
 

   

 
 
 

PROTOGENI SECURITY: THREATS TO 
 

RESOURCES AND RUN-TIME 
 

INTERACTIONS 
 
 
 
 
 

by 
 
 

FNU SHALINI 
 
 
 
 
 
 

A THESIS 
 
 
 
 
 
 

Submitted in partial fulfillment of the requirements 
for the degree of Master of Computer Science 

in the Department of Computer Science 
in the Graduate School of 

The University of Alabama 
 
 
 

TUSCALOOSA, ALABAMA 
 
 
 

2011 
 
 

  



 

   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright Fnu Shalini 2011 
ALL RIGHTS RESERVED 

  



ii 
 

 
 

ABSTRACT 
 
 

The ever extending threats to Internet community, and financial, physical, mental, social 

damages because of it forced researchers to rethink about the architecture, components, and 

services of future Internet. Security was not the concern at the time of development of existing 

architecture of Internet There is a very high probability to attack current Internet without being 

caught which supports the proliferation of cyber crimes. Security is one of the prime objectives 

of future Internet which is highly obscure term. This is the challenge for ever to maintain the 

security of the Internet as attackers probably have higher intelligence and determination to break 

the security. 

GENI is a virtual lab to provide all necessary resources and environment closer to 

expected future Internet so that researchers can test the innovative ideas to develop a more 

secure, accountable, usable, and manageable future Internet. ProtoGENI is a prototype of GENI 

and it is in function to test network research ideas. ProtoGENI requires a rigorous observation 

and implementation improvements to achieve intended security in GENI. Security of ProtoGENI 

is crucial as experiment results can provide a false picture of security capabilities if they are 

being tested in an environment which can be manipulated by malicious users or not consistent in 

its performance. It can affect the security of whole system drastically, and destroying the whole 

effort of developing a secure future Internet. This work is an effort to test and observe the 

existing security mechanism and functioning of the ProtoGENI system, and to find out the 

exploitable attacking loophole. The initial experiments, results, and observations provide a 

detailed functioning and security problems which can be utilized to improve the overall 

ProtoGENI security architecture.   



 

iii 
 

 

Though Security is a process and not a product, this work is to provide the current 

security issues and suggestions to improve security settings involving all components which 

work together to utilize ProtoGENI facilities for testing innovative ideas for developing future 

Internet.  Threats to ProtoGENI resources and runtime interactions are in focus for this research 

work. It explores the existing functioning and possible security weaknesses to cause a non-

functional, semi non-functional or malfunctioned system. There are many observations during 

executing experiments which affect the performance of the system. These observations can assist 

to improve the overall ProtoGENI functionality.  

Results indicate that there are threats to resources and run-time interactions between 

ProtoGENI components. Non-availability and non-usability of resources can affect the network 

experiments severely. Cross-experiment communication is also possible in wireless Emulab 

experiments. Initial Wireless communication analysis on Emulab provides details of wireless 

traffic behavior and traffic interferences. Overall security at host machine can be enhanced by 

modifying default security settings including SSH port number and root login rights. An 

alternative solution is provided to solve default XMLPC server settings to establish initial setup 

for executing ProtoGENI experiments. 

These findings are subject to time-line to the progress of ProtoGENI and GENI projects. 

This work can assist novice ProtoGENI researchers to understand the basic functionality, 

associated problems, and possible solutions. These initial findings for security issues in existing 

ProtoGENI system and observations will assist to improve the overall security functionality of 

ProtoGENI. 



iv 
 

 

 

DEDICATION 

 
 

This thesis is dedicated to everyone who helped me and guided me through the trials and 

tribulations of creating this manuscript. In particular, my family and close friends who stood by 

me throughout the time taken to complete this research work. 

  



 

v 
 

ACKNOWLEDGMENTS 

 
 

I am pleased to have this opportunity to thank the many colleagues, friends, and faculty 

members who have helped me with this research project. I am most indebted to Dr. Yang Xiao, 

the chairman of this thesis, for sharing his research expertise and wisdom. His feedback was the 

great source for keep going and trying things. I would also like to thank all other thesis 

committee members, Dr. Xiaoyan Hong, Dr. Susan Vrbsky, and Dr. Shuhui Li for their support 

for both the thesis and my academic progress. I would like to thank Dr. Jeffrey Carver for his 

guidance and motivation for improving information management and presentation. I would like 

to thank Dr. Randy Smith for allowing me to work in his lab.  I am indebted to David Engle and 

his team to support during several technical difficulties during experiments. I am glad to have 

support of Ms. Jamie Thompson and Ms. Kathy DeGraw to complete the formal requirements to 

complete this thesis. I am very thankful to Graduate School for granting financial assistance, 

needed extensions and for their understanding of my disability during trying times. 

This research would not have been possible without the support of my friends and fellow 

graduate students and of course of my family who never stopped encouraging me to persist. 

Finally, I thank all of the associated people at University of Alabama, University of Utah, and all 

GENI-Users for their unconditional support throughout the completion of this thesis.  

 
 
 
 
 
 
 
 
 
 

  



 

vi 
 

 
CONTENTS 

 
 

ABSTRACT ................................................................................................ ii 

DEDICATION ........................................................................................... iv 

ACKNOWLEDGMENTS ...........................................................................v  

LIST OF TABLES .................................................................................... vii 

LIST OF FIGURES ................................................................................. viii 

1. INTRODUCTION ...................................................................................1 

2. BACKGROUND ...................................................................................11 

4. RESEARCH APPROACH ....................................................................35 

5. PROTOGENI MULTIPLE EXPERIMENTS........................................38 

6. RESULTS, OBSERVATIONS, AND DISCUSSION...........................95 

8. REFERENCES ....................................................................................105 

9. APPENDIX ..........................................................................................110 

  



 

vii 
 

 
 

LIST OF TABLES 
 

 
4.1 Details of ProtoGENI RSpec support files ..........................................64 

4.2 Emulab wireless traffic analysis ........................................................125 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



viii 
 

 

 

LIST OF FIGURES 

 

1.1 GENI overview including Clusters and ProtoGENI……………………………5  

2.1  ProtoGENI Clearinghouse…………………………………………………….26 

4.1  Emulab Account creation……………………………………………………...39 

4.2  Generating a SSL certificate and uploading of SSH keys to Emulab………...42  

4.3  Verification of initial settings for ProtoGENI………………………………...43 

4.4  Creating the sliver with resource specifications………………………………43 

4.5  Test scripts suite available in ProtoGENI…………………………………….45 

4.6  List of active Component Managers…………………………………………..46 

4.7  System is unable to run any script after changes in test-common.py…………47 

4.8  Slice registration and creation of sliver……………………………………….49 

4.9  To get the slice credentials……………………………………………………49 

4.10  Test Script sliverstatus.py to know the status of a sliver……………………...50  

4.11  Ticket operation getticket.py after registering a slice…………………………50 

4.12  getticket.py without registering a slice first…………………………………..51 

4.13 getslicecredential.py details of testslice4 after redemption of ticket………….51 

4.14  Details for getticket and supposed time to redeem the ticket for testslice3…..52 

4.15  No ticket exists after five minutes of getting ticket for testslice3…………….52 

4.16  No ticket operation after redemption of ticket as sliver act as active………....52 

4.17 Starting of sliver after redemption of ticket and verification of sliver status….53 



 

ix 
 

4. 18  Stopping a sliver through sliveraction.py……………………………………...53  

4.19  Renewing the sliver for a specific time from initial time settings of sliver…..54 

4.20  Deletion of sliver and redemption of ticket that made it active again………..54 

4.21  Deletion of slice and no further slice record…………………………………55 

4.22  Test Script allocatenodes.py………………………………………………….56 

4.23  createsliver.py with .rspec RSpec file………………………………………..57  

4.24  Passphrase related test scripts………………………………………………...58 

4.25  Execution of showuser.py test script…………………………………………59 

4.26 Example RSpec can be used as myrspec.xml…………………………………59 

4.27 .rspec files are available in ProtoGENI test scripts suite……………………..61  

4. 28  Effort to acquire all available resources in one sliver………………………..61 

4.29  Requesting a not-specific single node with and without RSpec file…………62 

4.30 Non-availability of a particular resource requested in RSpec file……………62 

4.31 Requested PC was busy- Status can be seen at Emulab………………………63 

4.32 Node status of slice/sliver threeos through sliverstatus.py and in  
Emulab as good but could not get control on pc160………………………….65 

4.33 Sliver creation to download software at remote node………………….……..65 

4.34 tar file downloaded and unpacked at remote node……………………………66 

4.35 Emulab Resources: Free Node Summary on Emulab site…………………….67 

4.36  Detail description of a node type on Emulab Account ………………………68 

4.37  Interoperability of RSpecs in GENI infrastructure …………………………..69 

4.38  Sliver creation attempt with PC type PC2400w………………………………69 

4.39 Sliver creation with a specific type of PC: PC600…………………………….70 

  



 

x 
 

4.40 Creation of a series of slices from shailslice1 to shailslice16…………………72  
with shailrspec2.xml 

4.41 Outage of ProtoGENI Resources through many slivers by single user ……….72  

4.42-a  Deletion of slices and releasing of resources……………………………….....73 

4.43-b More resources available with deletion of more slices………………………...73 

4.43  Creation of stress slice with 14 PCs and 7 links………………………………74 

4.44  Deletion of stress slices………………………………………………………..74 

4.45  Free resources after deletion of stress slices…………………………………..74 

4.46 Communication between Client and Server machines………………………...77 

4.47 Logout from remote Emulab machines………………………………………..77 

4.48 Creation of two slivers for communication between slivers…………………..78 

4.49 Communication between two different sliver PCs……………………………79 

4.50 Verification of both slivers as client and server……………………………….79 

4.51 Communication of a ProtoGENI sliver with outside network………………...80 

4.52 Error in communication when ProtoGENI node acted as client………………81 

4.53 Sliver creation requesting two nodes from two different CMs………………..81 

4.54 Kentucky Emulab ProtoGENI node as server…………………………………82 

4.55 Utah Emulab ProtoGENI node as server………………………………………82 

4.56 Emulab topology for wireless nodes…………………………………………..83 

4.57 Configuration details of ProtoGENI wireless node……………………………83 

4.58 Pinging pcwf1-3-5-7-1, 500 pkts. (All at same time)………………………….84 

4.59 Cross communication between two experiments with wireless nodes………...85 

4.60  pcwf2 handling two clients……………………………………………………85 

4.61 Port Scanning details through Zenmap………………………………………...88 



 

xi 
 

4.62 Nmap output after scanning an IP address……………………………………89 

4.63 OS details of a machine through zenmap scan………………………………...89 

4.64 Modification in sshd_config file for non-standard port for SSH……………...90 

4.65 Restricting Root login via SSH………………………………………………..90 

4.66 Changing port no to non-standard port in services…………………………….91 

4.67 Verification of new port working as listening port……………………………91 

4.68 User login to Emulab machines with changed SSH port……………………...92 

4.69 Logwatch details for observing activities……………………………………...93 

5.1 System Bug Problem halted the any test script execution…………………….98 

5.2 A network topology which may suffer due to wildcard  
allocation of resources. ……………………………………………………...100 
 

 

 

 

 

 

 

 

 

 

 

 

 



 

1 
 

 

CHAPTER 1 

INTRODUCTION 

 

Computers and Internet are part of everyday life and Modern life around the world is more 

and more being dependent on internet based applications to learn, to share, to express, to market, 

to shop, and to help people but unfortunately it is also being exploited as extreme vulnerable 

source to harass and damage society through various threats. Technology is being improved with 

every passing year and making life easy and complex simultaneously. It is a constant battle 

between creators and destroyers. In field of internet, these are frequent questions that what is 

actually required by world Internet community? Who are main players? Which population is 

really worried about privacy? Who is suffering from these shortcomings of internet? Does 

everyone want a secure future internet?  Does the world internet user community really 

understand the threat?  It is more like burden on research community who can see clearly the 

threats, the causes, the consequences, and can judge the possible drastic damages.  So the 

researchers around the world agreed on threats and working on different ideas. There are 

frequent talks among research groups and discussions. GENI, FIND, FIRE, AKARI, and NICT 

are few frontiers. There are plenty of information gathering tools to get information from Internet 

and cost of storing the information is tend to be decreased every year which supports the 

manipulation of stored information for different purposes. Information stealing or misuse of 

available information is gone to an extent to warn world internet community to think about 

security and accountability in internet. There is notable increase in reported cyber crimes every 

year and the associated financial losses which is only one side of cyber crimes [58] [59].  



 

2 
 

Internet threats of IP spoofing, Malicious Mobile Code, obfuscated code, throttling limiting 

the rate of delivery), malicious/tracking cookies, browser hijackers, and distributed DoS (denial 

of service) provided researchers a cause to work on inducing security (Deterrence, and detection 

mechanisms, and accountability (Detection, traceability, and universal cyber laws) in internet. 

These all problems are basically on the exploitation of fundamental flaws in current Internet’s 

architecture which did not consider the security as its primary concern. This basic problem 

encourages attackers to maximize the attacking effect working on vulnerabilities of software 

applications and Operating system.  

Security needs are being updated in best possible ways with these limitations but 

unfortunately security cannot be an add-on, so we need to develop a future internet with built-in 

capabilities to survive the security challenges [3] [4] [6] [7] [11]. Moreover Security is a process 

and not a product so any security system needs to be capable to detect new possible threats to be 

pro active to detect any unusual or malicious activity in the network. Detection of any new threat 

in its budding life can help to develop strategies to tame it before doing much damage to the 

overall system’s functioning. Detection can be very useful in developing resistance against the 

threats or to have alternative management system to keep the network in good working state in 

spite of being attacked through some new attacking mechanism which may not be included 

already into system’s surveillance and resistance framework. 

“The Internet provides a flexible, scalable, and inter-operable platform that can support 

many diverse applications. Its popularity has led to a wealth of applications, such as smart 

phones, PDAs, sensor networks, smart homes, smart grid, emergency and lifeline support, 

distributed multimedia, and telemedicine.” 



 

3 
 

“However, unrealistic expectations on some of these applications led to the Internet boom 

in the late 1990s and the burst of the Internet bubble a few years ago.” 

[http://www.computer.org/portal/web/csdl/proceedings/s#2] 

It has been acknowledged that future internet application will be more complex, more 

sensitive and to handle more population of users.  

As list drawn from [3], security, availability and resilience, better management, economic 

viability, longevity, meet society needs, support for tomorrows computing, exploit tomorrows 

networking, support tomorrows applications, and fit for purpose (it works) are major issues for 

those current internet has real shortcomings. 

It will take time and efforts to test the feasibility of research ideas. Hardware and 

software resources may not be up to level which is required to do such testing. We need specific 

arrangements to test research ideas [9] [35].Even we found the research ideas good to implement, 

total transformation to new infrastructure will be a big challenge. Another challenge will be to 

draw a universal policy to resolve cyber crimes as different countries follow different set of legal 

and social rules [1] [29].  A balance of accountability and privacy is a constant question to 

implement any new security policies on Internet [22] [23] [24] [26] [27] [28]. As switching to 

future Internet is not possible real soon, researchers are also working to improve current internet 

[18] [19] [20] until we reach a feasible point to change to new technologies and mechanisms for 

future Internet.  

 

 

 



 

4 
 

1. What are the initiatives toward secure future Internet? 

Security is one of the fundamental reasons for a clean-slate internet design [3] [6]. Clean-

slate approach advocates building future internet with new architecture, new control, 

management, and security features. The other direction is focused to get as much as possible 

infusion of security and accountability in current internet.  

GENI, FIRE, FP7, AKARI, JGN, NICT, and others came forward to execute research 

ideas proposed for future Internet [7] [8] [35] [36] [37].  

2. What is GENI-Global Environment for Network Innovations? 

GENI is a virtual lab [8] for exploring research ideas for future internets at scale, creating 

major opportunities to understand, innovate and transform global networks and their interactions 

with society. GENI is supported by NSF and GENI project office is managed by BBN 

Technologies [25].  

During the spiral I of phase of prototyping and designing, awards were made to 29 

academic/industrial teams for various projects to build, integrate, and operate early prototypes of 

the GENI virtual laboratory [30] [31]. Internet2 and National Lambda Rail are partners to build 

and test prototypes of the GENI system. Cisco, CNRI, Fujitsu, Hewlett-Packard, Infinera, 

Microsoft Research, NEC, Netronome, SPARTA, and Qwest are working with GENI academic 

teams across the United States to help build, integrate, and operate early prototypes of GENI [30] 

[60]. SPARTA [27] is focusing on GENI security architecture. 

Spiral II is active. In October 2009, NSF announced two major awards to support an 

additional 33 academic/industrial prototyping teams, and―for all the prototypes―speeds up 

federation and shakedown experiments that will guide future GENI system design [30].  



 

5 
 

NSF is also going to support three collaboration sets of academic/industrial teams to 

integrate, operate, and host experiments on an end-to-end prototype GENI infrastructure built 

from GENI-enabled commercial hardware across 14 university campuses, linked by compatible 

build-outs through two U.S. national research backbones across an aggregate national footprint 

of 40 gigabits/second [30] [60]. 

 

Fig. 1.1: GENI overview including clusters and ProtoGENI 

 

GENI is expected to be dedicated to research experiments but before going for experimenting, 

GENI infrastructure has to be built as capable enough to provide all necessary resources to deal 

with complex and advance technologies. It is assumed that GENI is capable of providing 

facilities to test research ideas for future internet and also capable to resist the attacks against it 

and to maintain a good working state.  



 

6 
 

GENI can serve as extraordinary platform to researchers and supposed to be secure and 

advanced but it is also said that if it could be broken (there is always a possibility), it would be 

very destructing for the overall GENI functionality. 

3. What is ProtoGENI? 

ProtoGENI [38] [41] is a prototype of GENI functionality. ProtoGENI is the Control Framework 

for "Cluster C" of spiral I of the GENI effort [55]. ProtoGENI is based on Emulab [9] software 

and the slice-based Facility Architecture (SFA).  

ProtoGENI includes clearinghouse, slice authority services, and aggregates with associate 

managers. The ProtoGENI RSpec is the mechanism for advertising, requesting, and describing 

the resources used by experimenters. RSpecs interact with nearly every piece of the GENI 

architecture [38] [42]. Emulab [9] was developed by Flux group of Utah University. It is a public 

facility available to researchers at no cost. An emulated experiment allows you to specify an 

arbitrary network topology, giving you a controllable, predictable, and repeatable environment, 

including PC nodes on which you have full "root" access, running an operating system of your 

choice. Emulab unifies emulation, 802.11 wireless, software-defined radio, sensor networks, 

live-internet experimentation and simulation environments under a common user interface, and 

integrates them into a common framework [9]. An Emulab member can use Emulab resources in 

ProtoGENI experiments through creation of slices and slivers. ProtoGENI web resources help 

researchers to know about ProtoGENI [28]. 

