstraetgd0], and
Pathak53]; The LLE of the predicted data in the ESN will be compared to that obtained from

the simulation ifY9] employing attractor phase space reconstrugi@na n d Wol f 6s

algorithni71].
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Figure3.5. Parallel ESN architecture (configuration #2).

3.4 Verification and validation of ESN

The Echo State Network was verified and validated by training the classical Lorentz time
serie$80], a benchmark example of a chaotic tisezies. The ESN is trained on the data obtained
by solving the Lorentz system p ft p miit o for initial conditions & ¢& b
¢8ttx ¢ mfrom O to 125 using a fixed timstep ode45solver. A timstep of 0.0001 was
considered. The Lorentz tirgeries was used to train an ESN from time 0 to 100, and the system
was predicted from 100 to 125. The prediction is made in thmalted generativenode of

operation, where the predicted data from the previous time step was used to drive the ESN to get
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the prediction in the subsequent tistep, as shown in Figure 4. A comprehensive
hyperparameter search of the size of the Reservoir, leak rate apabiitp of norzero
connections, and the regularization coefficient was conducted to optimize the ESN on the training

data only.
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Figure3.6. Verification and Validation of ESN
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The best Normalized Mean Square Error (MSE) of the prediction is 0.1187. The
hyperparameters of the ESN used for predicting the Lorentz time series are reservoir nodes 750,
leak rate 0.1, probability of nexero connections 0.1, and regularization coedffitile05. It is
observed that the ESN was able to generate correct predictions initially in the short term. After
the initial portion of the graph, as indicated in Fig. 6, the prediction deviates as the error grows
exponentially as the output at everyeistep is obtained by feeding in the output at the preceding
time-stepwise in the generative mode of operation. Nonetheless, théelomglynamics of the
system resemble that of the original system. These results are in affirmation of the results found
in the literaturg53]. The ESN code developed for the current work can be thus considered to be
verified and validated. The ESNOS temhvilbei ty to
exploited in the later sections of this paper.

3.5 Results and Discussion

A total of 22 cases of the Adversarial Swarm was studigd3has presented in Section
3.3of this paper. Among these 22 cases, 3 primary cases were chosen to predict using the Echo
State Network. These 5 cases were deemed enough to prove the robustness and the reliability of
the ESN to achieve a hybrid prediction tbe Adversarial Swarm System. A total of 2 ESN
configurations were considered, as discussed before. The predictions from each configuration
are discussed comparatively for each case respectively in the preceding subsections.

Three primary cases were cem among the 22 cases of the numerical experiment are Case
1 with 5 Attacker and 100 Defenders, Case 12 with 50 Attackers and 50 Defenders, and Case 22
with 5 Defenders and 100 Attackers. The cases simulatedhtieal situations that may arise
in theinteracting Adversarial Swarms based on their population: a vast number of Defenders and

relatively few Attackers, Attacker and Defender numbers comprising respective swarms are
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equal Attacker swarm vastly outnumber the Defender swarm. These cases uskddo
establish the robustness and the reliability of the hybrid ESN model discussed before.

A comprehensive hyperparameter search was conducted for each of the cases in both
configuration 1 and 2, respectively, and the best combination of hyperparmmassfound out
by minimizing the NRMSE in each case, respectively. 44% of the available data was used to
train the ESN, and the rest, 56%, was used as the testing set by the ESN in the generative or
autonomous mode of operation; this ratio was empiyicdditermined as the best ratio over
repeated numerical experiments. The results for every case in both the configurations are
depicted in Table8.1 and3.2, which are explored on a cdsgcase basis in the subsequent
subsections.

In Config 1, a single lgih dimensional hybrid ESN was used to achieve the prediction for the
Adversarial Swarm System as a whole. The spatialienies data for individual Attacker and
Defender agents of the Attacker and Defender swarm was used to train the network. During the
testing phase, the outputs of all the agents were also considered individually. The center of mass
time-series was generated by taking the mean of the 2D spatial coordinates of active agents at
every timestep for the Attackers and the Defenders, respalgtithe ESN was trained on the
first

44% of the available timseries data of every individual agent in both swarms respectively;
the trained ESN is subsequently used for prediction by using the prediction at evestefinas
the driving signal to predt thesubsequent timstep, the Discriminator is used to ppsbcess
the output prediction at every tinséep before it is then fed back into ESN for the prediction at

the next timestep. The purpose of the discriminator is to enforce the agent
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collision and simulation end criteria on the prediction at every -ste@ respectively as
outlined in Gupta et #3]. The center of mass tinseries of the prediction is calculated by
averaging the 2D spatial coordinates of active agents at evergtemel heener of mass time
series prediction resultsin be found in Fi§.7, the network is trained until the left of the vertical
line, and the prediction starts from the right of the vertical line; this convention is followed for
other timeseries prediction plois this paper.

Table3.2: Configuration 1 ESN hyperparameters and NRMSE

Case#
1 12a 12b 22
Outcome Defenders Win Defenders Win Attackers Win Attackers Win
Simulation End
Time 100 11.48 11.27 0.604
Prediction End
Time 100 11.48 5.9 0.604
Number of
Reservoir Nodes 310 100 310 100
Probability of
non-zero
connections 0.05 0.1 0.1 0.05
Leak Rate 0.05 0.1 0.1 0.1
Regularization
Coefficient 1.00E05 1.00E05 1.00E05 1.00E04
NRMSE 0.11 0.18 0.08 0.79

Table3.3: Configuration 2 ESN hyperparameters and NRMSE

Caset
1 12a 12b 22
Outcome Defenders Win Defenders Win Attackers Win Attackers Win
Simulation End
Time 100 11.48 11.27 0.604
Prediction End
Time 73 11.48 8.1 0.4905
Number of
Reservoir Nodes 310 100 310 100
Probability of
non-zero
connections 0.05 0.1 0.1 0.05
Leak Rate 0.05 0.1 0.1 0.1
Regularization
Coefficient 1.00E05 1.00E05 1.00E05 1.00E04
NRMSE 0.05 0.23 1.7 0.11
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Figure 3.7. Hybrid ESN Config 1 prediction for casel

Initial very shortterm prediction indicates a good match, thereafter the error grew
exponentially, as the prediction deviates considerably from the original data. However, it was
observed that the prediction is qualitatively similar to the original dlatease the number of
agents of the Defender swarm is 100 whereas the number of agents in the Attacker swarm is 5,
thus case 1 is a trivial case where the outcome of the interaction can easily be guessed; as
indicated in Table .3, the simulation endingrtie for case 1 is 100, the same end condition was
met exactly by the ESN in Config 1 in FRB)7 (right). The prediction indicated that the ESN was
able to capture the dynamics of the system to a large extent. The NRMSE obtained was 0.11

(Table3.1). The sane prediction task was also conducted by Config 2.
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Figure 3.8. Hybrid ESN Config 2 prediction for casel

The case 1 data was also used to train the hybrid ESN in Config 2, the training and the
prediction was obtained in the same way as th&arffig 1, the results of the predicted center
of mass timeseries vere depicted in Fig.3.8, it was observed that the prediction is better
compared to Config 1. In Config 1, a single high dimensional ESN was used to achieve the
prediction task; the hybriSN in Config 1could not effectivelycapture the dynamics of the
interacting adversarial system as these two systems are essentially independent to eant other
their interaction is external in nature. In Config 2, however, two ESNs assigned to eachrag
trained with a common input that is the Attacker and Defender data taken together and are trained
against the Attackers and Defenders separately. This process is conducted in parallel as depicted
in Fig. 5 using mpidpy across two parallel processesl a third process is assigned to
6Di scriminator 6, whi ch prepr oc-pracassed(enforting i nput
simulation end criteria) the output at every time step to create the driving signal for predicting

the subsequent tirrgtep.
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Figure3.9. Visualization in 2D space: original and predicted center of masssémnes in
Config 1.
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Figure3.10. Visualization in 2D space: original and predicted center of masséries in
Config 2

The interaction between the two swarms canibaealized in 2D space by plotting the 2D

spatial coordinates of the center of mass t#®ees and evolving them over time; Fig. 9 and 10

represent the 2D phase space visualization of the Attackers and the Defenders in Config 1 and

Config 2 respectivelytican be observed that the attractors in the original and the predicted plots

are similar to each other for both Config 1 and Config 2. However, for the reasons mentioned in

the preceding paragraph, it can be concluded fror8.Bignd3.10 that the hybd ESN in Config

2 was effectively able to capture the dynamics of the interacting swarm system when compared
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to the ESN in Config 1, especially this is true for the Attackers, and it can be easily observed that
for case 1 the Attackers seemed to cluttar tiee Goal for Config 1 when compared to the semi
periodic motion of the Attackers observed for Config 2.

The hybrid ESN in Config 1 and Config 2aw similarly used to predict the remainit
and 22. In case 12, the number of Attacker and Defender agents are equal to 50 each; in this case,
however, there can be two outcomes, either the Defenders or the Attackers emerge as the
dominant swarm. The binary outcomes in case 12 was found oohbdyating a Monte Carlo
Simulation of case 12 23] Gupta et al. For the current stydlyese two distinct outcomes were
considered distinctly and were labeled as 12a (where Defenders emerge dominant) and 12b
(where Attackers arise dominant), these two casesnvestigated by the hybrid ESN setup in
configl and config2 respectively.

The hybrid ESN setup was trained in Config 1 mode using the same procedure as described
in the preceding subsections for case 12; the prediction of the center of mass esevasri
depicted below. In case 12, however, binary final states existed, which means either the Attackers
or the Defenders emerged as the dominant swarm in the 1000 trial Monte Carlo Simulation
conducted in Gupta et dR3]. Two distinct trials where the Deféers and Attackers occurred
separately as the dominant swarm was considered two test cases (12a and 12b), respectively.
This approach was considered as it is imperative that the ESN is abéelict the final state of
the system correctlyThe hybrid ESNn Config 1 and 2 was used to train the data for case 12a
(Defenders won) in Table 1. The ESN in both the configurations was correctly able to predict the
final outcome of the simulation; that is, the Defenders emerged as the dominant swarm both in
the final simulation and the prediction as all the Defender swarm was atdenfaromise the

agents of the Attacker swarm ultimatekhe NRMSE of this prediction in Fig 11 was 0.18.
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Figure3.12. Hybrid ESN Config 2 prediction for casel2a (Defenders emerged dominant)

The data in case 12a was also used to tin@hybrid ESN setup in Config 2 mode. The results
of the center of mass tinseries predictions are depicted iig.B .12, the ESN was correctly
able to predict the final outcome of the simulatitwat is,the Defenders emerged as the dominant

swarm. The NRMSE for Config 2 was 0.23 when compared to 0.18 of Config 1. The prediction
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plots for Config 2 reveals that the ESN in Config 2 perforrmedieraty when capturing the
dynamics of the Attackers when comga to the Defender®Overall, this behaviomay be
attributed to the high degree of randomness in the data for case 12, as the average MSE for the
Adversarial Swarm system in case 12 (see8Edywas much higher when compared to the other
cases.