 

 

 

 



 

7 
 

4. Security in GENI/ ProtoGENI 

While it is difficult to determine experimentally that a system is secure against all possible 

attacks within a specific threat model, a number of important security questions can and must be 

addressed ex. How well does the system perform under different loads?; What are the 

performance penalties associated with different levels of security achieved in different ways?; Is 

the secure system, providing a specific level of security and functionality, attractive to users?; 

How does the experimental system respond to known attacks, carried out in realistic ways?; Can 

creative attackers, such as researchers from the security research community, interfere with the 

operation of an experimental system, while it attempts to serve a developing user community? 

[5] [40] 

Any set of “well-behaved” hosts should be able to communicate among themselves as 

they desire, with high reliability and predictability, and malicious or corrupted nodes should not 

be able to disrupt this communication [5] [40] [44] [45].  

The goal of GENI/ProtoGENI security architecture is to prevent, detect, and manage 

attacks, so GENI can remain safe and usable by its community of experimental networks and 

distributed systems researchers. The other goal of GENI is to build security in architecture of 

globally distributed systems of networks and computers [5] [40]. GENI also believes that it is 

almost impossible to prevent all possible kind of intentional or unintentional problems, no matter 

how careful the validation. With all possible threats, GENI believes to have capability to kill any 

malicious experiment or component which requires adequate monitoring and control 

management. In the extreme case, GENI is expected to be shut off itself but not every now and 

then. GENI’s scale, widespread deployment, and visibility make GENI an inviting target for 

“denial of GENI” attacks [5].  



 

8 
 

GENI doesn’t claim to provide 100 % technical solution as it has to use many pre-

existing components and vulnerable software to be cost effective in early phases [40][44]. 

5. Security implementation in ProtoGENI 

5.1. Authentication and Authorization in ProtoGENI 

Currently ProtoGENI is applying one Public Key Infrastructure (PKI) which is covering all 

ProtoGENI registries, slice authorities, aggregates and principals. ProtoGENI keys pair can be 

generated on Linux host machine.  

ProtoGENI users are allowed to access ProtoGENI resources through Emulab. Each 

principal has Emulab account and SSL certificate can be generated on user’s Emulab account. 

This SSL certificate is the identity of researcher which can be used to identify user’s credentials. 

It allows researchers to activate a session with RPC servers.  

PKI is being used to authenticate principals. Credentials are signed by the appropriate 

authority (slice). X.509 format certificate is being used to implement ProtoGENI public key 

infrastructure. Certificates are transferred using X.690 ASN.1 DER (Distinguished Encoding 

Rules) [41]. The aggregate which receives these credentials can verify it using a set of root 

certificates.  

6. Threats to ProtoGENI Components 

ProtoGENI [38] is capable to provide its facilities to researchers until all components work 

together efficiently and adequately. ProtoGENI control framework is Emulab based, and 

operates on enhanced functionality of Emulab and its subsystems to provide a close system to 

GENI environment.  There are security issues related to different threads which are required to 

weave an experiment on ProtoGENI.  

 



 

9 
 

 

6.1. The Secure Shell (SSH) and SSL 

SSH is a set of programs which employ public/private key technology for authenticating and 

encrypting sessions between user accounts on distributed hosts on the internet. ProtoGENI 

allows users only to interact through SSH key. SSH was not designed to protect against password 

crackers, IP & TCP attacks, and covert channels [50]. SSH-agent remembers the passphrase so 

user does not need to type it every time while communicating or sending data to the server. This 

information can be getting through PC backup programs. If assessed, SSH keys are usable by the 

root user but could not be transported to other machines for indefinite misuse. SSH Keys also 

can be regenerated if any indication of misuse can be detected. 

SSL certification may be forged if it is MD5 algorithm based. It is found that improved 

algorithm  like SHA-1 and SHA-2 are also vulnerable while SHA-3 is under development 

[50]. 

6.2. Emulab Security Issues 

Emulab does not protect against spoofing on the control network. The test networks are fully 

separated between experiments by virtualization but virtualization also may have security threats 

[14]. A port scanner [52] can probe a network host for open ports.  

This is often used by administrators to verify security policies of their networks and by attackers 

to identify running services on a host with the view to compromise it. The threat level caused by 

a port scan can vary greatly according to the method used to scan, the kind of port scanned, its 

number, the value of the targeted host and the administrator who monitors the host. The 

probability of an attack is much higher when the port scan is associated with a vulnerability scan.  



 

10 
 

A vulnerability scanner is used to assess computers, computer systems, networks or 

applications for weaknesses. Shared accounts are strictly forbidden on Emulab [9]. SSL and SSH 

issues are discussed already. Emulab employs a password checking library to ensure the strength 

of Emulab account passwords. Members of an Emulab project can share files but project details 

are not readable by members of other projects.  

6.3. Other Security issues in ProtoGENI 

Unix/Linux Operating system is believed to be more reliable on security measures in comparison 

to windows operating system and less vulnerable to attacks. Actually, there are threats to Unix 

operating system like Trojan and other attacks like preventing others from running a program or 

exhausting system resources [48] [49]. 

Other than issues discussed above, there is a likelihood of insider attack which can be a 

result of many possible reasons based on human complex nature [47]. Carelessness in protecting 

passwords, passphrases, or machine’s unrestricted access to all may also contribute a lot in 

security breach. 

Many parts of ProtoGENI software use the existing software. It is too time consuming 

and cost expensive to rebuild each and every part of software being used in Existing 

vulnerabilities in such software may be exploited to threat overall ProtoGENI security [5].  

 

 

 

 

 

 



 

11 
 

CHAPTER 2 

BACKGROUND 

 

Security is one of the strongest motivations for thinking about the developing future 

Internet. At lower layers of the protocol stack, the current Internet is plagued by undesirable 

traffic, including spam, DoS attacks, and malicious traffic routed through compromised (zombie) 

hosts. At higher layers, applications are plagued by various attacks that might be mitigated by 

security mechanisms at the application layer and lower layers [3]. To date, stopgap measures to 

fight undesirable traffic via add-on security mechanisms have not been successful. This is not 

surprising, as the problems stem from two fundamental shortcomings in the design of the 

Internet: there is no way to reason about the properties of hosts on the edge of the network, 

thereby assuring the routers of the validity of the traffic emanating from a given host, and there is 

no way to reason about the properties of services provided by the network, thereby assuring the 

edge nodes of the integrity of the network fabric. The overarching goal of a new Internet is not 

just a collection of security mechanisms but an overall architecture for security, which is woven 

into an overall design for a network [3]. This will require development and experimental 

evaluation of individual mechanisms, user services, and combinations of components, on a large 

scale. 

Since security means resilience to malicious attack, security studies involve identifying 

the essential properties that must be preserved in the face of attack, and the threat model, which 

includes the set of actions that an attacker might use to degrade these properties.  

 

 



 

12 
 

While it is difficult to determine experimentally that a system is secure against all 

possible attacks within a specific threat model, a number of important security questions can and 

must be addressed experimentally before security improvements can be accepted and adopted in 

widely used networks. Attention to security, especially in the context of information security, is 

critical. Priority of access is critical, so past and future work on quality of service (QoS) must be 

incorporated. 

  A design for security must be holistic, and deal with issues at all layers. Securing a single 

layer is insufficient, as an attacker can exploit vulnerabilities in the layers that remain unsecured. 

To secure BGP, researchers have proposed securing the communication between two BGP 

speakers by having them share a secret key and adding key-dependent MD5 checksums to each 

packet exchanged. Unfortunately, this does not secure the semantics of the exchanged 

information, and a malicious operator (or equivalently, a corrupted router) with appropriate 

credentials can still send routing messages that disrupt communication system-wide. Even if we 

secure the semantics of the routing information, the routing protocols can be disrupted by 

exploiting the vulnerability of the TCP connection carrying the BGP packets to denial of service 

attacks [3].  

A system-wide approach to security is viable, addressing naming, routing, connection 

management, resource allocation/denial of service, network management, and so forth. While 

many researchers have begun to tackle these issues, to be practical we need to understand the 

relationship of these various technologies with each other and collectively on system-wide 

security. Further, if these technologies have any hope of being widely adopted, we must also 

demonstrate that they can achieve system-level security at a practical cost 

 



 

13 
 

Related work for accountable and secure Internet 

Research is going on to build an accountable future Internet with minimum overhead of 

switching to new infrastructure, new protocols and web policies. There are serious efforts to 

acknowledge the present and possible future threats to Internet security and reliability, and new 

concepts are being developed innovatively and with support of previous work done in same 

problem area. WASCo distributed computing platform provide its net space to run the 

experiments by untrusted, semi-trusted or trusted clients as PlantLab [12] provides but they do 

not have a well defined legal relationship between clients and servers. XenoServer project is also 

building a public infrastructure for wide-area distributed computing which runs multiple virtual 

machines like PlanetLab node. Grid architectures limit network access to data exchange between 

participating Grid nodes. The OSU Flow-tool package was also designed to assist in resolving 

security incidents and complaints. Cisco routers also provide a variety of packages to perform 

NetFlow data analysis. 

 In the field of packet loss and delay accountability, studies have been done for Byzantine 

fault detection in distributed systems; CATS provides accountability for network storage. Some 

work also has been done on fault localization (FL) tool development, which is similar to the hop-

by-hop feedback propagation scheme in loss and delay accountability paper [18]. Trajectory 

sampling enables all routers to sample the same packets so that ISP can combine the recorded 

data and can reconstruct its internal path at a router level. This work is taken as basis to builds an 

alternative Audit system to keep track for loss and delay of packets in network traffic [20]. 

Similar to AIP [18], self-certifying addressing forms are done. CGA derives the interface portion 

of an IP address from a public key, and HIP also use hash function to derive a host EID. AIP 

extends self certification to the whole network. 



 

14 
 

 To implement source accountability, installation of filters at border routers, is the easiest 

way. AIP’s shut-off packet is inspired by concept given by Shaw [21].  

GENI 

GENI is a virtual lab [8] for exploring future internets at scale, creating major 

opportunities to understand, innovate and transform global networks and their interactions with 

society. GENI is essential, as a platform where a new secure networking architecture, providing 

strong assurance of communication availability even under attack, can be demonstrated to work 

in practice on a national scale network connecting millions of users, at Internet speeds and 

reasonable cost.  

 The cryptography community continues to explore the theoretical possibilities raised by 

these and other security-relevant architectural features (such as secure logging, micropayment 

infrastructure, and source authentication); GENI will provide an exciting opportunity to also 

compare these features in terms of efficiency, cost, and compatibility with other design 

considerations for the new Internet [8]. 

  An important thread through many likely security-related experiments is the trade-off 

between usability and security. Experience with security mechanisms has shown that many ways 

of strengthening a system against malicious attack make the system less convenient to use. This 

trade-off can be expected in future systems, since many security mechanisms must distinguish 

between honest activity, of the sort the system is designed to support, and malicious activity that 

is intended to disrupt the system.  

 

 



 

15 
 

Although no fundamental theoretical tradeoff has been proved, it generally becomes 

easier to distinguish honest and malicious activities if honest users take additional steps to 

distinguish themselves or their actions. Because of the often-observed trade-off, a key goal in 

security experiments is to evaluate the usability of a system, by representative individuals with 

no vested interest in the success of the system, in parallel with experiments aimed at determining 

the resistance of the system to malicious attack.  

Privacy is another important goal that requires experimental user communities on a 

substantial scale. Some forms of security, including any mechanism that makes decisions on the 

basis of trust, reputation, or authority, will require identity schemes, which must be carefully 

conceived to balance issues of privacy and freedom from excessive oversight with the goals of 

accountability [3].  

There is a wide range of important and informative experiments that can be conducted on 

the GENI facility as currently conceived. Examples, some of which are described as follows: 

Spam-resistant email;  Distributed decentralized Access control; Worm propagation and 

mitigation; Reputation systems; Improved network infrastructure protocols; Selective traceability 

and privacy; SCADA simulation; Botnet and overlay network security and detect ability; 

Economic incentives in network infrastructure and applications; Light-weight security tools and 

algorithms for low-power computing devices; Anonymity in routing and applications; Privacy-

preserving data-mining; Secure multi-party communication; Proof-carrying code to protect hosts 

from malware (and other purposes); Secure electronic cash and micro-payment mechanisms; 

Experimental combinations of security mechanisms for improved enterprise security [3].  



 

16 
 

GENI infrastructure includes deep programmability, virtualization, federation, and slice-

based experimentation. Different parts of GENI are divided into academic/industrial teams and 

project development is being managed in spirals.  

GENI projects are organized in clusters as Cluster A: TIED; Cluster B: PlanetLab; 

Cluster C: ProtoGENI; Cluster D: ORCA, and Cluster E: ORBIT. We will describe each briefly 

GENI Cluster A- TIDE [8] 

1) TIED (Trial Integration Environment built on DETER)  

TIDE is built upon an architecture (DETER Federation Architecture, DFA) for creating 

experimental environments across multiple cooperating Emulab-based testbeds. Federator 

divides the experiment among testbeds as per requirements, constraints and available resources 

[8] [40]. 

2) PlanetLab  

PlanetLab control framework works on PlanetLab central Software (PLC) and the Slice-based 

Facility Architecture(SFA). Geni-wrapper module developed to map the GENI specified entities 

and functions to PLC. As per GENI architecture, PlanetLab defines a clearinghouse, aggregates 

and slice manager functions. RSpec is used to describe substrate resources [40]. 

3) ProtoGENI 

ProtoGENI [8][28][40] is based on Emulab software and the slice-based Facility Architecture 

(SFA). ProtoGENI cluster contains several other projects such as DTunnels, CMULab and 

others. ProtoGENI includes clearinghouse, slice authority services, and aggregates with associate 

managers. ProtoGENI is using RSpec with descriptions for nodes, links, interfaces, and some 

metadata. 



 

17 
 

4) ORCA 

ORCA [8] [40] CF working on Java-based resource leasing toolkit called Shirako. It serves as 

Java reference implementation of GENI clearinghouse, aggregate managers, and experiment 

control tools. All involved entities exchange digitally signed SOAP messages. 

5) ORBIT 

ORBIT [8] [40] (Open Access Research Testbed for Next-Generation Wireless Networks) is a 

radio grid testbed for reproducible evaluation of wireless network protocols. 

Other research facilities 

European control Framework [2] research includes FEDERICA, Onelab2, Panlab/PII, G-

Lab. FEDERICA project deploys an e-Infrastructure composed of network resources for Future 

Internet experiments. MANTICORE tool and IaaS framework software  are making use of web 

services for provisioning different resources in FEDERICA [2] [4]. 

Onelab2 operates and built upon PlanetLab Europe (PLE), which provides an open 

federated laboratory. Onelab2 works on provisioning of control and monitoring functions to 

support the key needs of experimental research: controllability, repeatability and the ability to 

share results. It is following PlanetLab but wireless resources are also in consideration. 

G-Lab project is a Germany-wide Future Internet research and experimental facility. It is 

initiated late in 2008 and testing facilities consist of wired and wireless hardware with over 170 

nodes, fully controllable by G-Lab partners [4]. WISEBED is wireless sensor network testbed 

[35], Japanese Gigabit Network-JGN) [36] are few others to mention as prominent testbeds 

around the world. 



 

18 
 

Federated Testbeds 

Testbed federation is driving a number of research activities in the field and influences 

the design decisions for testbed control framework [4]. Federation, combining infrastructural 

resources and services of more than one independently controlled domain, enhances the utility of 

testbed significantly.  

Individual testbeds may have unique infrastructural resources and configuration 

properties to conduct a specific set of network experiments so federated testbeds can allow 

experimenters to conduct a new set of experiments which can utilize the combination of unique 

characteristics of each testbed involved in federated testbed [4] [8] [12]. Federated testbeds are 

also important as they provide collaboration between different communities like Internet and 

Telecommunication people or researchers from US and Europe or any kind of collective effort 

among world communities to develop future Internet. PlanetLab is already working in Europe as 

its European version. Emulab and PlanetLab are working together to enhance experimental 

capacity and types of experiments [4] [8] [12].  Federated testbeds are very positive example of 

going ahead to achieve a common goal of developing secure and accountable future Internet. 

• Experiments violated isolation and accidently taken over by an attacker: GENI has to 

convince hosting organizations not to put their resources to threat by sharing it on GENI and 

a prompt action in any such case. 

• Experiments reporting errors in other parts of system: A trace-back to origin of packets or 

signal back to responsible party to fix the problem and to prevent it from recurring. 

• Misuse by end user: Basic monitoring and tracing tools 



 

19 
 

• Theft of an experimenter’s credentials to use GENI: More secured way to access GENI, 

categorized privileges, users to be more attentive on keeping password strong and secure as 

far as possible. 

• Corruption of host operating system software running on the experimenter’s machine: 

revoking and replacing the user keys and privileges in such cases. It is most likely avenue for 

attackers against GENI. 

• Corruption of any component of GENI, subsequent attacks on other parts: continuous 

monitoring, mechanism to shut off and to restore the system to a known good state. 

• DoS attacks against the GENI management infrastructure: frequent refresh of privileges and 

possible control plane to reduce these attacks likely. 

• Direct attacks against vulnerabilities in the GENI Management software: Many known 

software vulnerabilities (buffer overflows etc.); not cost effective to consider all issues; 

GENI intend to rely on detection, confinement and resetting to a known good state to correct 

intrusions when they occur. 

• Privacy of experimental data and the privacy of management policy. Additionally, 

information leakage from a running experiment is an open research question.[sep06] 

Above discussed threats suggests security requirements in GENI as follows: Explicit 

trust, least privilege, revocation, auditability, scalability, autonomy, usability, and 

performance are major requirements in GENI security architecture. 

 
 
 
 
 
 
 
 



 

20 
 

INITIAL REQUIREMENTS OF GENI 
 

GENI is intended to support two general kinds of activities: (1) deploying prototype 

network systems and applications, and learning from observations of how they behave under real 

usage, and (2) running controlled experiments to evaluate design, implementation, and 

engineering choices. 

Functional requirements  

The concept behind GENI is that it can be used to test multiple ideas and concepts. The 

goal of GENI is to allow long-running continuous experiments. To support multiple, long 

running experiments, the designers have based GENI on the concept of slices.  

One approach to slices is virtualization, an idea that has been a part of CS research for 

decades. Virtualization takes a physical resource (e.g. a processor) and creates the illusion that it 

is multiple processors, identical to the original except that each runs slower. GENI must support 

strong isolation between slices so that experiments do not interfere with each other [3]. 