In cag 12b, both Config 1 and Config 2 were used for the prediction task using the same
training and testing prediction as indicated before. The hybrid ESN was correctly able to predict
the final outcome of the simulation in both configurations. The prediofitine center of mass
times series for case 12b using Config 1 is depicted in Figure 13; it was also observed that the
Attacker swarm is able to engage with the Defender swarm and intercept the Goal quite early on
the prediction. The prediction was disdoned after the Goal was unreasondbleontinue the
prediction thereafter. The original simulation ended at 11.27, where the simulation is called off
at 5.9; there is a time difference of around 49%. It is clear fronBFig.that the hybrid ESN in
Config 1 cannotcapture the dynamics of the swarm effectively and s ableetdigb the final

state of the system patrtially
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Figure3.14. Hybrid ESN Config 2 prediction for casel(Attackers won)

However, in the case of Config 2, the hybrid ESN performed much better in capturing the

dynamics of both the Defenders and the Attackers, respectively (s€e1HigThe simulation

end time is 8.1 compared to 11.27 for trgginal simulation, which was much better when

compared to Config 1.
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In case 22, the number of agents making up the Attacker swarm was 100, whereas the number
of agents making up the Defender swarm was just 5; the outcome of such a simulation is trivial
as the Defenders are heavily outnumbered by the Attackers. In both the Config(s) of the hybrid
ESN, it was observed that the final outcome is predicted correctly. However, Config 2 indicated
better performance over Config 1 the NRMSE(s) are 0.11 and @st8atively. The MSE of
case 22 is lower when compared to the other cases (se&2})ighus ESN in Config 2 was
observed to be better than Configalthough there was minimal difference between the total

predicted time of Config 2 when compared to Gguif
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Figure3.15. Hybrid ESN Config 1 prediction for case 22
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0.3 0.4

Table 3.4Lyapunov Exponent comparison

Wolf's method ESN

A D A D
Casel 2.00e04 5.00E03 -0.013 -0.0015
Casel2 -2.00E03 1E-02 -0.01 -0.01
Case22 3.00E04 4.00E02 5.00E02 2.00E02

Lastly, the Largest Lyapunov Exponent (LLE) to the center of massskmes was calculated

for each case r espec t[ilvard isycomparednogthe Wdc$ dbtdised Al g o r |

from for each of the parallel ESNs used in Config 2 that wergrassito the Attackers and the
Defenders respectively. The LLE from the ESN is obtained by considering the Reservoir in the
ESN as a discrettme D dimensional system; the detailed method of LLE evaluation can be
found in[53] . The LLE obtained from the hybrid ESN in Config 2 only is compared to that of
the center of mass times series and can be found in I@bleverall, the results seem to be in
good consideration. TheESNp pear s t o be he of Ch

near t 6Edge

the majority of the data obtained from the Adversarial Swarm system.
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3.6 Conclusion

In the current work, a hybrid ESN was developed in two configurations, namely Config 1 and
Config 2 to pedict the dynamics of an interacting Adversarial Swarm system. The swarm
consists of two distinct agents, namely the Attackers and the Defenders, who have conflicting
objectives in 2D space. The Defender's main task was to protect the Goal by swarnmmdgtarou
around a perimeter termed as the sphere of influence, and the Attackers are constantly trying to
intercept the Goal. An Echo state network was first verified and validated against the classical
Lorentz system. The results indicated that the ESNswnasessful in predicting a qualitatively
similar dynamical behavior.

Two hybrid ESN prediction methods were develoj@mhfig 1 and Config 2respectively,
which were used for predicting Adversarial Swarm dynamics for three distinct cases. These cases
weremade up ofa variednumber of Attackers and Defenders, respectively. The three distinct
cases were chosen keeping in mind scenarios of interest that may arise in various engineering
applications.

The hybrid ESN in Config 1 consisted of a very high dimamesi ESN where both the
Attacker and Defender agent are taken as common input via the Discriminator during training.
During testing, the ESN predicted the Spatimporal data for every individual agent making up
the Attacker and the Defender swarm. Thigpot was then fed into the Discriminator, wherein
agent compromise criteria and goal breach criteria are enforced during the prediction phase.

In Config 2, two parallel hybrid ESNs worked in conjunction with a common Discriminator.
Each ESN was assignéal the Attackers and Defenders, respectively. This configuration was
developedhs the Attacker, and the Defender swarm interaction was extrinsic in naturasnd w

modeled by the inter swarm forces as described in the introductory sections. The panadiel hyb
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ESN had a common input, the Spatonporal data for both swarms, to map the interaction of
the swarms, whereas the output for each swarm was trained against the indipatical
temporal data of individual swarms. Thus, the idea was to force thadI8hirn the dynamics

of individual swarms including the goal breach criteria, agent compromise crjtemal
simulation end criteria.

The following main conclusions can be drawn from the current work:

1 ESNSs are overall capable of learning thenamics of highly nonlinear agebased
Adversarial Swarm System

1 Among the two configurationdevelopedn this work, Config 2 showed better overall
performance when compared to Config 1 to achieve the prediction task.

1 Config 2 was able to achieve a betmrediction as it consisted of two parallel
independent ESNsvhich were successfully able to learn the dynamfasdividual
swarms which are essentially independesit each other and are only coupled by
external rules of engagement.

1 The LLEs obtainedrom the ESNs and phase space reconstruction were in good
agreement with each otheurther implying the success of the ESN riap the

interacting swarm dynamics successfully
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CHAPTER 4

EFFECT OF INDIVIDUALITY ON ADVERSARIAL SWARM BEHAVIOUR: A
HYBRID PARALLEL ECHO STATE NETWORKS APPROACH

4.1 Abstract

In the current work, a massively parallel Echo State Network was developed to predict
the dynamics of an Adversarial Swarm system. The Adversarial Swarm system consisted of two
types of agentthe Attackers and the Defenders who had conflicting objedtive® Euclidean
space. Each instance of ESN in the massively parallel framework was trained n individual spatio
temporal data of every agent. The lasgpale ESN was successfully able to capture the dynamics
of the interacting adversarial swarm system. ijygerparameters for each ESN were evaluated
using a uniform grid search. The optimal hyperparameter obtained for every individual agent
showed considerable variance that indicated that each ESN was qualitatively different from one
another, which furthemiplied that every agent the Adversarial swarm reacted uniquely when a

uniform stimulus was applied across them.

4.2 Introduction

Swarms are fundamentally complicated systems withlinear dynamics that a physics
based model may accurategpresent. Independent, autonomous agents are the constituents of
a swarm that is widespread in nature from ranging from ant coldridbcks of birds[2], and
schools of fishd8]. Swarms form the basis of extensive moeldgig engineering applications
ranging from spacecraf#], UAVs [5], robots[6], and optimization algorithnfik]. Simulating

natural swarm behavior for engineering applications is fundamentally problematic since natural
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systems have intrinsic flexibility and scalability, sometimes impossible to achieve with digital
computers.

In nature, there are two forms of swarm interactions: adversarial and symbiotic, in which
swarms compete or collaborate for resource utilization. Symbiotic swarms found in the animal
kingdom include multspecies grouf/](Bailey et al., 2013)hunting, were in different groups of
species team up (cooperation) with ed@hhunting groups of prey. Adversarial swarms are
abundant in natural environments, such as predators engaging with prey groups, and can be found
both in aquatic and terrestrial environments. Most of such interactions take place for foraging
purposes. Natal examples of Adversarial Swarms include groups of omnivorous Chimpanzees
hunting groups of Red Colobus Monkg8jsand groups of predator Lions hunting herds of
Zebra$9].In the aquatic environment, autti-species association of Dolphins with Seals and
Dogfish for feeding schools of small fidl®], groups of Killer Whales, and a large number of
Herring, where the former would force the later to dive up by almost 150 féienshich
would enable more effective foraging.

Gupta et aJ12], developed a physidsased dynamical Adversarial Swarm model with
well-defined inta-swarm and inteswarm forces. In unbounded 2D Euclidean Space, the model
consists of two separate interacting swarms: the Attackers and the Defenders, who have opposing
agendas. The Defenders protect the iah&acal 6 a
In contrast, the Attacker's main objective is to intercept the Goal while continually evading the
Defenders. The Defenders' swarms protect the Goal by swarming around it and blocking any
Attackers agent trying to reach the Goal. If an Attackel Refender agents are very close to
each other, if the distance between them is less than a predefined criterion, they were assumed

to have collided and were consequently arrested for further participation. The arrested agents
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were inactive for the remaier of the simulation. The simulation was assumed to have a binary
outcome or a final state, wherein either the Attacker or the Defenders emerged as the dominant
swarm. The Attacker swarm was considered dominant if an agent in the swarm successfully
intercepted the Goal during the simulation. If there were no remaining agents in the Defender
swarm at any point in the simulation, the Attackers were considered dominant. If the Defenders
successfully defended the Goal before the end of the simulation oAitakers were left in

the simulation, the Defenders were considered as the dominant swarm. If no agents were left in

either of the swarms (i,e the agents compromise each other off in the engagement), the Defenders
were considered dominant in the simulatias the Goal was successfully protected from the
predation of the Attacker swarm. The scenari os
Endi ng Cr it e[t3].ahé noplineardiraesdries dataiolntained from the simulations

performed ifil3] were studied using various tools that included tsages plots, recurrence

plots, attractor plots, and the Largest Lyapunov Exponent (LLE). The system was strongly
investigated for the presence of Chaos. As a vital parameter of the system, the number of
Attackers and the Defender agents making up e
final state. The Largest Lyapunov Exponent for each case is also evaluated to probe the presence

of Chaos. The degree of determinism in the data or the compléxhg system was found by

assessing the Multiscale Entropy of the Hiopar time series data.

The current state of the art reveals that ESNs have been very successful in predicting
chaotic dynamic systems. ESNs in the contemporary literature have beehtéouse three
configurations while predicting chaotic behaviors, namely, observer modeu(®mamomous or
predictive mode), where model free prediction is achieved by utilizing limited state variables

[14], the generative (or autonomous) mode in which during the prediction the output of a previous
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time-step is fed as the inputthe Reservoif15-18] and finally custom ensemble methods where
ESNs are used in conjunction with knowledgesed mode]&7]. The authors of the previously
mentioned works successfully verified and validated these techniques in the simple Lorentz
systenfil9] , Lorentz96 systerfR0], KuramoteSivasinsky (KS) systeifi6, 18] the Rossler
systenj18], and dynamics of excitable media such as the Barkley model and the- Btmrno-
CherryFenton mod¢R1]. ESNs have also successfully predicted lacge dynamical systems

such as Large Eddy simulation of an incompressible turbulent round jet by implementing
masively largescale parallel reservoirs. Hardwdrased reservoir computers have also
successfully predicted dynamical syst§2$, such as the Macke@lass system. Krishnagopal

[23] studied the effectiveness of a reservoir computer to separate chaotic signals and concluded
that their results were better than the Wiener filter obtained from the tsaiming data. Several
studies have also been conducted to have a
inherent dynamics, which would enable its effective use while predicting dynamic systems.
Carrol[24Jusedan REES N at t he §¢2b @& regioo tb pe@dmnamesliétions and
concluded that it does not necessarily improve the performance. Gamphllso conducte
studies on the dimension of Reservoir computers and concluded the increase of fraction
dimension occurs inside the Reservoir with the increase of its dimension, which may adversely
affect the performance of Reservoir Computer, Caifi2f] also conducted studies on the
network structure of the RESN. Zhand29] conducted studies in the sensory phase coherence
of two parallel reservair and concluded that shaerm prediction is possible, but parallel
reservoirs are limited in sensing the collective dynamics of a coupled chaotic dynamic of the
entire system in the long run. Chafp] used Reservoir Compugnto study temperature

fluctuations in a RayleigBernard convection problem. Gupta efl&#] used two parallel hybrid
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ESNs to predict the group dynamics of Adversarial SwgrBjswhere each ESN was assigned
to Attackers and Defenders, respeely.