Support for security 

The desire to support experiments in enhanced security has several implications. First, the 

GENI infrastructure itself must be stable and secure to an adequate degree, so that that 

experiments that claim enhanced security or availability can actually demonstrate these virtues. 

Second, the mechanisms for isolation among slices must be very robust, so that an experiment 

that involved an attack on a system in one slice cannot “escape” and attack other experiments. 

Third, there may be a requirement for specialized security technology, such as hardware-specific 

unforgeable identity tags, key generators, or physical hardware interfaces for secure management 

[3]. 



 

21 
 

Support for experimenters: Ease of Use; Observability; Fail-safe 

GENI must be secure, so that its resources cannot accidentally or maliciously be used to 

attack today’s Internet. GENI is expected to support that an experiment should run within a 

“bounding box” that limits what it can do; it must be possible to trace network activity back to 

the responsible experiment (and experimenter), so that any problems or complaints can be 

addressed; and should GENI enter a period where activities of some components cannot be 

adequately monitored or controlled, GENI should restrict those activities by other means to a 

point where safety can be assured (e.g., by shutting down a slice or bringing GENI as a whole 

into a safe state). 

What is critical in GENI Security? 

As per GENI Facility Security (Draft) [5], GENI is a tool for enabling fundamentally new 

types of research in large-scale networks and distributed systems but also warn that it may be 

formidable attack platform. A GENI slice is a fully programmable substrate and can be 

configured to perform a wide range of undesirable actions against both Internet targets and other 

GENI resources. PlanetLab testbed is most used as most close to GENI architecture and it has 

already experienced such misuses [5]. There are four factors which make GENI more focused on 

advanced security features. 

• GENI will embody more critical and sensitive resources than PlanetLab so misuse of GENI 

will be devastating. 

• GENI is deeply programmable, providing programmability across every layer dealing with 

outdoor sensors and wireless nodes and all different kind of hardware so on policy may not 

be work for all. 



 

22 
 

• As supposed and claimed by GENI goals, it would be at scale large enough not to be 

managed by some manual handling as currently being done in PlanetLAb, so it would be 

better to take care of that issue now,  instead for waiting it to happen. 

• As most promising and prestigious project by NSF, security is among top issues to protect it 

from converting a most capable attacking facility by malicious users. 

What are goals and principles of GENI Security Architecture? 

 The goal of GENI security architecture is to prevent, detect, and manage attacks, so 

GENI can remain safe and usable by its community of experimental networks and distributed 

systems researchers. GENI believes that it is almost impossible to prevent all possible kind of 

intentional or unintentional problems, no matter how careful the validation.  

GENI’s scale, widespread deployment, and visibility make GENI an inviting target for 

“Denial of GENI” attacks. GENI doesn’t claim to provide 100 % technical solution as it has to 

use many pre-existing components and vulnerable software to be cost effective in early phases. 

Threat Model and Security Requirements 

Three major categories: attacks by outsiders; accidental misbehavior of network, 

attackers posing as legitimate GENI experimenter; interferences among experiments. GENI may 

combine multiple elements so should be able to deal with all tree kind of threats simultaneously.  

A more detailed view of possible threats are as follows: 

• Unwanted internet or RF traffic: GENI proposes to enforce privileges as per level of 

expertise and a rapid “kill switch to suspend misbehaving experiments and monitoring RF to 

stop not adequate experiments. 

• Disruption to other experiments: stronger isolation between experiments and monitoring 

shared resources. 



 

23 
 

GENI Security concepts and mechanisms 

  GENI is focusing on to discuss uncommon and prominent issues. GENI will be deployed 

on best available operating systems as new secure operating system development is outside the 

scope of GENI. GENI proposes to build strong authentication for access control using Public 

Key Infrastructure (PKI) and certificate authority. X.509 certificates, local authorization policies, 

validity of authentication by resource manager, and protection of credentials are major concepts.   

Protection of private keys is very sensitive. Encrypted private keys can be accessed 

during machine backup or by access control gained by misconfigured hosts, and then they be 

tried to break with offline dictionary attack. Attacker will continue to misuse this key until the 

components started to doubt and found misbehaving patterns and then stop to trust these misused 

resources.  

A password-enabled private key can be made more secure by sharing control over the 

private key with a GENI component. If Captured-protected Key (CPK) is safe then the 

compromise of capture-protection server (CPS) does not enable misuse of the Key. Further, 

storing the private key solely on a hardware token (e.g. smartcard) can reduce the chances of key 

compromising. Temper-resistant hardware token are real leaders here. Practically, most ideal 

way of hardware token is not very feasible to all so GENI advocates one or more CPS and 

hardware tokens on limited bases like GENI administrators [5]. 

Auditing is an essential part of GENI security architecture. Auditing and authorization 

are complementary. GENI works on virtual network and it will allow authorized users to interact 

on GENI so it is auditable that which nodes are responsible for problems as system has their 

credentials and monitoring allows verification of network traffic activities. 



 

24 
 

Signature-based intrusion detection and learning-based anomaly detection systems will 

not be used extensively for monitoring network traffic in GENI as it is not practical to describe 

normal behavior for GENI experiments and false alarms will be raised because of wide variety of 

GENI research experiments.  

GENI proposes specification-based intrusion detection and anticipates some declaration 

from each PI about expected behavior of experiments to monitor the behavior of experiment and 

it can detect any abnormalities. Though it suits to GENI’s nature but may be not straightforward 

to define an expected behavior of research experiments. GENI proposes specification-based 

intrusion detection for network behavior but also suggest other common well known detection 

methods for other activities like Tripwire tool to detect unexpected modifications of files [5].  

Challenges in GENI Security  

There is possibility of DoS against GENI control plane and GENI is supposed to return to 

a previous known safe state when its safe operation cannot be assured. GENI control plane 

expects to adopt the most suitable and most advanced mechanism to avoid DoS attacks during its 

deployment. Operational security and privacy issues are still in infancy stage and need more 

discussion, plan, and consideration of challenges to finalize them. GENI has some legacy 

components and so there is certain level of threat associated [5].  Hosts participating in GENI 

have strong views about doing experiments on security and aware about possible risks to shared 

resources. There are many segments in GENI which may cause security issues like vulnerable 

software, secured hosts, secured communication etc.  Network protocols, algorithms, operating 

system vulnerabilities can create security problems.  

Other than technical issues, limitations due to human errors like guessable passwords and 

keep them in writing, leaving systems unattended and unlocked may feed attackers.  



 

25 
 

ProtoGENI 

ProtoGENI is a prototype of both the GENI software and deployed hardware.  Emulab 

and PlanetLab are two existing bases of ProtoGENI project [38]. The current state of ProtoGENI 

is reached up to this level after years of work, money and cooperation among researchers from 

academia and industry.  

ProtoGENI was planned as a three phase project: 1) Development of initial infrastructure 

by taking together the best components of Emulab and PlanetLab to make it available to 

researchers.  

It may not have all desired or defined functionality of GENI; 2) Interfacing of components and 

modularity of software; 3) Improvement of components and may be replaced by better or 

alternate versions.   

ProtoGENI Control Framework Structure 

ProtoGENI CF structure is based on the “Slice-based Facility Architecture” and it has 

different components handling different functionality and operations. One part, A Clearinghouse 

includes registry services for Principal, Slice and Aggregate/Component Records, a set of 

common Registry Services, and certain specialized Principal, Slice and Component Services as 

fig. 2.1; second part, Emulab sites provide Slice Authority Services. Each Aggregate includes a 

ProtoGENI Aggregate Manager and zero, one or many Components. An Emulab site can provide 

access to hosts and other resources required for experiments.  

Principals include Researchers and their associated Slice managers. “GENI Management 

Core (GMC) specifications”, “GENI Distributed Services”, and “GENI Engineering Guidelines” 

provide basic guidelines to implement in prototype.  



 

26 
 

 

Fig. 2.1: ProtoGENI Clearing house [28] 

Registry 

ProtoGENI implements a centralized clearinghouse and Registry which is co-located with 

the Emulab site in Utah. The Registry exports a Registry Interface. Principals and Slices are 

registered in the Clearinghouse by the Slice authority at each Emulab instance. Each registered 

item has a global identifier (GID). GID contains Universally Unique Identifier (UUID) generated 

by X.667 open space standard, and a Global Name (GNAME). UUID is never changed, once 

assigned to an item. The Registry Resolve() and GetCrendential() functions use GNAME or 

UUID to search relevant identity. 

Clearinghouse 

Currently Clearinghouse provides registration for Slices, Users, Slice authorities, 

aggregates, managers and components. It also provides the list of all known aggregate managers. 

Clearinghouse can shut any experiment or slice.  



 

27 
 

Clearinghouse operates in registration of new federates. Currently only one instance of 

clearinghouse is in operation but multiple instances are planned to work together. MySQL 

database is being used for storage. The location of clearing house is hardwired and most 

operations are restricted to Slice authority or Component Managers.  

 To access the clearinghouse, users request credential via XML-RPC. SSL connection is 

established for existing GID in database. There is no web interface to look into clearinghouse.  

Aggregates and Components 

A ProtoGENI aggregate may be a cluster node, switch and any other resources running in 

an Emulab site. An aggregate interface can be exported from an aggregate comprising an Emulab 

site. 

ProtoGENI Principals 

ProtoGENI users are basically researchers who are using ProtoGENI resources for 

network experiments. Each researcher uses a slice manager to register the slice before using the 

resources so a web client, an XML_PRC client, and an SSH client are also ProtoGENI 

principals. 

ProtoGENI Slices 

Researchers can use ProtoGENI slices for their experiments. Slices can be remotely 

discovered, reserved, configured, and also can be programmed. Researcher can utilize the slice 

resources as per experiment’s requirement. Slices are also basic abstraction for accounting and 

accountability as it can be known that which user is using how many slices and resources 

consumed by the slice.  

 

 



 

28 
 

Slice/Sliver: “A slice is a network of computing and communication resources capable of 

running an experiment or a wide-area network service” [28]. A slice is defined by a set of slivers 

including a set of network components. A "sliver" can consist of local cluster nodes, including 

vlan links between them, cluster nodes at different sites.  

RSpecs in ProtoGENI: The ProtoGENI RSpec is the mechanism for advertising, requesting, 

and describing the resources used by experimenters [8] [28]. An experiment can be assembled if 

the availability of resources is known, available resources can be requested as per requirements, 

and resources can be allocated or promised to an experimenter [28].  

User Management: Users can control the slices once they are bound to a slice at both the Slice 

Authority and the Component manager. User should get a valid credential to get a slice.  

Sliver Interface: When a sliver is created on a component, a sliver interface is also required to 

give the access to that sliver so that sliver can be used by researchers. A researcher uses SSH 

login to interact with sliver through sliver interface. Client authentication is provided in SSH 

login. Setup requires a public key with the sliver server with a matching client private key on 

user’s local machine [28]. 

Identification in ProtoGENI 

Each registered item on ProtoGENI has a GENI identifier (GID) including Human 

Readable Name (HRN) and a UUID. The UUID is unique random number generated by X.667 

(RFC4122). HRN or UUID is used for lookup operation to execute GetCredential() function [1]. 

ProtoGENI identifier is SSL certificate that can be generated on Emulab account. A user can 

regenerate the SSL certificate but same UUID is embedded in it. 

 
 
 
 



 

29 
 

Authentication and Authorization in ProtoGENI 

Authentication 

Currently ProtoGENI is applying one Public Key Infrastructure (PKI) which is covering 

all ProtoGENI registries, slice authorities, aggregates and principals. ProtoGENI keys pair can be 

generated on linux host machine. ProtoGENI users are allowed to access ProtoGENI resources 

through Emulab machines. Each principal has Emulab account and SSL certificate can be 

generated on user’s Emulab account. This SSL certificate is the identity of researcher which can 

be used to identify user’s credentials. Clearinghouse collects all CRLs and sends them to federate 

as combined single list. If certificate is changed by the user then old certificate is revoked and 

cannot be used again. 

Authorization 

PKI is being used to authenticate principals. Credentials are signed by the appropriate 

authority (slice). X.509 format certificate is being used to implement ProtoGENI public key 

infrastructure. Certificates are transferred using X.690 ASN.1 DER (Distinguished Encoding 

Rules). The aggregate which receives these credentials can verify it using a set of root 

certificates. Nodes may be prevented from being viewed by remote users. Users can be restricted 

to gain any access to remote nodes. Numbers of nodes can be limited to allot to be accessed by 

remote users. In a way, ProtoGENI has right to control their resources and aggregates cannot 

implement their own policies. 

Credentials 

Credentials are used as identity of user to allow access to remote nodes. Credentials are 

authenticated documents which describe privileges held by a principal. Privileges to user can be 

defined in XML document.   



 

30 
 

A signed credential additionally can include a list of XML signatures of its enclosed 

ancestors. The expiry time on a child credential may be no later than the expiry time of the 

parent.  There are some privileged and some unprivileged operations in ProtoGENI. The 

wildcard privilege “*” may be used in place of any other privilege string. Each credential has an 

owner and a target to claim its right of accessing resources. A sliver is primary object in 

ProtoGENI and each sliver is controlled through credential which is created when a sliver is 

instantiated. Sliver duration and resources can be defined in XML document but it is up to 

ProtoGENI policies to allow access or not. A sliver’s resources may be withdrawn after a certain 

time period if sliver is not renewed by the user. Currently, credential uses XML digital signature 

format, and XMLSEC library to generate and verify the signed document.  

Ticket is a specific kind of credential and it is a variation of credential which includes the 

description of the resources being promised by an aggregate in the form of RSpec. Credential 

and ticket both have an expiration date. Currently expiration is not being used in credentials but 

have a very short time for tickets. Component manager does not respond to expired tickets. To 

gain resources, user should generate a new ticket but same resources may not be available. 

Resource specification (RSpec) describes a component in terms of the resources it has, 

and also the constraints and dependencies on the allocation of these resources. ProtoGENI RSpec 

is based on ptop/vtop format designed to assign. RSpec is in “RelaxNG Compact” syntax that is 

also known as RNC and it is flexible, human readable, and easily can be translated into XML 

format. ProtoGENI RSpec have details about identification of resources by a UUID, node types, 

virtualization technology, link details, interfaces, and metadata for generation time and validity 

time. RSpecs interact with nearly every piece of the GENI architecture [3]. 

 
 



 

31 
 

Experiment Setup in ProtoGENI Control Framework 

ProtoGENI is a prototype of GENI and expected to provide basic functionality necessary 

to run experiments by GENI researchers. Two trusted XMLRPC servers implement the Slice 

Authority API and the Component Manager API. The CM is actually an aggregate component 

manager. Each user who wants to use the GENI interfaces creates a password protected SSL 

certificate via the Emulab web interface. Only registered Emulab users at one of the federation 

sites can use the GENI APIs. You then use your favorite xmlrpc client to talk to the servers. 

Python is preferred because it’s really easy to write a client program. The source code has a 

bunch of test programs that demonstrate how to do this and use the APIs.  

  A list of physical resources can be got but logical status is more important to know about 

the availability of resources. Unavailable resources can be hold if not available currently and can 

be tried again to get those busy resources by putting reservation or waiting status for those 

resources. 

Component Programming 

Researchers are allowed to login on their assigned sliver (component). Booting and load 

code can be done through sliver interface [28]. 

Resource to Resource connections 

Researchers can apply resources from two aggregates than it is required to connect those 

aggregates. An RSpec can include a request for a link between a set of nodes. ProtoGENI 

supports independent control of these links, LANs, and individual interfaces on nodes attached to 

links.  

 
 
 



 

32 
 

Secure Shell- SSH and OpenSSH 

Secure Shell or SSH is a network protocol that allows data to be exchanged using a 

secure channel among network users. SSH was designed to replace Telnet and other insecure 

remote shells, which send information, notably passwords, in plaintext, which make them 

vulnerable. The encryption used by SSH provides confidentiality and integrity of data. SSH uses 

public-key cryptography to authenticate the remote computer and allow the remote computer to 

authenticate the user, if necessary.  SSH is very commonly being used by Linux and other Unix 

like systems. SSH is typically used to log into a remote machine and execute commands, but it 

also supports tunneling, forwarding TCP ports and X11 connections. SSH can transfer files using 

the associated SFTP or SCP protocols. SSH uses the client-server model. The standard TCP port 

22 is set as default port for SSH services. An SSH client program is typically used for 

establishing connections to an SSH daemon accepting remote connections for communication.  

 Protocol 2 is being used by installed version of OpenSSH. For protocol 2, forward 

security is provided through a Diffie-Hellman key agreement. This key agreement results in a 

shared session key [13][15]. The rest of the session is encrypted using a symmetric cipher, 

currently 128-bit AES, Blowfish, 3DES, CAST128, Arcfour, 192-bit AES, or 256-bit AES. The 

client selects the encryption algorithm to use from those offered by the server. Additionally, 

session integrity is provided through a cryptographic message authentication code (hmac-sha1 or 

hmac-md5) [13][15]. MD5 is least significant algorithm among options being applied for 

encryption. Sha-1 and sha-2 are better but also found some vulnerability against these two also. 

As for now sha-1 or sha-2 are almost on same level and sha-3 is under development [14] [15].  



 

33 
 

The server and the client enter an authentication dialog. The client tries to authenticate 

itself using host-based authentication, public key authentication, challenge-response 

authentication, or password authentication. 

Related Work to SSH Security Issues 

SSH was developed to keep network traffic protected through encryption but studies 

show that in recent years, brute-force attack against SSH, ftp, and telnet servers is most common 

form of attack [63]. Linux is most popular operating system among today’s Unix type systems. 

Again Unix/Linux system is considered safer in comparison to Windows OS but as per one 

study, Linux is ‘most breached’ OS (65% of 154,846 hacked systems) on the net (web 2004). 

Though it is said that an updated OS with latest patches is secure but brute-force attacks against 

SSH are possible on fully updated Linux OS. Earlier ProtoGENI [28] resources, Emulab [9] 

machines used FreeBSD as its default OS but now Linux is the default OS, and there is always a 

possibility to breach the security because of OS vulnerabilities. Even FreeBSD OS has been 

reported to vulnerable to certain kind of vulnerability but it is most secured OS at present by 

reports [62] An experimental study shows that weak and guessable passwords are among other 

reasons to attack against SSH [61]. Literature suggests that default port 22 for SSH service and 

other default settings may provide an easier way to attack [65] [66]. Most of the existed attacking 

kits have inbuilt scripts to exploit these default settings and attacks are almost nil if these default 

settings are changed to a different non-standard port. Technically it is not strong way to enhance 

security as it is just a change of port no. but practically it is more work for attacker as port 

scanners may or may not respond to this non-standard port so it is always hard to guess which 

non-standard port is listening on host. Disabling logins via SSH for the root account is another 

way to add strength to SSH security.  