An ESN capable of predicting spatemporal systems with high accuracy must have
perfectly hyperparameters, including spectral radius scaling factor, leaking rate, probability of
norntzero connections, and regularization coefficients. This task eathieved by performing
a uniform or random grid search that is essential to produce draekd network capable of
predicting the highly transient dynamical systems. A latpde parallel ESN setup was
developed in the current work wherein individtedervoirs will be assigned to each agent of the
Attackers and the Defenders, respectively. The respective agents were trained separately, and a
comprehensive hyperparameter random search was performed. Random grid search was
preferred over a comprehensigrid search as owing to limitations of computing resources. Also,
it was found in the literature that the former does not always yield the best possiblg3ésults

To dak, research has focused on applying a single simple rule set to encode the response
of all agents in each swarm to a specific stimulus. Intuitively, it is known that all organisms (even
those of the same species) do not react to identical stimuli unifoByilysing a stefpy-step
approach, the variations in individual responses affecting the behavior of a given swarm will be
explored, in addition to its effect on the interaction between two adversarial swarms. The
following are the main intellectual corititions of this paper:

1 Examine how the dynamics of the two Adversarial Swarms will change when each agent is
represented as an individual by a unique Echo State Network, trained using data specific to
a given agent.

1 Uniform grid searches to obtain the op#l hyperparameter of each ESN corresponding to

each agent in the massively parallel ESN framework.
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i Statistical analysis of hyperparameter data for each hybrid ESN assigned to each ESN to
explore the idea of Individuality in agents.

This paper is organized as followsection4.3 discusses the methods and formulations,
which contains the Adversarial Swarm model formulations and the massively parallel ESN
configurations. Sectiod.4 includes the verification and validation of the ESPéction4.5
covers the results and discussion, followed by the conclusion in séddion
4.3, Formulations
4.3.1 Adversarial Swarm Model

A physicsbased agertased model is developed to study the dynamics of two interacting
Adversarial Swarms: The Attker Swarm and the Defender Swarm (hence, referred to as
O0Attackersd and 6Defendersd respectively). The
protect a point of interest in unbounded 2D Euclidean space by swarming around the Goal along
a sphereo f influence. I n contrast, the Attackers?o
constantly evading the Defenders. They actively chase the former in a perimeter around the Goal
or a sphere of influence. The individual swarms in the swarm system areechbdsked on a
Lagrangiarbased approach having primarily two types of foraes nt er 6 and O6i nt r ¢
forces; the inteforces are used to model the interaction betwberagents of the Adversarial
Swarms, respectively. The intfarces are used to mddine forces between members of the
same swarm. Each swarm can be generalized as a collection of N agent®imengional
space with position and velocity vectors. The governing equation describing the dynamics of the
two interacting swarmgshe Attacke s and t he Defenders are derivei

law of motion and are given by the following equat{ag$.
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|1 $Bgs Bj (4.1)
By @By 4.2
dr, ABp — B Ne B no Qi n e |
T 2hrs B (4.3)
dp ABp (4.9

Eqns. 4.1-4.4) are the principal equations for the Adversarial Swarm model that is

subject 6 given initial conditions’si (=0 Xait 0V, (t 0).%, ¢ & ¢ individual agents in
the respective swarms are known. E4<l){(4.4) are numerically integrated using a customized

fixed timestep 4th order Rungéutta explicit solvej32].

(-L1) L (0,1) (L1)
Attackers :
Lol T L 0.0) | (0)
E Goal /Ry,
(-11) Y R—— (1-1)

Figure 4.1 lllustration of the domain for Adversarial Swarm Simulation.
Multiscale Entropy(MSHB3, 34]was also evaluated from the center of mass-tarees
to study the complexity of the interacting swarms. The MSE results4Bigevealed a greater

degres of randomness for the Defenders compared to Attackers due to the nature of the former's
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role in the simulation. Overall, the maximum value of MSE obtained was ~1.40 for both the
Attackers and Defenders combined. The average MSE for the Attackers andddefis 1.04

and 1.25, respectively when calculated over time scales from 1 to 20. As a result of the medium
degree of randomness of the Horear center of mass tireeries for both classes of agents, the
prediction of spatidemporal data was reasonabl

Table 4.1: Case matrix for Adversarial Swarm simulation

Case Na Npb Na/Np Max Sim Time

A 2 18 0.11 100
B 5 15 0.33 100
C 7 13 0.53 100
D 10 10 1 100
E 13 7 1.85 100
F 15 5 3.0 100
G 18 2 9.0 100

4.3.1 Echo State NetworksPreliminaries

An input vector u(t) with K units was fed into a dynamic 'Reservoir' with N units in a
generic Echo State Network (ESN). The Reservoir was connected to an output layer y(t)with L
units. At discrete time t, the Reservoir receives input, wiicdubsequently coupled with the
reservoir state to produce output at p.In Echo State Networks, an RNN with leakyegrated
discretetime continuous value units is employed. The following are the ESN equations:

Training Testing
M,

w(n) u(n) y(n)
o= = Fi—

L
I
6

L units
i

A
: V=S ()

Figure 4.2Training and Testing of genericEcho State Network.
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Echo State Networks typically use an RNN with lealggrated discretéme continuous
value unit§35]( Luk ogevi | i uJhe edquatiomd of updakQuded )n this study are

obtained fron35] and are given by the following equations:
weé OAITGE pIp ¢ WWE p (4.5)
we p | weE p | wE (4.6)
Where x(n)i R™ represents neuron activations of the Reservoir gmgl R" is its

update at every time step The tanh() function is used as the sigmoid wrapper for the neurons.

al (0,11 was the leaking rate, [;] represents a vertical vector (or matrix) concatenation

wn i RMEN) gndw™ N is the input weight matrix and recurrent weight matrix, respec{®®]y

36]. Once the Reservaoir is trained, the output weight matrix is generated using linear regression.

The linear readout layer is defined as,
weE w pHEMpe 4.7
Where y(n)i R" represents the network output™i R"®* " js the output weight
matrix, and [;] represents a vertical vector concatenation. The network output weight matrix is
learned by comparing the network output y(n) with the target outf@t{ly). This task is
achieved by minimizing the Root Mean SquareE(RMSE)between the network output and

the target outpyBbs, 37]

0 afw -B -B w& ¢ (4.8)
The operation of the ESN, as defined38}, can be briefly summarized by the following
steps:
A. Generation of a random reservoir with a given input weight metriX recurrent

weight matrix W, and a given |l eaking
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B. The training input u(n) drives the network, and reservoir activation units x(n) are
collected.

C. A linear readout layer obtainte network output. The output weights,)\are
computed by minimizing the error between the network oufptit and the target
outputd)m @,

D. Finally, compute output in the prediction phase using the trained network on the
recycled data (i, éhe data obtained in the previous tistep) in case of generative
mode or dimited component timaeries in predictive mode.

A ESN capable of forecastingth high accuracgan be produced by effectively tuning its
critical hyperparameters.his task wa achieved by performing a comprehensive uniform grid
search essential to producing a wedlined network capable of predicting the highly transient
dynamical behavior of the Adversarial Swarm system. The critical hyperparameters of the ESN
- spectral ramis scaling factor, leaking rate, probability of rAzero connections, and
regularization coefficients were chosen for the grid search
The readouts from the ESN in EqA.8) can be rewritten using matrix notation as:

O 0w 0 (4.9
WhereY T B" " are is¥(" and x 1 k% “ 7 gre allsU(W: X0l produced by presenting

the Reservoir(" | both collected into gpective matrices by concatenating the cokwactors

horizontally over the training period n=1, ¢é¢é,

of (5 Ui X] The optimized weight¥™ minimize the RMSE betweel" and ¥ are
obtained by solving the following ovestérmined linear equations.
W W (4.10
The output weight¥* in equation (11) are found out by minimizing the RMSE in
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Eqn. (8) by the following equation:

&)

AOG i—mBI

B

w £

%) ¢ rTs s (411

4.3.3: Hybrid Echo State Networks (ESN): Massively Parallel Configuration
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Figure4.3: Massively parallel hybrid ESN setup
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A massively parallel hybrid ESArchitecture was operated to operate in the autonomous

(or generative) mode. The position vector for each individual Hfgnivas used to train a

separate instance of ESN, which ran parallelly using multiple cores using a mpidpy (Message

Passing Interface) drtecture in pythof89] .

The

purpose

o ftopreprecesd Di s cr i

the data during the training phase and to{postess the data at the end of every respective time

step to enforce the simulation ending criteria, check agent compromise criteria, and in case of

any agent collision pogirocess, the data timer for input into the massively parallel hybrid ESN

for the prediction of the subsequent time step.

Each ESN was provided with a standard input consisting of the position vector data for

all the agents taken together in this massively parallel ESN cwafign In contrast, the target

data used during the training phase corresponded to that of individual agents. This novel training
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and testing scheme enabled the ESN to learn the interaction of a particular agent to the agents of
its own swarm as well as the agent of its competing counterpart, which is also the case in the
Adversarial Swarm simulation performed[i8] where all the agents were globally coupled.
During the prediction (or testing) phase, the predicted data of all the individual agents of the
swarm in the preceding time step was passed as the driving signal to generate a future prediction
The training of the reservoirs used in this setup was carried out independently.

A comprehensive grid search was performed to tune hyperparameters ofritlEISN.
It was hypothesized that even t hol[l3jdonsistkde Adver
of homogenous agents, each agent would respond differently when a uniform stimulus was
applied. In the simulation environment, all the agents in the ridgpeovarm were assumed to
be globally coupled both intrinsically (within the members of the same swarm) and extrinsically
(within the members of the competing swarm), thus making their reaction to any engagement or
stimuli nonuniform. It is hypothesizetdt, in phase 3, the hyperparameters for every respective
trained ESN would be unique, further strengthening the idea of the Individuality of every
autonomous agent in a complex adaptive system. A detailed statistical analysis of the
hyperparameter data t@ined from all the independently trained parallel ESMscarried out
to investigatehe central hypothesis of the final phase of this investigation.
4.4. Results and Discussion
4.4.1 Prediction of the Dynamics of Adversarial Swarms

In the current study, 7 cases were simulated (as described in table 2), and the
corresponding spatiotemporal data for every individual agent was used to train and test the
massively parallel echo statetwork as described in the preceding sections. A comprehensive

hyperparameter search was conducted for each individual agent. The primary hyperparameters
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considered for the grid search wéreumber of reservoir nodes, leak rate, and the probability of
nortzero connections; another hyperparam#ierregularization coefficient was dropped for

this study as it was found out from several numerical experiments that it does not have a
substantial contribution towards the hybrid

Table4.2: Praliction outcome of the test cases outlined in Tddle

Case Na Np Average NRMSE % Time Difference Fredicted End  Actual Simulation End

A 2 18 0.036 0.0 Defenders Won Defenders Won
B 5 15 0017 0.0 Defenders Won Defenders Won
C 7 13 0279 0.0 Defenders Won Defenders Won
D 10 10 0.234 0.0 Defenders Won Defenders Won
E 13 7 0253 0.0 Attackers Won Attackers Won
F 15 5 0.068 0.0 Attackers Won Attackers Won
G 18 2 0.016 0.0 Attackers Won Attackers Won