 

34 
 

System can monitor all failed attempts to login and should block the IP addresses after 

repeated failed login attempts. Iptables also can be used to restrict the users to the SSH server 

port. SSH-keys are also preferred in place of passwords to keep system more secure. 

Port scanners are commonly used to know network statistics about open ports and 

associated services. It seems obvious that an attacker will first try to know the possible ways to 

enter into network and so a port scanner comes handy to do this. Researchers tried to find out the 

relationship between a port or vulnerability scan and following attacking possibilities, and they 

also tried to examine behavior of attacker after compromising of SSH to have an idea about 

severity of levels of attacks through SSH [65]. Results show that only 4% of the port scans were 

followed by attacks while 21% of the vulnerability scans were followed by an attack. This also 

makes an estimate about packets involved in connection and the type of activity like less than 

five packets in a connection is defined as port scan. Between five and twelve packets in a 

connection is defined as vulnerability scan and more than twelve packets in a connections is 

defined as an attack. It also try to verify the reverse order for certain number of attackers and it 

found that more than 50% attacks were not preceded by a scan [66]. In experiment to know the 

behavior of attacker after compromising SSH, researchers found that most of attackers tried 

automated attack tools so having low level attacking skills and may be more interested in making 

money to sell these compromised machines to others. Only 22.09% attackers run any command 

after successful attack via SSH [65]. Downloading malicious code, running and installing rouge 

software, checking configuration details and changing password were few most common actions 

after a successful attack [65]. 

 

 



 

35 
 

CHAPTER 3 

RESEARCH METHODOLOGY 

 

ProtoGENI is a representative of GENI functionality which provides an opportunity to 

explore the practical difficulties in achieving what researchers have planned and expect to 

achieve through GENI. Security is one of the most important issues and security services consist 

of Availability, Integrity, Authenticity, and authority to manage all security issues. Network or 

information security is important to minimize unauthorized access, misuse or denial to network 

functionality or network related accessible resources. 

There are several issues which are of great importance to evaluate the functionality of 

ProtoGENI and GENI. ProtoGENI is a facility to test network research ideas or concepts to build 

a secure and accountable future Internet. Some basic questions arise by default: do we have 

infrastructure capable to conduct these research experiments? Do we have enough resources to 

support an expected set of concurrent research experiments? Do we have a manageable system 

for requesting, utilizing and releasing the network resources? Are there threats to disturb the 

normal resource management and availability of resources? Is traffic can be affected between 

slices and slivers? What can disturb a running network experiment? What are the limitations of 

using resources? What is the process to utilize the available resources at max? Is system working 

as it is supposed to work? Are there any unusual observations during experiments? Are there 

threats to modify or affect any running experiment by inside/ outside attacker? What would be 

the action in case of any component is compromised? 

 



 

36 
 

Resource management involves several security issues. First, who are authorized to use 

the resources? Which involves the question of identification and authorization; second, what are 

the availability or usage conflicts? ; third, is there interference between experiments?  

How efficient is virtualization? Shared resources? Is there proper isolation between slices 

and slivers? Managing and securing virtualization to support the virtual networks and machines, 

and managing and securing the slices, is a question of resource management, and one critical to 

the success of GENI. 

Recording network behavior can be a major help in controlling and regulating network 

traffic but to measure and record everything, including background traffic and timings, leads to 

privacy issues. The multi‐national federation of networks forming GENI exacerbates this 

conflict. 

On the basis of questions and issues about ProtoGENI, this research work focuses on 

experiments to observe and analyze ProtoGENI functionality and to identifying the security 

issues in ProtoGENI. 

This research work tried to get answers for following three main research questions and 

their associated sub-problems: 

RQ1: Is there any threat to ProtoGENI resources? 

1. Outage of resources 

2. Non-usability of available resources 

3. Vulnerability of wildcard specifications in RSpecs 

 

 

 



 

37 
 

RQ2: Is there any problem in run-time interactions between ProtoGENI components? 

1. Communication between slices/ slivers 

2. Interactions between component managers 

3. Traffic load and malicious traffic 

RQ3: Is there any threat because of default settings for SSH and operating system 

vulnerabilities? 

1. How default setting can threat the security in ProtoGENI? 

2. How port scanning and vulnerability scanning can affect security of ProtoGENI 

system? 

3. What can be done to improve the overall security of ProtoGENI? 

In order to investigate above mentioned issues, it is necessary to know the facilities and 

functionality available with ProtoGENI. Availability and accessibility of ProtoGENI resources 

are of much significance as any experiment can be executed only if resources are available as per 

experiment’s requirement, for the required time and with consistent performance. Any loose end 

will put a doubt on the output of experiment and any small interference because of traffic load or 

malicious traffic can disturb other experiments. This work focuses on capturing different issues 

which can affect the basic functionality of ProtoGENI, and which can affect the whole GENI 

system eventually. In next chapter, different experiments will be designed and executed to gather 

information. Experiments try to explore the possible threats or operational glitches. The 

documentation will help to repeat the experiments and a base for expanding experiments to 

evaluate more, and to improve the overall ProtoGENI functionality and security. 

 

 



 

38 
 

 

CHAPTER 4 

PROTOGENI MULTIPLE EXPERIMENTS 

 

ProtoGENI is a setup to provide facilities to researchers to experiment with innovative 

network research. Before going ahead with different network research experiments, it is 

important to understand the infrastructure and mechanism to use ProtoGENI resources. These 

experiments evaluate the available options, test scripts and basic RSpec to initiate basic 

experiments to observe the ProtoGENI functionality, and also to observe the problems during 

different ProtoGENI functions. First step is to go through basic setup and functionality; second 

experiments will explore the different security questions related to ProtoGENI working on 

research questions.  

Security architecture for any system includes a number of security services like 

confidentiality, Integrity, availability, etc. [5] Roles, responsibilities, authorization, and 

authentication mechanisms in the system are also crucial for robust security. ProtoGENI 

experiments are divided into four basic categories: 

1. ProtoGENI setup and mechanism for experiments 

a. Initial setup 

b. Test scripts 

c. RSpecs 

2. Threats to availability of ProtoGENI resources 

3. Problems in run-time interactions between ProtoGENI components 

4. Security threats at host  machine in ProtoGENI setup 



 

39 
 

 

ProtoGENI  Setup and Mechanism for Experiments  

ProtoGENI can be used only by registered users on Emulab.  There are many steps to 

complete before reaching to design or execute an experiment for network behavior analysis. 

Getting an Emulab account is the very first step to start the experimenting process. 

Emulab Account and Project Membership 

A new academic Emulab [9] project is generally initiated by project head which normally 

your advisor in research works or your professor in your course work which acts as your project 

leader. Project leader can associate others to be a part of project team. As shown in Fig. 2, visit 

https://www.emulab.net/ [9] to apply for an Emulab account. All project members have to send 

the request to be associated on a particular project and project leader approves them to be or not 

to be the part of project team.  

 
Fig. 4.1: Emulab Account creation 

Though there is no requirement to create a ProtoGENI experiment associated with your 

Emulab projects, initial account setup is done with association of some project initiated by your 

professor as project leader.  

On host machine, a Windows 7 machine is used, and a virtual machine was created 

through VM player 3.0 and Ubuntu 9 was installed. As we will edit the files, and also need port 

scanner to find details about open ports and other things, we need to install related packages: 

https://www.emulab.net/�


 

40 
 

To edit files through command line 

Sudo apt-get install vim 

To get port scanner 

Sudo apt-get install nmap 

Sudo apt-get install zenmap 

By default Ubuntu installs only OpenSSH –client software on host so server configuration file 

could not be located on host. OpenSSH-server was installed as 

Sudo apt-get install openssh-server 

To set stage for ProtoGENI slice and sliver creation, a short summary of required 

operations is as following in sequence to make it work right: 

1) Install M2Crypto simply by running following command: 

sudo apt-get install m2crypto 

2) Create directory protogeni and test as sub-directory of protogeni. Download test scripts 

from ProtoGENI website [55]to /protogeni/test by following command: 

    Home/protogeni/test sudo wget  http://www.emulab.net/downloads/protogeni-tests.tar.gz 

3) Now create .ssh and .ssl directories into home folder 

4) Create protogeni-key pair by typing 

ssh-keygen -f protogeni-key 

 At the time of creating this key, system will ask for a passphrase, take time to choose a 

strong passphrase which is not easily guessable by attackers. 

Go to your Emulab account- My Emulab- Profile- on left of this page user can see edit ssh 

keys, click on that [9]. Here user should upload the latest generated public key which can be 

http://www.emulab.net/downloads/protogeni-tests.tar.gz�


 

41 
 

browsed though available option. File to be uploaded here should be in home folder as protogeni-

key.pub 

On same page of Emulab account user can see ‘generate SSL certificate’ click on it and 

generate a SSL certificate. Now download it your host machine and save as encrypted.pem in .ssl 

directory. In .ssl directory, create a new file to save your passphrase in a file named as 

“password”. ProtoGENI test scripts will be able to read the passphrase from here. 

5) User should run the python script to get the credential to be authorized for utilizing 

ProtoGENI resources. 

sudo python getcredential.py 

User can experience “WrongHost” problem as following statement: 

M2Crypto.SSL.Checker.WrongHost: Peer certificate commonName does not match host, 

expected boss.emulab.net, got www.emulab.net  

ProtoGENI solution: user can create a file $HOME/.protogeni-config.py with the 

following contents:  

XMLRPC_SERVER = {"default" : "www.emulab.net" } [28] 

        Alternate Solution: User can make the same changes in test-common.py and it works fine. 

6) User can verify the setup requirement by running python test scripts as following: 

Home/protogeni/test/ sudo python lookupuser.py 

Home/protogeni/test sudo python discover.py 

7)  If everything goes fine till here, user is all set to create ProtoGENI slices and slivers to do 

experiments. 

8) Now the only thing to create a rspec.xml file as per requirement of experiment. Sliver will 

be created on the basis of resources defined in rspec file. 



 

42 
 

 After initial setup, user can create slice/sliver. Any suitable name can be chosen for your 

slice, and it can be replaced at place of “myslice” in following command.: 

python   registerslice.py –n myslice 

Now a sliver can be created with same slice name and RSpec file name as following: 

python  createsliver.py  –n myslice shailrspec.xml 

It will create a sliver with required resources defined in shailrspec.xml file, and it will 

return the details of machines provided to user with node identification, which represents Emulab 

remote machines. 

  

 

 Fig. 4.2: Generating a SSL certificate and uploading of SSH ProtoGENI keys to Emulab account

 



 

43 
 

 

Fig. 4.3: Verification of initial settings for ProtoGENI 

 

 

 

Fig. 4.4: Creating the sliver with resource specifications 



 

44 
 

Now sliver is created and we have remote machines details, we can login to those 

machines by following command. 

ssh shail01@pc168.emulab.net 

pc168 should be replaced as per acquired pc-ID in RSpec file or as per allotted by the system.  

ProtoGENI Resources Acquisition, Utilization, and Releasing through Test Scripts

The setup of ProtoGENI and designed test scripts are supposed to help in understanding 

the operation of ProtoGENI. These test scripts provide different operations to acquire and release 

network resources to execute network experiments.  

This part of experiments is an effort to evaluate the current settings and usage of these test 

scripts. Simple experiments are done to see the applicability of different test scripts. 

Observations have been recorded about redundant, and also for not in operation test scripts. This 

work can help a novice learner to understand ProtoGENI functionality and associated problems a 

bit more with practical outputs and results. It can help to initiate, and to follow a straightforward 

path where user can see the application of each test script, redundancy of operations and rights 

available to use resources. This work also includes the observations about inconsistency in 

outputs and not getting the intended operations. 

Emulab resources are being used for these operations. Utah Emulab is primary 

component manager and many other component mangers exist. There are different kinds of 

machines available which are helpful to do specific experiments to see the working on that 

particular type of machine and also useful to verify the compatibility issues among different type 

of machines. We tried to explore the usability and applicability of test scripts provided by 

ProtoGENI.  

 



 

45 
 

 

As we are concerned to identifying the loose ends, and to improve descriptions to follow 

steps with more ease, we tried to execute the available test scripts to see their effect on 

experiments and what information may be more helpful to be available through test scripts.  

 Sometimes a sequence of events of absence of some steps may not be a problem for 

scholars but it can significantly affect the learning curve of a novice. 

Test Scripts in ProtoGENI 

A suite of command-line tools are now available for operation with ProtoGENI services. 

They act as an interim user interface, to provide a means to control ProtoGENI facilities until 

more sophisticated tools are available; and they are also a convenient debugging mechanism to 

test the emerging ProtoGENI components.  

Fig. 4.5: Test scripts suite available in ProtoGENI 



 

46 
 

All python test scripts help in doing different ProtoGENI operations. Slice Authority 

handles some operations include unprivileged operations, information operations, registration 

operations, and few special operations. Component manager interacts with user, SA, and 

clearinghouse through some information operations, ticket operations, manipulation operations, 

and special operations.  

A. Initialization verification scripts 

1) LookUpUser: User can verify that things have worked properly by running the 

lookupuser.py test script and checking that the contents of the protogeni-key.pub file 

are included in the output: these are the same keys that createsliver.py and 

redeemticket.py will pass on to the nodes in the slivers it requests [28]. 

2) ListComponents: listcomponents.py provides details of active Component Managers 

including URN and URL. 

 

Fig. 4.6: List of active Component Managers 

3) test-common.py script is being used by all other scripts if attacker has access to the physical 

machine he can inject simple messages  as print outputs without disturbing the actual process 

of script to fool users. If it is not inserted in proper place, it can affect normal proceedings of 

the test script and will generate some error to warn user or he/she can look for solutions.  

If user sees a simple printing message in a convincing language, it can halt any further effort 

by user to request any resource or to do any other operation. Print messages were inserted at 



 

47 
 

different places but it was showing errors and messages about checking those particular lines 

of code, simply ignoring the message, and showing the message but doing normal process 

too. After couple of efforts, we modified the test-common.py and got the convincible output 

when we tried to execute any other test script.  

 

Following code lines were inserted in the end of the file 

print”ProtoGENI resources are down, please try later” 

exit() 

As per fig. 7, user may assume that something in process so resources are not available, 

and it might restrict any further effort from user to investigate the actual problem. 

 

Fig. 4.7: System is unable to run any script after changes in test-common.py 

 

 

 

 

 



 

48 
 

B. Slice Authority Operations 

1) Unprivileged operations: A valid ProtoGENI certificate is required to establish the SSL 

connection. 

GetCredential:  ProtoGENICredentials are signed documents which describe privileges held 

by a principal (a user). Conceptually, they identify the owning user and a target ProtoGENI 

object to which the privileges apply.  

 Since you need a credential to do most anything in ProtoGENI, you first have to get your 

"self" credential, which is just a generic credential that gives you permission to do basic 

kinds of things, like register a slice name.  

 
Your self-credential is issued by your local Emulab. For example, to get your self-credential, 

you would run the getcredential.py test script on usernames [28]. 

2) Information Operations 
DiscoverResources: this operation gives the information of all available resources at 

Component Manager. 

./discover.py 

3) Registration operations 

Registerslice.py registers a slice name with slice authority but do not provide any resources 

to use. Createsliver.py creates a sliver and gets single node resource from component 

manager if no RSpec .xml file is specified in the command. 

If a researcher tries to register another slice with same name, system checks the status of 

existing slice and returns the status accordingly as shown in figure 8.  

 



 

49 
 

Required resources for an experiment can be defined in a RSpec .xml file and a sliver can 

be created with that specific .xml file but only one sliver can be active at a time so user 

should delete the existing sliver to create a new one which we will describe in component 

manager manipulation operations. 

 

Fig. 4.8: Slice registration and creation of sliver 

GetSliceCredential : getslicecredential.py generates slice details of specified slice including 

expiring time with other details. 

 

Fig. 4.9: To get the slice credentials 



 

50 
 

C. Component Manager Operations 

1) Information Operations 

SliverStatus: sliverstatus.py script tells about the current status of sliver resources. It has 

details about sliver resources and their status like whether a node is ready or in changing 

status mode. 

 

Fig. 4.10: sliverstatus.py to know the status of a sliver 

2) Ticket Operations 
GetTicket: getticket.py script provides a promise to assign you the defined resources in your 

associated RSpec .xml file in command but user can hold control on those resources only after 

redemption of ticket before expiring of the time limit defined in details in output after running 

this script but practically it is not working as per this time. Ticket has to be redeemed few 

minutes after getting the ticket otherwise it says do not have any ticket as shown in fig with time 

details captured on screen. In our trial, no ticket was found for slice after 5 minutes. 

 

Fig. 4.11: getticket.py after registering a slice 

 



 

51 
 

 

Fig. 4.12: getticket.py without registering a slice first 

 

Testslice4 was tried to redeem ticket quickly just after getting the ticket and redemption of ticket 

was tried after 5 minutes for testslice3. We can see in fig. 13 that expiring time of sliver 

testslice4 is apprx. 11 hours while ticket could not be redeemed for testslice3 after 5 minutes. 

 

 

Fig. 4.13: getslicecredential.py details of testslice4 after redemption of ticket 

 

Redeeming a ticket creates a sliver, and returns another credential to you. The sliver is the 

portion of the computing resource that has been granted to the user [28].   

Though Redemption of ticket provide a similar active sliver which can be created through 

createsliver.py, it is a bit lengthy and quick series of operations to keep you sliver active for a 

required amount of time for executing experiments. 

 



 

52 
 

 

Fig. 4.14: Details for getticket and supposed time to redeem the ticket for testslice3 

 

Fig. 4.15: No ticket exists after five minutes of getting ticket for testslice3 

We executed getticket.py, redeemticket.py, releaseticket.py and getticket.py one after another 

to see the sequence of processes. After redemption of a ticket the slice got an active sliver and 

then no ticket operation works on active sliver. 

 

Fig. 4.16: No ticket operation after redemption of ticket as sliver act as active 



 

53 
 

 

3) Manipulation Operations 

SliverAction: sliveraction.py helps in starting, restarting or to stop a sliver. After redeeming 

your tickets, you need to start your slivers. This is because while the computing resources have 

been bound to your slice, but they have not been initialized. [28][38]. 

 

Fig. 4.17: Starting of sliver after redemption of ticket and verification of sliver status 

 

User can also stop the sliver with sliveraction.py command as shown in fig 4.18. 

 

Fig. 4.18: stopping a sliver through sliveraction.py  

  



 

54 
 

If user have any problem with sliver resources and want to reboot the nodes, user can place 

restart in the command in place of start/ stop. 

RenewSliver: renewsliver.py helps in extending the expiring time of a sliver and availability of 

associated resources for a specified time (in minutes) given in the command. 