The hyperparameter search was achieved by first generating all the possible unique
combinations of the hyperparameters for all the agents combined. The massively parallel hybrid
ESN framework was then trained and subsequently used for the predictiorotas&ch
combination respectively. The hyperparameter combination with the least NRMSE and the least
percentage error in total time was the best solution. As determined from earlier numerical
experiments in Gupta et al. (Soham Gupta, 2021), 44% of thelaleatimeseries data of every
individual agent in both swarms respectively were used to train each instance of ESN in a
massively parallel setup. The center of mass-8Berges was considered the comparison metric
as it can demonstrate an overall inteacbf the swarm interaction. The NRMSE for each case
is described in Tablé.2. The followingparagraphsliscuss the results of each case in detail

In the case of A, the number of Defenders was 18 compared to just 2, making up the

Attacker swarm. It was observed that the Defenders were easily able to compromise the Attacker
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agents quite early in the simulation; the massively parallel hybrid ESN predictesdurtiee
consequence, the NMSE obtained was 0.086 for the center of masetiegeplots as visualized
in Fig 44. The outcome of the simulation and the prediction were the same; the Defenders were

easily able to emerge as the dominant party in the sironlati
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Figure4.4. Swarm interaction trajectories for the center of masssenies (both
original and predicted) for Case A.

In case B (Figt.5), similar behavior was observed as the Defenders emerged as the
dominant swarnpeasily compromising the agents of the attacker swarm. The prediction from the

ESN agreed with the original simulation; the NRMSE for this was 0.017 (#&h)le
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Figure4.5: Swarm interaction trajectories for the center of masssenies (both
originaland predicted) for Case B.

In case C (Fig.4.6), the Defenders also emerged as the victorious swarm easily
comprising the Attacker agents. The Defenders were able to do so by protecting the Goal from
the interception of the Attacker agents until the bgdalso compromising the former in the
process. Figl.6revealed the ESN was able to capture the dynamics of the Defenders to a greater
extent than the Attacker agents; however, it must be noted that the overall ergodic properties of
the system remaineddlsame, and the outcome of the simulation was predicted correctly by the

ESN.
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Figure4.6: Swarm interaction trajectories for the center of masssames (both
original and predicted) for Case C.

In case D (Fig4.7), it was observed that tixefenders were able to again emerge as the
dominant party in the simulation by compromising the Attacker agents in action. The ESN
successfully captured the dynamics of the overall interaction as seen from the center of mass

time-series plot for Case D.
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Figure4.7: Swarm interaction trajectories for the center of mass$enes (both
original and predicted) for Case D.
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In case E (Fig4.8), the Attackers emerged as the victorious swarm by compromising
the Defender agents early in the simulation. ThB B&s also able to predict the outcome

correctly, as it captured the overall dynamics of the interacting swarms.
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Figure4.8: Swarm interaction trajectories for the center of masssenies (both
original and predicted) for Case E.

QOriginal Predicted

—100 -0.75 —050 -025 000 025 050 075 100 -1.00 —075 —050 -025 000 025 050 075 100
1.00 T T T T T T T 1.00 T T T T T T T ml
¥ Goal X Goal
—- Attackers ——- Attackers
—— Defenders —— Defenders
075+ === influence rad | 0.75 === influence rad J
0.501 —~0.50 - 4
025k -025 F .
~ 0.00f -0.00 F -
N
/)
G M
—0.25 S ~-0.25 -
e
LR
NG
-0.50} "W\}é&}k; —-0.5¢- -
N <
B
N
—0.75F —-0.7%~ -
1 1 1 ] J

-1.04 1 1 1 1 1 -1.0 1 1 1 1 1
=100 -075 -0.50 -025 0.00 0.25 0.50 0.75 1.007=1.00 -075 -—-050 -0.25 0.00 0.25 0.50 0.75 1.00
x X

Figure4.9: Swarminteraction trajectories for the center of mass tsages (both
original and predicted) for Case F.
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Figure4.10: Swarm interaction trajectories for the center of massdenes (both

original and predicted) for Case G.

In case G and case F (Fi49, Fig4.10), the Attacker emerged as the victorious swarm

by compromising the Defender agents in action. The novel was able to predict the outcome of

the simulation successfully. The NRME(s) for these cases are 0.068 and 0.016, respectively,

indicating he prediction was of good quality.

4.4.2Uniform Hyperparameter search and Individuality of agents

A comprehensive uniform hyperparameter search was conducted for the significant

hyperparameters of the massively parallel hybrid EE8hhber of reservoir nodes, leak rate, and

probability of nonzero connections. These hyperparameters were important afeéotgdthe

ESN ability to map a high dimensional dynamical system, the information flow inside an ESN

and the ability to forget past information to predict the future. The minimum, maximum, and step

size of the significant hyperparameters used in t®um search can be found in Tadl8.
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Table4.3: SignificantHyperparameter Rangesed in the Uniform Grid search

Hyperparameter Min Max Step
Number of Reservoir Nodes 300 450 5
Leak Rate 0.05 0.20 0.02

Probability of norzero connection: 0.05 0.20 0.02

0 0 0
260 280 300 320 340 360 380 400 200 250 300 350 400 450 500 250 300 350 400 450
Number of Reservoir Nodes Number of Reservoir Nodes Number of Reservoir Nodes
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3 3
i
2 2
08 1 / 1 /
o 0 - - 0 p-
250 00 350 00 150 200 250 300 350 400 450 500 200 250 00 350 100 as0 500
Number of Reservoir Nodes Number of Reservoir Nodes. Number of Reservoir Nodes

Bins
~

0 T
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Number of Reservoir Nodes

Figure4.11: Histogram and probability distribution plot for Number of Reservoir Nodes
(Hyperparameter) for Cases A through G for all Attackers and Defenders combined. Cases A
through G are arranged in a revise sequence.
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Table4 4: SignificantHyperparameter Statistics for all cases taken together

Hyperparameter Mean Median Standard Deviation
Number of Reservoir Nodes 341.61 3375 34.16
Leak Rate 0.107667 0.11 0.040185
Probability ofnonzero connection: 0.088 0.07 0.03

0 0.05 01 0.15 02 -0.05 0 0.06 01 0.15 02 0.25 -0.05 0 0.05 01 0.15 02 025 03
Leak Rate Leak Rate Leak Rate

Leak Rate Leak Rate Leak Rate

]

0 .
0.05 0 0.05 0.1 0.15 02 025
Leak Rate

Figure4.12: Histogram and probability distribution plot for Leak Rate
(Hyperparameter) for Cases A through G for all Attackers and Defenders combined. Cases A
through G are arranged in a revise sequence.
A comprehensive uniform gird search was conducted faigmeficant hyperparameters
of each ESN of the massively parallel hybrid model revealed that the hyperparameters were not

the same for all the agents. However, they were the same for some. Thaespptical data

coming from every individual agent might be qualitatively the same; henvevus is hardly the
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case in reaworld complex (natural and engineered) systems. Every agent reacts in a swarm
reacts slightly differently when a uniform stimulus is applied. Thus, the presence of heterogeneity
in homogenous agents was observed; the i@8ally should have had the same hyperparameters

as the agents making up the Adversarial Swarm, as these agents were fundamentally similar,
having conflicting objectives. Thus, the ESN needed to be trained for each agent separately so
as have the best pble prediction. The massively parallel ESN setup captured the Individuality

of every agent, whereas the two parallel hybrid ESNs working in parallel would have fallen short.

This behavior was observed from the histograms of the hyperparanf&sesvoilNode

0 0.05 01 0.15 0z 025

Figure4.13: Histogram and probability distribution plot for Probability of Negro
Connections (Hyperparameter) for Cases A through G for all Attackers and Defenders
combined. Cases A through G are arranged in awi®& sequence

Number (Fig4.11), Leak Rate (Figd.12), and Probability of nemero connections (Figt.13),
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respectively. The descriptive statistics of these hyperparameters can be found in Table 4. The
probability density plots of these histograms revealed that the distributrenslightly
multimodal, further strengthening those mere approximatioatscannot be considered while

assigning the hyperparameters to perform the prediction task.

45. Conclusion
In the current work, a novel massively parallel hybrid ESN was dewtkoparedict the
dynamics of every agent in an interacting Adversarial Swarm. Every agent in the system was
assigned to a hybrid ESN which was trained and tested separately. The output of the ESNs at
every time step during the training and the predictimesp as passed through an external module
termed as the discriminator, which war® and posiprocessing the spatiemporal data. The
following are the main conclusions of the current work
1 The massively parallel hybrid ESN setup was demonstrated tows#-auited tool for
tackling the prediction of multiagent dynamics.
1 The massivelyparallel hybrid ESNsetup developednd its external module ageneric
enough to easily be modified to predict a wide range of engineering problems.
1 The massively parallel ESN validated the concept of the Individuality of agents in the
multiagent system as every agent was mapped uniquely by the ESN.
1 The concept of Idividuality will pave the way for further studies in this field, which will

enableeffectivecontrol and use of multiagent systems.
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CHAPTER 5
CONCLUSION
The current work investigated the dynamics of complex adaptive systems in the form of
an interacting Adversarial swarm system and studied the predictability of such systems using

Machine Learning. The worklso explored the idea of individuality in a multiagent system,

where each individual agent reacts slightly differently when a uniform stimulus is applied. The

work was divided into three main phases to achieve the goals and objectives of this inuestigatio

The following are the conclusions of the first investigation:

1 A genericsemihybrid dynamical systeAbased Agenbased Adversarial Swarm modehs
developedusing a rigorous numerical procedure. This model is generic ernougtapto
variousengineering applicationsith minor changes to force terms or potential functions.

1 In the spectrum of the study conducfedthe various population of agents makingeagh
swarm sometestcases revealed transient chaotic behavior with multiple local equilibrium
points for botlrswarmsthat reaffirmed the existence of complex dynamics.

1 The LLEs found out for the Attackers and Defenders for all the trials, respectaradaled
the existence of both chaotic and raraotic solutions. Thaverage LLEs indicated that
swarms were both on the 6Edge of <chaos, 6
dynamical behavior. The Recurrence plots also backed up the presehemid and non
chaotic behavior

1 Finally, Multiscale Entropy (MSE) was evaluated for the center of massstnies for the

swarm from scales 1 to 20. MSE, for both Attackers and Defenders, revealed the existence
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of complex dynamics. The MSE revealed iatermediate level of randomness for the
simulation overallthus proving the effectiveness of the Sétiybrid approach assumed in
the Adversarial swarm mobe

In the second and third investigations conducted, ESNs were found to be a useful tool that

could be effectively used to prediathighly nonlineardynamical system. The following were

the conclusions from the second investigation:

T

Among the two configuratiordevelopedn the second investigatip@onfig 2 showed better
overallperformance when compared to Config 1 to achieve the prediction task.

Config 2 achieveda better predictionlt consisted of two parallel independent ESNs that
successfully learned the dynamics of individual swarmsatreessentially independeuit
eachother and are only coupled by external rules of engagement.

The LLEs obtained from the ESNs and phase space reconstruction were in good agreement
with each otherfurther implying the success of the ESNmt@p the interacting swarm

dynamics successfully

In the third and final phase of this study, the following were the main conclusions:

T

The massively parallel hybrid ESN setup was demonstrated to be -awtedl tool for
tackling the prediction of multiagent dynamics.

The current massively setugasdevelged and its external module wageneric enough to
easily be modified to predict a wide range of engineering problems.

The massively parallel ESN validated the concept of the Individuality of agents in the
multiagent system as every agent was mapped ugiQuehe ESN.

Individuality is a factor that must be considered for designing 1acgée timeseries

prediction frameworks using machine learning.
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