 

Fig. 4.19: Renewing the sliver for a specific time from initial time settings of sliver. 

 

DeleteSliver: deletesliver.py deletes a sliver specified in the command. If a sliver has been 

renewed, deletesliver.py deletes the sliver and returns the slice credentials. Here we tried to 

redeemticket.py  just after deleting the sliver and it did it successfully so sliver was again active. 

 

 

Fig. 4.20: Deletion of sliver and redemption of ticket that made it active again 

 



 

55 
 

DeleteSlice: deleteslice.py deletes all the details at CM and releases the resources with specified 

slice. An empty slice can be existed if resources are already been released through 

deletesliver.py. 

 

Fig. 4.21: Deletion of slice and no further slice record 

 

UpdateSliver: This test script, updatesliver.py is supposed to modify the sliver resources without 

deleting the sliver. In trial, the sliver is being updated in records and returns the details on screen 

with information to redeem before a particular time but sliver status was showing the same 

details as before applying the updatesliver.py.  The updatesliver.py command was repeated with 

a different RSpec file for a single node but it could not create geniobject, and sliver could not be 

started or revived further. Updating a sliver is a bit complex as it involves quick redemption of 

new ticket. A detailed description of outputs is attached as Annexure A. Alternate temporary 

solution may be to create a new slice/sliver other than updating the existing sliver. 

Special operations 
list-ch.py, listusage.py, unregisterslice.py, and shutdownslice.py are privileged operations which 

normally can be invoked by the clearinghouse only. 



 

56 
 

Advanced operations 
TunTest: tuntest.py can create two slivers with two different Component Managers under a 

single slice. 

./tuntest utahemulab ukgeni 

Utahemulab is Emulab of Utah and ukgeni is Emulab facility of Kentucky. 

Additional Test Scripts 

ProtoGENI test scripts are initial scripts to use ProtoGENI resources and to see the basic 

GENI functionality. Some test scripts are modified by Utah to make them more user friendly and 

to show the sliver and node status in a cleaner way with necessary information only. These test 

scripts are added as gec8tutorial-scripts.tar.gz recently by Utah team [54].  

1) Allocatenodes.py 
This is a similar test script to createsliver.py which allocates resources to the sliver as 

specified in RSpec file. Output provides the allotted nodes to the sliver and also returns the status 

of the sliver. 

./allocatenodes.py –n newslice1 anynode.rspec 

 

 

Fig. 4.22: Test Script allocatenodes.py 

 

Till now we were only using .xml RSpec files to request resources but following this example, 

we also created sliver through createsliver.py with .rspec file as shown in fig 4.23. 



 

57 
 

 

Fig. 4.23: createsliver.py with anynode.rspec RSpec file 

2) Rememberpassphrase.py and forgetpassphrase.py 

These two test scripts provide a convenient way to enhance the security of physical 

machine. SSH keys are protected with a passphrase and this passphrase can be stored at a 

specific place to avoid retyping of it again and again but this also makes physical machine a bit 

prone to attack as attacker may know the particular file to look for passphrase. 

Rememberpassphrase.py enables users to type the correct passphrase in command line and 

creates the required file at required place to work with ProtoGENI settings.  

As per fig. 4.24, forgetpassphrase.py deletes the passphrase file and 

rememberpassphrase.py creates a passphrase file at proper place. Rememberpassphrase.py 

creates the file but if you enter a wrong passphrase, system will not accept it to create a sliver. 

Once a correct passphrase is provided, system is good to be in action. 



 

58 
 

3) Showuser.py 

This test script is to get information about active slices by a particular user. It shows the 

slices which are not expired. So a slice/sliver may be deleted already but still will be shown in 

output of showuser.py if it is not expired at clearinghouse. 

 

Fig. 4.24: Passphrase related test scripts 

 

User can use this information to check the status of slivers and can delete the slivers and 

releasing the resources if not using them. 

 



 

59 
 

 

Fig. 4.25: Execution of showuser.py test script 

 RSpec .xml file can be borrowed from tutorial of ProtoGENI website [28] and it works 

fine to check initial functionality.  

 

Fig. 4.26: Example RSpec can be used as myrspec.xml [28] 

  If more resources are required, same RSpec .xml file can be modified or a new one can 

be created once the user is more familiar with RSpec details. OS type of a particular node and a 

particular kind of PC can be defined in RSpec .xml file.  



 

60 
 

 

Users can join Geni-user mail group to get over difficulties and can share questions and 

findings with all other researchers. 

We run and verified the functioning of test scripts available and observed the associated 

problems which will be discussed in details in result and analysis section. Experiments helped to 

distinguish between different ways to acquire resources and preferred the simpler way to 

acquiring and releasing the ProtoGENI resources to ensure a better accessibility and availability 

of resources to all ProtoGENI users. An alternate solution for “wrong host” problem was also 

suggested which worked fine.  

ProtoGENI Resources: Accessibility and Availability through RSpecs 

RSpec- Resource Specifications: The ProtoGENI RSpec is ProtoGENI’s mechanism for 

advertising, requesting, and describing the resources used by experimenters. RSpecs interact with 

nearly every piece of the GENI architecture. ProtoGENI entities create and modify different 

kinds of RSpecs during different operations to design and implement an experiment.  

Requests specify which resources a client is selecting from Component Managers. 

Request RSpecs may contain a complete, partial or empty mapping between physical 

components and abstract nodes and links [42].  If there is no mapping, a request is known as 

unbound. A bound request contains mapped links and nodes. 

Ticket operations are alternate to acquire a sliver and resources. Component Manager 

returns a ticket or a failure to complete or reject the request of resources.  

 
 
 



 

61 
 

Usage of RSpecs in Requesting Resources 

There are many RSpec files [Fig.27] available with test script suite which can be 

downloaded from ProtoGENI web link [28].  

 

Fig. 4.27: .rspec files are available in ProtoGENI test scripts suite 

All resources in one sliver, possible? 

All the available resources can be known through discover.py and the output can be 

saved in advert.xml file. We tried to acquire all the resources all together by putting this 

advert.xml to create a sliver as it could be a potential threat if all resources can be acquired by 

one user in a single sliver. 

 

Fig. 4.28: Effort to acquire all available resources in one sliver 

 From fig. 4.28 we can see that system doesn’t allow the creation of a single sliver having 

all available resources in that one sliver.  

System is taking care of this issue and any abnormal demand of resources can be 

monitored by the ProtoGENI authorities and a sliver can be terminated if required.  

 

 



 

62 
 

Simplest RSpec: for any available single node 

A single node can be obtained without any given specification without providing any RSpec .xml 

file or with anynode.xml [See Appendix] 

 

Fig. 4.29: Requesting a not-specific single node with and without RSpec file 

 

  

Fig. 4.30: Non-availability of a particular resource requested in RSpec file. 

Sometimes a particular resource requested in RSpec may not be available so, it is a good idea 

to verify the node status through Emulab account.  



 

63 
 

 

Fig. 4.31: Requested PC was busy- Status can be seen at Emulab 

Rspec in fig 26 is easy to understand and the most utilized RSpec file in our experiments. 

It provides two GENI nodes without any particular node type, ID or OS which results in two 

available up nodes with default linux OS image (as on 07-21-2010).  

Different RSpecs files were created to see if system can provide the requested resources 

as per specified or not. 

All other available RSpec files were observed for what details they are providing to help 

in requesting resources with proper definitions. 

Software installation on remote nodes through RSpec file 

RSpec can be used to download and unpack tar files from web link to remote node. 

remoteexecution.xml is generated as per web example. The example was modified to get a valid 

tar file from web link. 

Slice remoteexe was created with RSpec file. ProtoGENI test script suite was supposed to 

be downloaded and being unpacked on remote node /local folder which was specified in RSpec. 

Sliver was created successfully and /local folder was verified to see the existence of test script 

suite files. This was done successfully, so tar files can be downloaded on remote node. 

 

 

 



 

64 
 

Table-1 gives a brief description of each available RSpec with ProtoGENI and of some other 

RSpecs developed to see specific functionality.  

S.no RSpec file Brief Description Source 

1 anynode One node- no other specification Test scripts suite 

2 fwtest Asking for firewall -do- 

3 jaillink Two nodes, one link- no specific definition of resources -do- 

4 jailtest Two nodes, no link -do- 

5 jailtun Two nodes, one link, one tunnel -do- 

6 gec8-kentucky One node from Kentucky CM -do- 

7 linktest Two nodes, one link -do- 

8 loctuntest Two nodes with particular OS, link type as tunnel -do- 

9 ostest One node with a particular OS -do- 

10 Spp-lan 3 nodes, link specification bandwidth etc., lan-3 

interfaces 

-do- 

11 Spp-link 2 nodes, one link with specifications -do- 

12 Gec8-tunnel Link definitions for creating tunnel between two nodes 

at two different CMs 

-do- 

13 Bound-type One particular PC type -do- 

14 gec8-utah 3 nodes, OS-FEDORA8-OVZ-STD, 2 links -do- 

15 bbglink 2 bbg nodes, one link with specifications -do- 

16 ostype3 One node-specific node_id and a particular OS Geni-user mail  

17 sharednode Two nodes type pcvm, one link with specifications ProtoGENI web details 

18 remoteexecution To download and unpack the tar files or remote node -do- 

 

Table-4.1: A brief description of helping RSpec examples 



 

65 
 

 

Fig. 4.32: Node status of slice/sliver threeos through sliverstatus.py and in Emulab as good but 

could not get control on pc160 

 

 

Fig. 4.33: sliver creation to download software at remote node 



 

66 
 

 

 

Fig. 4.34: tar file downloaded and unpacked at remote node 

  We tried few commands at remote node but ProtoGENI test scripts don’t work as they 

need supporting software like m2crypto and python installed at that node as primary things to 

move further. More than one tar file can be installed install on remote node. Rspec as 

remtwo.xml can install a list of software separated by a semicolon as directed at [57]. 

RSpecs are modified to see the variations and execution of RSpec examples. These 

details provide a simplification about available RSpec examples, their implementation, and their 

limitations in current scenario. More experiments will explore further advancements in Rspec 

file and their intended usage. 

 Emulab Resources: Emulab contains a vast array of resources including wired cluster PCs 

that can run essentially arbitrary operating systems including Windows, Linux, and FreeBSD; 

physically distributed 802.11 wireless PCs; network processors; sensor boards; and software 

radio platforms. There are total 474 nodes distributed among 12 node types [9].  



 

67 
 

Each node type has given an identity and a set of its characteristics are available on 

Emulab user account as node type information including node type, node class, default_osid, 

processor, and virtnode_capacity. Node Control Center provides free node summary which can 

help experimenter to design their experiments accordingly. Users also can request other users to 

free the desired nodes through emailing to geni-users email group.  

  Emulab resources are allocated to a single user at a time. If nodes are being used by some 

experimenters, it may hinder the possibility of other experiments to run because of unavailability 

of resources. Interaction between experimenter and ProtoGENI control framework is required to 

conduct the network experiments.  

 

 

Fig. 4.35: Emulab Resources: Free Node Summary on Emulab site [9] 

Experimenter can define their desired types of nodes and also can select the operating 

system. ProtoGENI allows users to experiment on PC nodes on which user have full "root" 

access, running an operating system of user’s choice [28] [56].   



 

68 
 

Network resources are available to incorporate variety of experiments to test different 

hardware and software combinations required to execute experiments. The required resources for 

an experiment are specified in resource specifications, RSpec file in .xml or .rspec file format. 

An experiment can be assembled if the availability of resources is known, available 

resources can be requested as per requirements, and resources can be allocated or promised to an 

experimenter [53]. Fig. 38 shows the interoperability of RSpecs in GENI. There are several 

issues about RSpecs as connectivity, topology, and expressiveness of the language to define 

resource specifications [53]. Rspec can identify every resource explicitly. 

 

Fig. 4.36: Detail description of a node type on Emulab Account [9]. 

 



 

69 
 

 

Fig. 4.37: Interoperability of RSpecs in GENI infrastructure [53] 

Slice creation with Specific Type of Resources through RSpec 

We tried to see how availability of resources can affect different network experiments. A 

file boundtype.xml was created from bound-type.rspec file [see Appendix] in test script package. 

It initially requested two PC2000 type PCs. As we can see from fig. 36, there was only one free 

node of PC2000 type, we could not create the slice. We again modified the RSpec details to 

request and included PC2400w with PC2000. There were 9 free PC2400w PCs but still, sliver 

could not be created. We tried to look for characteristics of PC2400w type PC and found its 

virtnode_capacity was defined as zero [9].  

 

Fig. 4.38: Sliver creation attempt with PC type PC2400w 



 

70 
 

RSpec file was again modified to experiment with other types of nodes. 10 PC600 type nodes 

were free and node type virtnode_capacity was defined as 10, so we requested for two PC600 

type PCs. Slice was created successfully. 

 

Fig. 4.39: Sliver creation with a specific type of PC600 

Next section experiments are related to slice/ sliver creation and deletion to see how it 

affects availability of resources to other experiments. We tried to create specific RSpecs to see 

resource consumption with many slices, each with few resources and also stress test by 

requesting many resources in a single slice. Experiments show that one user can pose threat in 

execution of other experiments by holding resources in one or other way.  One can make 

available resources not usable because of holding the necessary network resources in another 

experiment. 

We are concerned about threats to resources for all ProtoGENI users. Sometimes a novice 

experimenter can create many slices to experience different basic experiments and may lost the 

track of slices created and deleted in process and may hold network resources. This unnoticed 

holding of resources may create shortage of resources. These resources on hold might be 

required for more important and preferable experiments to execute to see network behavior by 

mature experimenters. A beginner may not be capable to understand the severity of problem by 

holding few resources that could be resulted as bottleneck for another topology.  



 

71 
 

Resources can be acquired either by not specifying the particular type of node or a 

specific type of node can be specified in RSpec for a particular type of experiment. Though 

slices and slivers are short lived for few hours if not being renewed but still some basic 

experiments observing the effect of extending sliver time of existence through redeemticket.py 

may hold resources for a longer period which can block theses resources to be obtained by other 

ProtoGENI users. These experiments will help to understand the possible threats to availability 

of resources to other experimenters.  

A sliver can be created with given slice name and RSpec.xml file name as following: 

python  createsliver.py  –n myslice shailrspec.xml 

It will create a sliver with required resources defined in shailrspec.xml file, and it will return the 

details of machines provided to user with node identification, which represents Emulab remote 

machines [9]. 

(a) Requesting few resources in too many slices/slivers 

We observed Emulab account to keep tracking of available, consumed, and freed 

resources with creation and deletion of slices. Before starting of the experiment, 33 pcs were free 

on Emulab account so we decided to go up to16 Slices at first to see the resources consumption.  

The sample RSpec in tutorial [28] was used for all slices which request only two PCs 

without stating any specific type. We tried to create one after another in separate terminals with a 

pattern of slice names like shailslice1, shailslice2 and so on. Initial 6 slices were created without 

any problem but 7th and 8th slices were stuck in creating slices and we aborted both of them, 

continuing creating next slices with same name pattern. Again, shailslice11 was not successfully 

created.  



 

72 
 

 

Fig.4.40: Creation of a series of slices from shailslice1 to shailslice16  

shailslice13 and shailslice14 could not be created when tried in same terminal with previous slice 

but were successfully created when attempted in separate terminals. By the time of creation of 

shailslice15, there was only one free PC on Emulab records, and system didn’t create 

shailslice15 as saying “could not map to resources, could not create the slice”. Emulab resources 

were distributed among previous slices and left with one 1 free PC which could not help in 

creating a sliver with request of two PCs. Fig. 41 shows creation of a series of slices. Fig. 42, 43, 

and 44 show deletion of slices and resources being freed. 

 

Fig. 4.41: Outage of ProtoGENI Resources through many sliver by single user 



 

73 
 

 

Fig. 4.42-a: Deletion of slices to release the resources. 

 

Fig. 4.42-b: More resources available with deletion of more slices. 

Stress test 

For stress test, we tried to request many resources at a time which again may reduce the 

possible number of experiments on Emulab resources. We modify the basic RSpec file to add 

more resources in one resource .xml file. We created stressrspec.xml [it is an expansion of basic 

RSpec with more resources in same format] with requirement of 6 PCs and 3 links at a time. 

Available resources were 33 PCs. Creation of two slices reduced the Emulab resources down to 

21 free PCs. 

RSpec file was modified to add more resources in one request. We created 

stresssrspec2.xml with the request of 14 Pcs and 7 links as shown in fig. 47.  A slice was created 

with all 14 PCs and 7 links and Emulab resources reduced to 7 free PCs. Next attempt was to 

create a similar slice with 14 PCs and 7 links, it could not be created and stated: “could not map 

to resources, could not create sliver”.  

 



 

74 
 

We can see that more resources requested at a time in a single slice reduces the chances 

of creation of other slivers. This poses a threat to availability of resources to experimenters.  

 

Fig. 4.43: Creation of stress slice with 14 PCs and 7 links. 

 

We also observed the reverse activity of resources being freed with deletion of stress slices. This 

can be seen in fig. 4.44 and 4.45.  

 
Fig. 4.44: Deletion of stress slices 

 

 

Fig. 4.45: Free resources after deletion of stress slices. 



 

75 
 

The experiments show possible threats to availability of resources to GENI 

experimenters. It was taken in consideration that other experiments could create and delete slices 

when we were conducting these experiments, so exact number of resources available may be 

changed with the time. Fortunately, at the time of these experiments, there were few Emulab 

resources were free, and it was easier to observe the resource-outage with creation of fewer 

slices.  

  We also kept checking the control over acquired resources through sliver creations by 

doing login on those Emulab machines. Slices are generally short lived, so user has to renew 

his/her slice if the resources are required for a longer experiment. Resources were requested 

through RSpec.XML file, and RSpecs may be more complex and detailed for a particular 

experiment.  

Existing ProtoGENI infrastructure is limited so experimenters need resources which may 

or may not be available because of involvement in other experiments. Availability is one 

important part of security issues and resources should be available to experimenters on equal 

basis. 

 

Run-Time Interactions between ProtoGENI Components 

Run-time network interactions can be a cause of network problems as different 

experiments interacting with different ProtoGENI components. Communication among the 

ProtoGENI nodes and also between ProtoGENI and outside network is important to explore 

further experiments. This section is focusing on experiments to test whether a ProtoGENI sliver 

can receive from (or send to) another slice, or outside network. 



 

76 
 

As we know that user can own resources in a sliver so he/ she can have control on those 

nodes, and can do the experiments. Now we are interested to see the communication capabilities 

between different slivers and between ProtoGENI sliver and outside network.  

This can give us an idea about possible isolation or cooperation between ProtoGENI 

slivers and also between ProtoGENI sliver and outside network. This work can help to 

identifying the threats which could impact the accessibility of GENI.  

We did experiments to find out the answers for following: 

1. Whether a sliver can receive from (or send to) another slice? 

2. Whether a sliver can receive from (or sent to) outside network? 

3. Is communication possible between nodes from two component managers? 

4. How communication between wireless nodes in different slivers can pose threats to 

network traffic? 

We used simple approach to create different slivers and test the communication through 

simple client-server programs.  We used our linux virtual machine (Ubuntu 9.0) as outside 

network node and verified the communication via client-server programs. 

1. Communication between two ProtoGENI nodes as Client and Server:  

Please see Appendix for Client-Server program file Details. We uploaded these files on 

remote machines.  Server has to be initiated first. 

At machine treated as Server: 

gcc -o srv server.c handletcpclient.c DieWithError.c  

At machine treated as Client: 

gcc -o cli client.c DieWithError.c ResolveName.c 

After compilation, systems generate executable files to run client and server programs. 



 

77 
 

Communication between client and server: Communication can be seen as shown in fig. 

49. We can run exit or logout on remote machines to close the connections like fig 50.  

 

Fig. 4.46: Communication between Client and Server machines 

 

Fig. 4.47: Logout from remote Emulab machines              



 

78 
 

Now, resources are no longer in use so user should release the resources on priority basis.  

We can do it by running deleteslice.py command as per fig. 4.47. 

2. Communication between nodes of different slivers 

Two slices were created with no particular rspec file and system allowed one node to each 

sliver. 

 

Fig. 4.48: Creation of two slivers for communication between slivers 

 

PC69 were allotted to clientslice and PC97 was allotted to server slice. 

We uploaded simple basic client server C program files on both nodes as we planned to observe 

both nodes as operating client as well as server. Files were uploaded one by one by following 

command with the required file name to upload: 

sudo scp HandleTCPClient.c shail01@pc69.emulab.net:/users/shail01/ 

After this, roles were reversed for both slivers to check two ways operation between ProtoGENI 

slivers. PC97 was reset to act as client and PC69 was reset to act as client. Communication 

worked fine with reversed roles of sliver nodes. 

mailto:shail01@pc69.emulab.net:/users/shail01/�


 

79 
 

 

Fig. 4.49: Communication between two different sliver PCs 

 

 

Fig. 4.50: verification of both slivers as client and server 

These operations show that different slivers can send or receive from each other. 

3. Communication between a ProtoGENI sliver and outside network node 

We continued with same serverslice sliver with single node PC97 and opted for our own PC as 

outside network node to communicate with ProtoGENI sliver. 



 

80 
 

 

Fig. 4.51: Communication of a ProtoGENI sliver with outside network 

 

ProtoGENI sliver is operating as server and lab machine was used as outside network 

node. Communication is fine with this setting but connection could not be established when 

serverslice node was set as client. To diagnose a bit more we created the sliver again with 

shrspec1.xml and PC105 was allotted to experiment. Operational settings for both ProtoGENI 

node and outside network node were repeated to verify client and server operations but we got 

the same results. ProtoGENI node is working fine as server with an outside network client node 

but could not establish the connection when ProtoGENI node was reset as client and outside 

network node as server. 

ProtoGENI sliver is working partially with outside network node. More work is required 

to find out the reason why it is not working as client with outside server node. 



 

81 
 

 

Fig. 4.52: Error in communication when ProtoGENI node acted as client 

Though there is some clarification is required for not successful communication between a 

ProtoGENI node as client and outside network node as server, we expect that more experiments 

will be helpful to explore the reasons.   

4. Communication between ProtoGENI nodes from two Component Managers 

Sliver twocm was created with tuntest.py test script requesting two nodes from two different 

Component Managers (CM) Utah Emulab and Kentucky Emulab. 

 

Fig. 4.53: Sliver creation requesting two nodes from two different CMs 



 

82 
 

Node geni1: Utah Emulab pc206.emulab.net;  

Node geni2: Kentucky Emulab, pc27.uky.emulab.net 

As before, we uploaded client server program files on remote nodes, and compiled the programs. 

Communication was tried both ways: both nodes acting as server as well as client 

 

Fig. 4.54: Kentucky Emulab ProtoGENI node as server 

 

Fig. 4.55: Utah Emulab ProtoGENI node as server 

5. Communication between Emulab wireless nodes  

These experiments are to explore wireless traffic issues. Though these are not through slivers and 

initiated as Emulab experiments as more work is proposed on wireless nodes through 

ProtoGENI, this is initial work to interact with wireless nodes and to observe possible 

communication issues which will affect ProtoGENI experiments as well. 



 

83 
 

Two experiments were created to see communication between wireless nodes. One experiment 

had 4 wirelss nodes pcwf1, pcwf3, pcwf5, pcwf7 and second experiment was created with pcwf2 

and pcwf4. Configuration of nodes can be verified to communicate via wireless channel through 

ifconfig command at remote nodes 

 

Fig. 4.56: Emulab topology for wireless nodes 

 

 

Fig. 4.57: Configuration details at remote node in wireless experiment 



 

84 
 

We tried to see the effect of pinging one node to other separately, pinging to every node together 

and effect of sending data in indefinite loop to see how these all affect traffic outputs and other 

communication process. 

Table 2. in Appendix shows the pinging operations with different number of packets. 

Details show that max rtt (round trip time) is quite high with the increasing number of packets 

and especially when they were pinging all together. We observed that system applied different 

pipes to cope with the communication load but it increases the rtt significantly and loss of 

packets. 

.  

Fig. 4.58: Pinging pcwf1-3-5-7-1, 500 pkts. (All at same time) 

Client-server programs were tested while pinging and also tried when two nodes were 

communicating in indefinite loop and any other node tried to communicate with one of busy 

node. Cross communication between two experiments is shown as per fig. 4.59. 



 

85 
 

 

Fig. 4.59: Cross communication between two experiments with wireless nodes 

Next, we tried to communicate with a busy node in an indefinite loop of client server 

communication.  

 

Fig. 4.60: pcwf2 handling two clients 

 



 

86 
 

Experiments showed some different outputs like any third node was not able to 

communicate with the busy node but in certain cases when we close the client node, server 

showed handling of another client which was already been suspended. It was inconsistent as at 

other times it just denied the connection stating “connection was reset by peer”. More 

experiments will be helpful to diagnose theses issues.  

Experiments show that different slivers can communicate and also can communicate to 

outside network. Wireless node communication experiments need more exploration but it can be 

seen that even pinging can affect the traffic behavior and communication can be affected if one 

user keeps busy another node in an indefinite loop.  

SSH Security Issues in ProtoGENI 

SSH is considered as a comparatively secure way to communicate remotely but there are 

many security issues associated with SSH. The protocol, default port settings are causes of 

security concerns. SSH attacks are among most repeated network security attacks. Port scanners 

are commonly used to find out open ports. Port configuration to a non-standard port, and 

disabling logins via SSH for the root account may help to increase the required work done in 

attacking the network. Experiments shows that port scanner like nmap, zenmap (GUI) can scan 

open ports and associated services. Default settings of SSH client and server can be vulnerable 

for attacks. Non-standard port for SSH and some other changes may help in protecting and 

reducing brute force attacks via SSH. Experiments show to follow certain steps to make a more 

secure SSH. 

OpenSSH [68] is a SSH connectivity tool which encrypts all traffic details to efficiently 

reduce eavesdropping, connection hijacking, and other attacks.   



 

87 
 

OpenSSH-Client is installed with Ubuntu installation. OpenSSH-server was installed by 

following command:  sudo apt-get install openssh-server  

In this section, we will discuss the methods to activate these defense mechanisms. We 

executed theses experiment on Ubuntu 9, Open SSH [68] and setup created to use ProtoGENI 

slices [28] for experiments. By default Ubuntu installs only OpenSSH –client software on host so 

server configuration file could not be located on host. OpenSSH-server was installed as 

Sudo apt-get install openssh-server 

We also installed logwatch to see login details on host 

Sudo apt-get install logwatch 

 Port scanners can be helpful for network administration tasks like network inventory, 

managing service upgrade schedules, and monitoring host or service up time. Nmap, “Network 

Mapper”, is one of the most popular port scanners. Nmap is free and open source, and it runs on 

all major operating systems [69]. Nmap has command line option as well as a very easy to use 

GUI zenmap as result viewer. Nmap [69] is quite popular among network security groups and 

hackers.  We installed nmap and zenmap to scan host machine and also to scan acquired virtual 

Emulab machines. 

To get port scanner 

Sudo apt-get install nmap 

Sudo apt-get install zenmap 

Zenmap is GUI for nmap and has different types of scan. We used intense scan to get port 

details. 



 

88 
 

 

Fig 4.61. Port Scanning details through Zenmap 

 

 

Fig 4.62: Nmap output after scanning an IP address 

 

 

Fig 4.63: OS details of a machine through zenmap scan 



 

89 
 

User can go to /etc/ssh to find the sshd_config file to make changes. Port 22 is set as 

default for SSH services. This default setting is vulnerable to exploit through automated 

attacking tools.  This port setting in sshd_config file can be changed to a suitable port number. 

SSH-server will listen on any unused port among 65,535 ports provided by the TCP protocols 

[61]. Current available port scanners are not capable to detect each and every detail of all 65,535 

ports and usually developed to detect most common default settings and some other details so 

using a non-standard port number can be helpful to keep information secured which will reduce 

the attacking possibilities. File sshd_config can be modified as per fig 4.64. 

 

Fig 4.64. Modification in sshd_config file for non-standard port for SSH 

 

Fig 4.65: Restricting Root login via SSH 



 

90 
 

Nmap like scanning tools can scan around 1600 ports by default so other than default port 

settings it is a bit difficult to trace open non-standard ports. While it is not a preferred method to 

apply security but it works most of the time as experiments shows that there were no attacks after 

changing default SSH port settings from 22 to a non-standard port number while in same time 

period, over 100,000 attacks were reported on systems with default port settings [65]. The only 

additional work here seems to coordinate with all legitimate users to convey the right port 

settings for communication.  

After setting the port 22 to a non standard port number, as shown in fig 70, settings 

should also be modified accordingly in /etc/services. 

Home:~$ cd /etc 

Home:/etc$ sudo vim services 

Here we changed only incoming port settings to new non-standard port for SSH 

connection because our remote Emulab machines have settings for default settings for SSH as 

port 22. We also modified PermitRootLogin as No in sshd_config file so now open port 

detection is difficult and there is also no permission to access SSH remotely, which is shown in 

fig 69. This exercise is done to make SSH a bit more secure and previous research supports and 

advocates customized settings to make it more difficult for attackers and not to be hacked by 

automated attacking scripts. 



 

91 
 

 

Fig 4.66: Changing port no to non-standard port in services 

After completing all settings to work with new SSH non-standard port, we tried to login 

to Emulab machines. Before that we also verified that system is listening to that new port and 

could not be reached on default port 22 to access SSH as per fig 4.67 and fig 4.68. 

 

Fig 4.67: Verification of new port working as listening port 

Now we verified the network operation to connect to Emulab machines in our sliver to check 

proper working of SSH with non-standard port. 



 

92 
 

 

Fig 4.68: User login to Emulab machines with changed SSH port 

System activities can be monitored through logwatch package as shown in fig 4.69. 

 
Fig 4.69: Logwatch details for observing activities 

FUTURE WORK 

These experiments deal with basic ProtoGENI functionality, and an effort to see the 

consumption and release pattern of Emulab resources with creation and deletion of slices and 

slivers. Future work is proposed to experiment with different combinations of wildcard 

allocation and specific kind of PCs in one RSpec. More study is needed to understand detailed 

description of Emulab node types and their characteristics to incorporate them in the RSpec to 

create desired network experiments. 

 

Experimenters should know many details related to slices, slivers, and resource 



 

93 
 

specifications and in-depth details about node type, their characteristics, and limitations of 

Emulab facility. This work focused on executing basic experiments with simple RSpecs to see 

the effect on availability of resources. It explains details of acquiring resources and holding of 

resources through many slices and also many resources in a single RSpec file to test availability 

of resources.  

On verifying the vulnerability of wildcard allocation by RSpecs, we could not find an 

example to show because when many resources were free, it could take uncertain time to figure 

out the possible case when special kind of PCs were assigned to a sliver and then another 

experiment asking for that particular type of PC gets affected because of non availability of that 

resource. We tried to analyze possible situation through a network topology which shows that 

there might be a threat to availability of resources which would pose problems to other 

experimenters 

More experiment will help to see actual effort and amount for an outsider to collect data 

and to perform attack. It would be helpful to create a setup as honey-pot and then analyzing 

outcomes before and after these SSH settings. We would like to work on possibility of defining a 

non-standard SSH port for all ProtoGENI nodes. 

We analyzed SSH related work and tried to implement few modifications in default 

settings for SSH. Though we did not conduct any experiment to attack a system before and after 

making these adjustments but previous studies support a better security with these changes. 

Strong password practices, a bit attention on keeping physical machine protected, disabling the 

root login via SSH and changing default SSH port setting from port 22 to a non-standard port can 

help in reducing attacks via SSH. 

 



 

94 
 

CHAPTER 5 

RESULTS, OBSERVATIONS, AND DISCUSSION 

 

Security architecture for any system includes a number of security services like 

confidentiality, Integrity, availability, etc. [5] [45] [46] Roles, responsibilities, authorization, and 

authentication mechanisms in the system are also crucial for robust security. ProtoGENI 

experiments are conducted to observe the functionality and problems which can affect the 

ProtoGENI experiments.  

5. Threats to availability of ProtoGENI resources 

6. Problems in run-time interactions between ProtoGENI components 

7. Security threats at host  machine in ProtoGENI setup 

Threats to Availability of ProtoGENI Resources: 

1.  Attack through modifying test-common.py script:  

test-common.py test script is being used by all other scripts if attacker has access to the physical 

machine he can inject simple messages  as print outputs without disturbing the actual process of 

script to fool users. If user sees a simple printing message in a convincing language, it can halt 

any further effort by user to request any resource or to do any other operation.  Figure 4.7 shows 

that it can stop users to try any further and thus stopping the ProtoGENI experiments. 

2. Non-Availability of ProtoGENI Resources: 

1) Outage of Resources: Experiments show that ProtoGENI can face outage of resources for 

other experimenters if few experiments keep reserving resources without proper utilization.  

System did not give any warnings while all resources were being reserved by one user only.  



 

95 
 

Future work: This outage was for short time and after verification of problem, we released the 

resources, it may be subject of further exploration that after what time, system can identify this 

unusual resource reservation by one user.  

Failing to map the resources as per RSpec : Many times, we couldn’t create a sliver as 

requested because it failed to map the requested resources. A particular type of pc was not free; a 

particular pc was down; node was free, available but couldn’t get for experiment. Third situation 

is certainly of concern as we couldn’t get the reason for not getting the resource. Characteristics 

of a certain pc type like virtnode_capacity also restricted the acquisition of a node in experiment. 

One experiment couldn’t be activated as one fix node was required with other wireless 

nodes. It took almost 4 hr. while tried with several free and up nodes been shown on Emulab but 

system denied each time stating that fix node is not available. This problem indicates that even 

after system showing everything o.k. and good through sliverstatus.py, some other problems may 

halt the access to resources that can hurt the accessibility of resources.  

Node status at Emulab-Observation: User can verify the node status before requesting it in a 

sliver. At Emulab, different type of pc-details pages have different color notations for 

representing the free, reserved, up, down status of nodes. Though it is specified on each page 

about color representation, it is confusing at times and user can misread the node status as 

changing with the pages. It will be very convenient if all pages may represent the node status 

with consistent color scheme and terminology.  

 

 

 

 



 

96 
 

Non-usability of ProtoGENI Resources:  

Resources not usable: In some cases, resources were allotted to sliver but could not get hold on 

those nodes mainly because they were reported to be nodes with old OS image or old machines 

with not consistent performance. Sliver sharednode was created successfully and get two nodes 

virtually shared. Sliverstatus.py showed one node ‘ready’ and one as ‘not ready’ which did not 

come up even after hours  so could not be used any further. 

Suggestion: After defined period, system resources should be evaluated for their performance 

consistency and list of available resources and other related issues like OS images should be 

updated accordingly. Related error message or advising notes may also be helpful to choose the 

right resources to save time and effort, and moreover to remove the confusion clouds of “what 

went wrong” 

Observations: 

Slice/Sliver Creation: Many times, system got stuck somewhere in displaying the process of 

creation of sliver and never returned to normal. On screen, it seems that process is hung and only 

solution is to terminate it by closing the terminal. It is determined that even system doesn’t show 

any progress or completion of slice/sliver creation, it completes it in the background. If status is 

checked for the same sliver in another terminal, it shows the existing sliver with its current 

status. This problem creates confusion and required to do this in different terminals. It consumed 

some time to understand the problem. Sometimes slivers in sequence couldn’t be created in one 

terminal but when tried in a separate terminal, it worked fine. 

Different variations to create slice and slivers are confusing and hard to differentiate for 

the benefits or problems associated with each. Resources can be acquired in a sliver without 

registering a slice first or also through getticket operation with or without registration of slice. 



 

97 
 

Currently, slice can handle only one sliver identical to slice name. Ticket operations were quite 

interesting as getticket provides a certain time to redeem the ticket but it expires within minutes. 

Even a deleted sliver became active when the ticket was redeemed (Fig. 20).  

No ticket operation works once a slice/sliver is active so to renew the time for extending 

the experiment, user has to go through different path to renew the slice/sliver. We could not get 

the execution part for rleaseticket.py or unregisterslice.py. 

Deleting the Slice/sliver and release of ProtoGENI Resources: 

Resources are released with the deletion of sliver but sliver/slice is kept in system’s records until 

its expiration time at Clearinghouse. Test script showuser.py provides a list of slices for a 

particular user but include all such slices which are not expired but resources are released. If it 

includes only active slices holding the resources, it can help user to manage better. 

Suggestion: New test script slicestatus.py stating the status of slice as empty/deleted or active 

Manipulation Operations 

UpdateSliver: This test script, updatesliver.py is supposed to modify the sliver resources without 

deleting the sliver. In trial, the sliver is being updated in records and returns the details on screen 

with information to redeem before a particular time but sliver status was showing the same 

details as before applying the updatesliver.py.  The updatesliver.py command was repeated with 

a different RSpec file for a single node but it could not create geniobject, and sliver could not be 

started or revived further. Updating a sliver is a bit complex as it involves quick redemption of 

new ticket. A detailed description of outputs is included in Appendix.  

Alternate temporary solution may be to create a new sliver other than updating the existing 

sliver. 



 

98 
 

System bugs: Problem observed in execution of all test scripts 

Sometimes bugs interfere and halt the system. During trial of renewal a slice, test script 

renewsliver.py did not work. No other test scripts could be executed because of a bug. The 

problem was sent to ProtoGENI people. This bug halted the basic functionality for more than 12 

hours. 

 

Fig. 5.1: System bug created problem in executing test scripts 

Here observation was that the acquired node was active and good to login but test scripts were 

not working.  Other thing is that though bug stopped the new operations on ProtoGENI, users 

could utilize the resources which were already acquired and up for experiments. 

As we are concerned about the threats to ProtoGENI resources, experiments show that 

though system is basically protected with encryption, authorization, and authentication but 

system is not consistent in certain functions and prone to bugs which can halt the whole 

availability and accessibility of ProtoGENI resources. System is also prone to be attacked if host 

system is compromised and a corrupt test-common.py can affect all other test scripts and so the 

functionality of ProtoGENI.  

 



 

99 
 

Availability and accessibility of resources is very important to do any experiments further 

to see the network behavior and to identify the ways to breach the system which can be used to 

improve the overall ProtoGENI functionality. 

Emulab resources are allocated to a single user at a time. If nodes are being used by some 

experimenters, it may hinder the possibility of other experiments to run because of unavailability 

of resources or because of non-usability of resources for different reasons as described above. 

Sometimes a novice experimenter can create many slices to experience different basic 

experiments and may lost the track of slices created and deleted in process and may hold network 

resources. This unnoticed holding of resources may create shortage of resources. These resources 

on hold might be required for more important and preferable experiments to execute to see 

network behavior by mature experimenters. A beginner may not be capable to understand the 

severity of problem by holding few resources that could be resulted as bottleneck for another 

topology. Though slices and slivers are short lived for few hours if not being renewed but still 

some basic experiments observing the effect of extending sliver time of existence through 

redeemticket.py may hold resources for a longer period which can block theses resources to be 

obtained by other ProtoGENI users. This poses a threat to resources available to experimenters.  

Vulnerability of Wildcard Specification in RSpecs 

  Emulab has different types of resources, and experimenters can define their required type 

of resources through specifying the details in RSpecs. Sometimes, it may be hard to find the 

required specific resources because of other running experiments. It is also complex to know 

each and every detail about the characteristics of a node type to make sure the adequate choice 

for experiments. Especially, novice experimenters may not understand complexity of details, so 

it is a general practice to use wildcard allocation of available resources.  



 

100 
 

It is simple and repeatable process to get resources of Emulab based on the best 

availability. In certain cases, system may assign some special type of PCs which are very few in 

numbers, and because of holding of resources, they may be unavailable for some time depending 

on experimenter acquired those PCs. This can cause a bottleneck for other experimenters who 

may need that special kind of PC in their topology. Therefore, many other available resources 

would not help as sliver cannot be created without availability of all asked resources in RSpecs. 

 

 

Fig. 5.2:  A network topology which may suffer due to wildcard allocation of resources. 

As shown in fig. 4.71, a network topology can suffer by unavailability of resources 

because of wildcard allocation through RSpecs. In this example, if 10- pcpgeniphys has allotted 

to some other experiment through wildcard, this topology will be very restricted to perform the 

desired operations or interconnections among all nodes of topology. 

For example, if 10-pcpgeniphys is not available, 6-pc600 will be almost isolated with all 

other nodes. 2,3,4 pc600 and 1,5,6 pc600 can have some usability in this topology. With the 

availability of 10-pcpgeniphys, the network topology may have much more interaction and 

functionality possible in the experiments. 

 



 

101 
 

Discussion on Results and Observations: 

The experiments show possible threats to availability of resources to GENI experimenters. A 

novice experimenter may be more prone to lost track of created slices and also not to know all 

details which can be an issue in designing and executing the experiment. Sometimes, slices could 

not be created as quickly as otherwise and updating of free resources may not be exact.  

System may or may not update its updating on aborted sliver very quickly which would 

also affect updating of available resources. It is also observer that other experiments could create 

and delete slices when we were conducting these experiments, so exact number of resources 

available may be changed with the time. Fortunately, at the time of these experiments, there were 

few Emulab resources were free, and it was easier to observe the resource-outage with creation 

of fewer slices.  

 We also kept checking the control over acquired resources through sliver creations by doing 

login on those Emulab machines. Slices are generally short lived, so user has to renew his/her 

slice if the resources are required for a longer experiment. Resources were requested through 

RSpec.XML file, and RSpecs may be more complex and detailed for a particular experiment but 

we applied simple RSpec .xml files.  

Run-time Interactions between ProtoGENI Components: 

Communication between nodes of same sliver: it was good in both ways as client as well as 

server 

Communication between nodes of two slivers: good in both ways 

Communication between nodes of two Component Managers in two slivers: good in both ways 

Communication with outside network and ProtoGENI sliver: good when ProtoGENI sliver node 

acts as server but couldn’t establish connection when tried in reverse. 



 

102 
 

Though there is some clarification is required for not successful communication between a 

ProtoGENI node as client and outside network node as server, we expect that more experiments 

will be helpful to explore the reasons.  

Wireless Communication in Emulab: Traffic load can force system resources to utilize its 

resources at best in concurrency which may lead to significant delays in some processes and loss 

of packets. It can also affect the communication efforts by other network nodes. Again there are 

some unsolved issues and need more experiments. ProtoGENI uses the same resources in same 

manner but in sliver. Further work is supposed to repeat settings in ProtoGENI sliver settings. 

Observation: All wireless nodes with required specification were busy in other experiments and 

we had to wait for 6 days then a request was sent to Emulab people and they provided the 

required type of nodes by reserving them. 

Attack via stealing user credentials 

Passphrase: Once a sliver is created and resources are acquired, passphrase can be deleted from 

the host machine through forgetpassphrase.py. User can login to remote nodes and can do further 

actions which leaves the host machine a bit more secured as there is no passphrase to steal. 

Attack via SSH 

Experiments explore the problems related to SSH (Secure Shall), possible ways to attack via 

SSH and methods to restrict attackers to attack via SSH like changing the default SSH port no 

and restricting other users as root user. 

More experiments are required to see actual effort and amount for an outsider to collect 

data and to perform attack. It would be helpful to create a setup as honey-pot and then analyzing 

outcomes before and after these SSH settings.  

 



 

103 
 

We would like to work on possibility of defining a non-standard SSH port for all 

ProtoGENI nodes. Further experiments can explore the better and more secure ways to get and 

utilize ProtoGENI resources.  

SUMMARY 

All components of ProtoGENI should be in function with their intended roles to get 

authentic results to analyze for developing a more secure and accountable future Internet. As 

GENI/ProtoGENI enjoys deep programmability, it may be a cause of much disturbance once any 

part is broken intentionally or accidently. Accessibility and availability of resources is critical to 

experimenters as initial thing because if there are no resources available for experiments or 

resources can be compromised by exploiting different vulnerabilities in GENI/ ProtoGENI 

system, it will either disturb the basic facility for experiments or it will add questions to the 

results of experiment’s results. If any abnormal processing is unnoticed, it may affect the overall 

output. Experiments show that though system is basically protected with encryption, 

authorization, and authentication but system is not consistent in certain functions and prone to 

bugs which can halt the whole availability and accessibility of ProtoGENI resources. System is 

also can be attacked if host system is compromised and a corrupt test-common.py can affect all 

other test scripts and so the functionality of ProtoGENI. There may be outage of resources 

because of non-availability or non-usability of resources. Certain resources are not consistent and 

it takes much time and effort to figure out what went wrong. Few functions also did not perform 

as expected, and sometimes resources were being shown free but could not be acquired. 

Slice/Sliver creation functionality and associated ticket operations are a bit complex to 

understand because of duplication of same function in different ways.  

 



 

104 
 

Renewing of slivers and deletion of slivers are easy operations but their recording and 

updating on clearinghouse can create confusion about releasing the resources or using a sliver 

name in particular.  

System bug halted the whole ProtoGENI system for many hours which may be real 

problem for some experiments as some resources, already in use, can be reset, and user can be 

asked to discontinue the experiment. SSH security issues are known and can affect the 

ProtoGENI functioning after misusing the information available through default SSH settings 

and Port scanners. Some modifications at host machine can enhance the SSH security at host 

machine but a tough password and restricted physical access to host machine may be helpful to 

enhance overall ProtoGENI security.  

 

 

 

 

 

 

 

 

 

 

 



 

105 
 

REFERENCES 

 
[1] Howard F. Lipson, PhD , “Tracking and Tracing Cyber-Attacks: Technical Challenges and 

Global Policy Issues, CERT® Coordination Center, November 2002, SPECIAL REPORT 
 

[2] http://www.future-internet.eu/activities/fp7-projects.html 

[3] David D. Clark, “ Toward the design of a Future Internet”, Version 7, Oct 2009 

[4] Th. Magedanz, S. Wahle “ Control framework design for Future Internet” Springer  
Eelktrotechnik & Informationstechnik(2009), p. 274-279 
 

[5] GENI Security Architecture, Spiral 1 Draft 0.55, July 31th, 2009 

[6] James Roberts, “The clean-slate approach to future Internet design: a survey of research 
initiatives” Ann. Telecommun. 2009, p 271-276 
 

[7] http://www.nets-find.net/ 

[8] GENI: Global Environment for Network Innovations. http://www.geni.net/ 

[9] https://www.emulab.net/ 

[10] Nick Feamster, Lixin Gao and Jennifer Rexford, ”CABO: Concurrent Architectures are  
Better Than One”, http://www.netsfind.net/Funded/Cabo.php 

 
[11] Thrasyvoulos Spyropoulos, Serge Fdida, Scott Kirkpatrick, “Future Internet:

 Fundamentals and Measurement”  [Report of the COST Arcadia Future Internet  
      Workshop] 
 

[12] http://www.planet-lab.org/ 

[13] http://www.vini-veritas.net/  

[14] http://www.networkworld.com/news/2008/062408-sloppy-virtualization.html 

[15] http://www.networkworld.com/newsletters/nsm/2008/062308nsm1.html 

[16] T.S. Eugene Ng, Alan L. Cox, “NeTS-FIND: Maestro: An Architecture for Network  
Control management”  

 
 
 
 
 

http://www.future-internet.eu/activities/fp7-projects.html�
http://www.nets-find.net/�
http://www.geni.net/�
https://www.emulab.net/�
http://www.netsfind.net/Funded/Cabo.php�
http://www.planet-lab.org/�
http://www.vini-veritas.net/�
http://www.networkworld.com/news/2008/062408-sloppy-virtualization.html�
http://www.kandeco.com/publications/thesis/keller_generals_final.ppt�


 

106 
 

[17] Alex C. Snoeren, Tadayoshi Kohno, Stefan Savage, Amin Vahdat, and Geoffrey M.  
Voelker. “Collaborative Research: NeTS—FIND:Privacy-Preserving Attribution and 
Provenance” 
 

[18] David G. Andersen and Hari Balakrishnan and Nick Feamster and Teemu Koponen and  
Daekyeong Moon and  cott Shenker, Accountable Internet Protocol (AIP), In Proc. ACM 
SIGCOMM, Aug 2008 
 

[19] Mark Huang, Andy Bavier, Larry Peterson, PlanetFlow: Maintaining accountability for  
      network services, ACM  SIGOPS Operating Systems Review, v.40 n.1, January 2006 
 

[20] K. Argyraki, P. Maniatis, O. Irzak, A. Subramanian, and S. Shenker, "Loss and Delay  
      Accountability for the Internet”, ICNP 2007 Beijing, China. 
   

[21] M. Shaw. Leveraging good intentions to reduce unwanted network traffic. In Proc. 
      USENIX Steps to Reduce Unwanted Traffic on the Internet workshop, July 2006. 
     

[22] Protecting America's Freedom in the Information Age. Markle Foundation, 2002.  
http://www.markle.org/downloadable_assets/nstf_full.pdf 

 
[23] David Brin, ‘The Transparent Society’, Addison-Wesley, April 1998 

[24] D. Weitzner, Beyond Secrecy: New Privacy Protection Strategies for Open Information  
Spaces, IEEE Internet Computing, Sept/Oct 2007. 

 
[25] http://www.nsf.gov/news/news_summ.jsp?cntn_id=109589 

[26] Weitzner, Abelson, Berners-Lee, et al., "Transparent Accountable Data Mining: New x 
Discretionary, rule-based access for the world wide web. In Elena Ferrari and Bhavani  
Thuraisingham, editors, Web and Information Security. IRM Press, 2006 

 
[27] http://www.sparta.com/ 

[28] http://www.protogeni.net/trac/protogeni/wiki/Tutorial 

[29] Weitzner, D., Hendler, J., Berners-Lee, T., & Connolly, D. Creating a policy-aware web  

[30] http://www.geni.net/wp-   
content/uploads/2010/02/GENI_at_a_Glance_January_2010_Final-1.pdf, last accessed 
on 08-07-2010 
 

[31] http://www.geni.net/wp-content/uploads/2010/02/Spiral1_Annual_Report.pdf,  
last accessed on 08-07-2010 
 
 

 

http://www.markle.org/downloadable_assets/nstf_full.pdf�
http://www.nsf.gov/news/news_summ.jsp?cntn_id=109589�
http://www.sparta.com/�
http://www.protogeni.net/trac/protogeni/wiki/Tutorial�
http://www.geni.net/wp-content/uploads/2010/02/Spiral1_Annual_Report.pdf�


 

107 
 

[32] P. Ferguson and D. Senie. Network Ingress Filtering: Defeating Denial of Service  
Attacks which employ IP Source Address Spoofing. Internet Engineering Task Force, 
Jan. 1998. RFC 2267. 
 

[33] M. Shaw. Leveraging good intentions to reduce unwanted network traffic. In Proc. X 
Integrated Experimental Environment for Distributed Systems and Networks”, appeared

 at OSDI 2002, December 2002 
 

[34] White, Lepreau, Stoller, Ricci, Guruprasad, Newbold, Hibler, Barb, and Joglekar, “An  
Integrated Experimental Environment for Distributed Systems and Networks”, appeared 
at OSDI 2002, December 2002 
 

[35] http://www.wisebed.eu/ ( WISEBED: wireless sensor network testbed) 

[36] http://www.shiratori.riec.tohoku.ac.jp/jgn.html (Japan Gigabit Network-JGN) 

[37] http://www.nict.go.jp/section/index_e.html(NICT) 

[38] http://www.protogeni.net/trac/protogeni 

[39] http://groups.geni.net/geni/wiki/OldGPGDesignDocuments 

[40] GENI Facility Security, GDD-06-23, Distributed Services working group, Draft work in  
progress ( version 0.5) 

 
[41] ProtoGENI CF Overview, 022709 GENI-SE-CF-ProtoGENIOver-01.4, February 27,  

2009 
 

[42] http://www.protogeni.net/trac/protogeni/wiki/RSpec 

[43] Statement of work, University of Utah and Princeton University Proposal:” Exploring  
Federation of Testbeds with Diverse Models”  

 
[44] GENI Security Architecture, Spiral 2 Draft 0.5, March 15th, 2010 

[45] GENI: Towards Operational Security For GENI, Draft, GDD-06-10, July 2006 

[46] http://ubuntuforums.org/ 

[47] Bishop, M.  Gates, C.  Frincke, D.  Greitzer, F.L. , “AZALIA: an A to Z assessment of   
the likelihood of insider attack”,  Technologies for Homeland Security, 2009 IEEE, 
Page(s): 385 – 392 
 

[48] Bishop, M., “Security Problems with the UNIX Operating System”, version2, January 31,  
1983[ unpublished] 

 

http://www.wisebed.eu/�
http://www.shiratori.riec.tohoku.ac.jp/jgn.html�
http://www.nict.go.jp/section/index_e.html(NICT)�
http://www.protogeni.net/trac/protogeni�
http://groups.geni.net/geni/wiki/OldGPGDesignDocuments�
http://www.protogeni.net/trac/protogeni/wiki/RSpec�
http://ubuntuforums.org/�


 

108 
 

[49] Bishop, M., “Reflections on UNIX Vulnerabilities” , Computer Security Applications 
Conference, 2009. ACSAC 2009. Annual, Page(s): 161 - 184   

 
[50] http://en.wikipedia.org/wiki/Secure_Shell#Security_issues 

[51] http://www.cs.princeton.edu/~llp/arch_abridged.pdf 

[52] http://en.wikipedia.org/wiki/Port_scanner 

[53] Faber, T., Ricci, R.: Resources Description in GENI: Rspec model”, Second GENI  
Engineering Meeting, March, 2008 

 
[54] http://www.protogeni.net/trac/protogeni/attachment/wiki/GEC8Tutorial/gec8tutorial- 

      scripts.tar.gz  
 

[55] http://www.protogeni.net/trac/protogeni/wiki 

[56] http://www.protogeni.net/trac/protogeni/wiki/RSpecTutorial 

[57] http://www.protogeni.net/trac/protogeni/wiki/RSpecExamples#tarball 

[58] http://www.ic3.gov/media/annualreport/2009_IC3Report.pdf 

[59] http://www.pcmag.com/article2/0,2817,2331225,00.asp, last accessed on 08-05-2010 

[60] http://www.interlab.ait.ac.th/aintec09/GEC5-Newcomers-Session.pdf 

[61] J. Owens, J. Matthews, A study of passwords and methods used in brute-force SSH  
attacks, Available on  (last accessed on 06-10-2010): 
http://people.clarkson.edu/~owensjp/pubs/leet08.pdf 

 
[62] Hochmuth, P. November 11, 2004. LinuxWorld. Linux is 'most breached' OS on the Net,  

security research firm says. Available at: 
http://www.linuxworld.com.au/index.php/id188808220;fp;2;fpid;1. 
 

[63] SANS Institute. 2007. SANS Top-20 2007 Security Risks (2007 Annual Update).  
Available at: http://www.sans.org/top20/2007/ 

 
[64] Lemon, S. September 20, 2006. Computer World Security.Bruce Schneier: We are losing  

the security war. Available at:  
http://www.computerworld.com/s/article/9003477/Bruce_Schneier_We_are_losing_the_s
ecurity_war 
 
 
 
 
 
 

http://en.wikipedia.org/wiki/Secure_Shell#Security_issues�
http://en.wikipedia.org/wiki/Port_scanner�
http://www.protogeni.net/trac/protogeni/wiki�
http://www.protogeni.net/trac/protogeni/wiki/RSpecTutorial�
http://www.protogeni.net/trac/protogeni/wiki/RSpecExamples#tarball�
http://www.ic3.gov/media/annualreport/2009_IC3Report.pdf�
http://www.pcmag.com/article2/0,2817,2331225,00.asp�
http://www.interlab.ait.ac.th/aintec09/GEC5-Newcomers-Session.pdf�
http://people.clarkson.edu/~owensjp/pubs/leet08.pdf�
http://www.sans.org/top20/2007/�
http://www.computerworld.com/s/article/9003477/Bruce_Schneier_We_are_losing_the_security_war�
http://www.computerworld.com/s/article/9003477/Bruce_Schneier_We_are_losing_the_security_war�


 

109 
 

[65] Ramsbrock, D. Berthier, R. & Cukier, M. 2007. “Profiling Attacker Behavior Following  
SSH Compromises,” in Proceedings of the 37th Annual IEEE/IFIP International 
Conference on Dependable Systems and Networks, pp.119-124. 
 

[66] S. Panjwani, S. Tan, K. Jarrin, and M. Cukier, “An Experimental Evaluation to  
Determine if Port Scans are Precursors to an Attack,” in Proceedings of the International 
Conference on Dependable Systems and Networks (DSN- 2005), Yokohama, Japan, June 
28-July 1, 2005, pp. 602-611. 
 

[67] Symantec December 17, 2007. Symantec Looks Back at the Internet Security Trends and  
Threats of 2007. Available at: 
http://www.symantec.com/about/news/resources/press_kits/detail.jsp?pkid=endofyear. 
 

[68] http://openssh.org 

[69] http://nmap.org 

[70] http://en.wikipedia.org/wiki/SHA-1 

[71] http://en.wikipedia.org/wiki/Secure_Shell 

[72] http://linux.die.net/man/8/sshd 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

http://openssh.org/�
http://nmap.org/�
http://en.wikipedia.org/wiki/SHA-1�
http://en.wikipedia.org/wiki/Secure_Shell�
http://linux.die.net/man/8/sshd�


 

110 
 

APPENDIX 

 

Resource Specification File Details: 

1. Simplest RSpec- one node without any specification of requested node 

ANYNODE.XML 

<rspec xmlns="http://protogeni.net/resources/rspec/0.1"> 

  <node virtual_id="mypc" virtualization_type="emulab-vnode" exclusive="1" />  

  </rspec> 

2. RSpec for getting shared nodes for experiments: 

<rspec xmlns="http://www.protogeni.net/resources/rspec/0.1" 
       xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

       xsi:schemaLocation="http://www.protogeni.net/resources/rspec/0.1 
http://www.protogeni.net/resources/rspec/0.1/request.xsd" 

       type="request" > 
  <node component_manager_uuid="urn:publicid:IDN+emulab.net+authority+cm" 
        virtual_id="shared1" 
        virtualization_type="emulab-vnode" 
        virtualization_subtype="emulab-openvz" 
        exclusive="0"> 
    <node_type type_name="pcvm" type_slots="1"/> 
    <interface virtual_id="virt-0"/> 
    <interface virtual_id="control"/> 
  </node> 
  <node component_manager_uuid="urn:publicid:IDN+emulab.net+authority+cm" 
        virtual_id="shared2" 
        virtualization_type="emulab-vnode" 
        virtualization_subtype="emulab-openvz" 
        exclusive="0"> 
    <node_type type_name="pcvm" type_slots="1"/> 
    <interface virtual_id="virt-0"/> 
    <interface virtual_id="control"/> 
  </node> 
  <link virtual_id="link0" link_type="ethernet"> 
    <bandwidth>100000</bandwidth> 
    <interface_ref virtual_node_id="shared2" 
                   virtual_interface_id="virt-0"/> 
    <interface_ref virtual_node_id="shared1" 
                   virtual_interface_id="virt-0"/> 
  </link> 
</rspec> 
 

 

 



 

111 
 

 

3. RSpec to install software on Remote ProtoGENI node: 

<?xml version="1.0" encoding="UTF-8"?> 
<rspec xmlns="http://www.protogeni.net/resources/rspec/0.1" 
       xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
       xsi:schemaLocation="http://www.protogeni.net/resources/rspec/0.1 

http://www.protogeni.net/resources/rspec/0.1/request.xsd" 
       type="request" > 
  <node virtual_id="sh-node" 
        virtualization_type="emulab-vnode" 
        exclusive="1" 
        tarfiles="/local http://www.emulab.net/downloads/protogeni-tests.tar.gz" 
        startup_command="/bin/echo Example Text Here > /local/example.txt; /bin/cat 

/local/example/text.txt >> /local/example.txt"> 
    <node_type type_name="pc" type_slots="1"/> 
    <interface virtual_id="control"/> 
  </node> 

</rspec> 
 

4. RSpec for requesting three nodes with three different OS types: 
 

<rspec xmlns="http://www.protogeni.net/resources/rspec/0.2" type="request"> 
 <node virtual_id="utah1"  
       component_manager_uuid="urn:publicid:IDN+emulab.net+authority+cm" 
       exclusive="1" 
       virtualization_type="emulab-vnode" 
       virtualization_subtype="raw"> 
    <interface virtual_id="virt1"/> 
    <interface virtual_id="virt2"/> 
    <interface virtual_id="control"/> 
   <disk_image    name="urn:publicid:IDN+emulab.net+image+emulab-ops//FBSD62-STD" /> 
 </node> 
 <node virtual_id="utah2"  
       component_manager_uuid="urn:publicid:IDN+emulab.net+authority+cm" 
       exclusive="1" 
       virtualization_type="emulab-vnode" 
       virtualization_subtype="raw"> 
    <interface virtual_id="virt1"/> 
   <disk_image 
      name="urn:publicid:IDN+emulab.net+image+emulab-ops//FEDORA8-OVZ-STD" /> 
 </node> 
 
 <node virtual_id="utah3"  
       component_manager_uuid="urn:publicid:IDN+emulab.net+authority+cm" 
       exclusive="1" 
       virtualization_type="emulab-vnode" 
       virtualization_subtype="raw"> 
    <interface virtual_id="virt1"/> 
   </node> 
-  <link virtual_id="link1"> 
    <interface_ref virtual_node_id="utah1" 
                   virtual_interface_id="virt1" />    <interface_ref virtual_node_id="utah2"  
                   virtual_interface_id="virt1" /> 



 

112 
 

  </link> 
  <link virtual_id="link2"> 
    <interface_ref virtual_node_id="utah1" 
                   virtual_interface_id="virt2" /> 
    <interface_ref virtual_node_id="utah3"  
                   virtual_interface_id="virt1" /> 
  </link> 

</rspec> 
[Utah1:FBSD62-STD, Utah2:FEDORA8-OVZ-STD, Utah3: default OS image] 

5. RSpec for a specific OS on a particular machine: OSTYPE_ON_SPECIFIC_PC.XML 

<?xml version="1.0" encoding="UTF-8"?> 

<rspec xmlns="http://www.protogeni.net/resources/rspec/0.2" 

      xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance"xsi:schemaLocation="http://www.protogeni.net/resources/rspec/0.2 

http://www.protogeni.net/resources/rspec/0.2/request.xsd" 

      type="request"> 

 <node 

component_uuid="urn:publicid:IDN+emulab.net+node+pc175"component_manager_uuid="urn:publicid:

IDN+emulab.net+authority+cm"    virtual_id="pc175" 

       virtualization_type="emulab-vnode" 

   exclusive="1"> 

 <node_type type_name="pc" type_slots="1"/> 

 <disk_image  name="urn:publicid:IDN+emulab.net+image+emulab-ops//FBSD72-STD" /> 

 </node> 

</rspec> 

6. RSpec for a specific OS type: OSTEST.XML  

<rspec xmlns="http://protogeni.net/resources/rspec/0.2"> 

<node virtual_id="geni1" exclusive="1" virtualization_type="emulab-vnode" 

virtualization_subtype="raw"> 

  <disk_image name="urn:publicid:IDN+emulab.net+image+emulab-ops//FBSD62-STD" />  

  </node>  </rspec> 

http://www.protogeni.net/resources/rspec/0.2�
http://www.w3.org/2001/XMLSchema-instance�
http://www.w3.org/2001/XMLSchema-instance�
http://www.protogeni.net/resources/rspec/0.2�
http://www.protogeni.net/resources/rspec/0.2/request.xsd�
http://emulab.net/�
http://emulab.net/�
http://emulab.net/�


 

113 
 

  
updatesliver.py details 

// created a sliver testslice with shrspec1.xml 

sshalini@ubuntu:~/protogeni/test$ ./createsliver.py -n testslice shrspec1.xml  

Got my SA credential 

No such slice registered here:Creating new slice called testslice 

New slice created 

Creating the Sliver ... 

Created the sliver 

<rspec xmlns="http://protogeni.net/resources/rspec/0.1" valid_until="2010-07-20T20:16:41"> 

<node virtual_id="geni1" virtualization_type="raw" exclusive="1" 

component_urn="urn:publicid:IDN+emulab.net+node+pc50" component_uuid="de982479-

773e-102b-8eb4-001143e453fe" 

component_manager_urn="urn:publicid:IDN+emulab.net+authority+cm" 

component_manager_uuid="28a10955-aa00-11dd-ad1f-001143e453fe" sliver_uuid="de982479-

773e-102b-8eb4-001143e453fe" hostname="pc50.emulab.net" sshdport="22" 

sliver_urn="urn:publicid:IDN+emulab.net+sliver+14650"> 

<interface virtual_id="virt0" component_id="eth3"/> 

<services><login authentication="ssh-keys" hostname="pc50.emulab.net" 

port="22"/></services></node> 

<node virtual_id="geni2" virtualization_type="raw" exclusive="1" 

component_urn="urn:publicid:IDN+emulab.net+node+pc68" component_uuid="de988e65-

773e-102b-8eb4-001143e453fe" 

component_manager_urn="urn:publicid:IDN+emulab.net+authority+cm" 



 

114 
 

component_manager_uuid="28a10955-aa00-11dd-ad1f-001143e453fe" sliver_uuid="de988e65-

773e-102b-8eb4-001143e453fe" hostname="pc68.emulab.net" sshdport="22" 

sliver_urn="urn:publicid:IDN+emulab.net+sliver+14651"> 

<interface virtual_id="virt0" component_id="eth3"/> 

<services><login authentication="ssh-keys" hostname="pc68.emulab.net" 

port="22"/></services></node> 

<link virtual_id="link0" sliver_uuid="c61ffd61-9409-11df-ad83-001143e453fe" 

sliver_urn="urn:publicid:IDN+emulab.net+sliver+14652" vlantag="74"> 

<interface_ref virtual_interface_id="virt0" virtual_node_id="geni1" sliver_uuid="c9391289-

9409-11df-ad83-001143e453fe" 

component_urn="urn:publicid:IDN+emulab.net+interface+pc50:eth3" 

sliver_urn="urn:publicid:IDN+emulab.net+sliver+14653" MAC="0002b3237915" 

IP="10.10.1.1"/> 

<interface_ref virtual_interface_id="virt0" virtual_node_id="geni2" sliver_uuid="d4167140-

9409-11df-ad83-001143e453fe" 

component_urn="urn:publicid:IDN+emulab.net+interface+pc68:eth3" 

sliver_urn="urn:publicid:IDN+emulab.net+sliver+14654" MAC="0002b33f75c1" 

IP="10.10.1.2"/> 

</link> 

</rspec> 

// sliver testslice was updated as per shrspec2.xml (node_id names were differenet) 

sshalini@ubuntu:~/protogeni/test$ ./updatesliver.py -n testslice shrspec2.xml  

Got my SA credential 



 

115 
 

Asking for slice credential for testslice 

Got the slice credential 

Resolving the slice at the CM 

{'urn': 'urn:publicid:IDN+emulab.net+slice+testslice', 'sliver_urn': 

'urn:publicid:IDN+emulab.net+sliver+14649'} 

Asking for sliver credential 

Got the sliver credential 

Updating the Sliver ... 

Updated the sliver, got a new ticket 

<?xml version="1.0" encoding="UTF-8" standalone="no"?> 

<redeem_before>2010-07-20T14:35:40</redeem_before> 

  <rspec xmlns="http://protogeni.net/resources/rspec/0.1"> 

<node virtual_id="node1" virtualization_type="raw" exclusive="1" 

component_urn="urn:publicid:IDN+emulab.net+node+pc50" component_uuid="de982479-

773e-102b-8eb4-001143e453fe" 

component_manager_urn="urn:publicid:IDN+emulab.net+authority+cm" 

component_manager_uuid="28a10955-aa00-11dd-ad1f-001143e453fe"> 

<interface virtual_id="virt0" component_id="eth3"/> 

</node> 

<node virtual_id="node2" virtualization_type="raw" exclusive="1" 

component_urn="urn:publicid:IDN+emulab.net+node+pc68" component_uuid="de988e65-

773e-102b-8eb4-001143e453fe" 



 

116 
 

component_manager_urn="urn:publicid:IDN+emulab.net+authority+cm" 

component_manager_uuid="28a10955-aa00-11dd-ad1f-001143e453fe"> 

<interface virtual_id="virt0" component_id="eth3"/> 

</node> 

<link virtual_id="link0"> 

<interface_ref virtual_interface_id="virt0" virtual_node_id="node1"/> // node_id as per 

shrspec2.xml 

<interface_ref virtual_interface_id="virt0" virtual_node_id="node2"/> 

</link> 

….. 

// sliver status same as before: 2 nodes as got when first sliver was created with shrspec1.xml 

sshalini@ubuntu:~/protogeni/test$ ./sliverstatus.py -n testslice 

Got my SA credential. Looking for slice ... 

Found the slice, asking for a credential ... 

Got the slice credential, asking for a sliver credential ... 

Got the sliver credential, asking for sliver status 

{'status': 'ready', 'state': 'started', 'details': {'urn:publicid:IDN+emulab.net+sliver+14651': 

{'status': 'ready', 'state': 'started', 'component_urn': 'urn:publicid:IDN+emulab.net+node+pc68', 

'error': ''}, 'urn:publicid:IDN+emulab.net+sliver+14650': {'status': 'ready', 'state': 'started', 

'component_urn': 'urn:publicid:IDN+emulab.net+node+pc50', 'error': ''}}} 

sshalini@ubuntu:~/protogeni/test$ ssh shail01@pc68.emulab.net 

The authenticity of host 'pc68.emulab.net (155.98.36.68)' can't be established. 

RSA key fingerprint is 6d:1d:76:53:a5:25:99:39:e2:89:ea:b0:99:e3:d3:b9. 



 

117 
 

Are you sure you want to continue connecting (yes/no)? yes 

Warning: Permanently added 'pc68.emulab.net,155.98.36.68' (RSA) to the list of known hosts. 

[shail01@geni2 ~]$ logout // geni2 was node_id,specified in shrspec1.xml 

Connection to pc68.emulab.net closed. 

sshalini@ubuntu:~/protogeni/test$ ./renewsliver.py -n testslice 5000 

Got my SA credential 

Found the slice, asking for a credential ... 

Got the slice credential, renewing the slice at the SA ... 

Renewed the slice, asking for slice credential again 

Got the slice credential, renewing the sliver 

Sliver has been renewed until 20100724T03:54:59 

//again updated to get a single node with anynode.xml 

sshalini@ubuntu:~/protogeni/test$ ./updatesliver.py -n testslice anynode.xml  

Got my SA credential 

Asking for slice credential for testslice 

Got the slice credential 

Resolving the slice at the CM 

{'urn': 'urn:publicid:IDN+emulab.net+slice+testslice', 'sliver_urn': 

'urn:publicid:IDN+emulab.net+sliver+14649'} 

Asking for sliver credential 

Got the sliver credential 

Updating the Sliver ... 

Updated the sliver, got a new ticket 



 

118 
 

<?xml version="1.0" encoding="UTF-8" standalone="no"?> 

<signed-credential xmlns:xsi="http://www.w3.org/2001/... 

.. 

// showing resource as only one pc asked to update through anynode.xml 

 

<redeem_before>2010-07-20T21:49:55</redeem_before> 

  <rspec xmlns="http://protogeni.net/resources/rspec/0.1"> 

 <node virtual_id="mypc" virtualization_type="raw" exclusive="1" 

component_urn="urn:publicid:IDN+emulab.net+node+pc68" component_uuid="de988e65-

773e-102b-8eb4-001143e453fe" 

component_manager_urn="urn:publicid:IDN+emulab.net+authority+cm" 

component_manager_uuid="28a10955-aa00-11dd-ad1f-001143e453fe">  

 </node> 

.. 

// sliver status same as before: 2 nodes as got when first sliver was created with shrspec1.xml 

sshalini@ubuntu:~/protogeni/test$ ./sliverstatus.py -n testslice 

Got my SA credential. Looking for slice ... 

Found the slice, asking for a credential ... 

Got the slice credential, asking for a sliver credential ... 

Got the sliver credential, asking for sliver status 

{'status': 'ready', 'state': 'started', 'details': {'urn:publicid:IDN+emulab.net+sliver+14651':  

{'status': 'ready', 'state': 'started', 'component_urn': 'urn:publicid:IDN+emulab.net+node+pc68', 

 'error': ''}, 



 

119 
 

 'urn:publicid:IDN+emulab.net+sliver+14650': {'status': 'ready', 'state': 'started', 

  'component_urn': 'urn:publicid:IDN+emulab.net+node+pc50', 'error': ''}}} 

sshalini@ubuntu:~/protogeni/test$ ./redeemticket.py -n testslice 200 

Got my SA credential 

Asking for slice credential for testslice 

Got the slice credential 

Resolving the slice at the CM 

{'urn': 'urn:publicid:IDN+emulab.net+slice+testslice', 'ticket_urn': 

'urn:publicid:IDN+emulab.net+ticket+62210', 'sliver_urn': 

'urn:publicid:IDN+emulab.net+sliver+14649'} 

Asking for a copy of the ticket 

Got the ticket 

Asking for sliver credential 

Got the sliver credential 

Redeeming the ticket 

Could not create GeniSliver object for mypc: Could not redeem the ticket 

 

sshalini@ubuntu:~/protogeni/test$ ./sliverstatus.py -n testslice 

Got my SA credential. Looking for slice ... 

Found the slice, asking for a credential ... 

Got the slice credential, asking for a sliver credential ... 

Got the sliver credential, asking for sliver status 

Could not get sliver status 



 

120 
 

 

sshalini@ubuntu:~/protogeni/test$ ./sliveraction.py -n testslice restart 

Got my SA credential. Looking for slice ... 

Found the slice, asking for a credential ... 

Got the slice credential, asking for a sliver credential ... 

Got the sliver credential, calling RestartSliver on the sliver 

Could not start sliver 

 

sshalini@ubuntu:~/protogeni/test$ ./sliveraction.py -n testslice start 

Got my SA credential. Looking for slice ... 

Found the slice, asking for a credential ... 

Got the slice credential, asking for a sliver credential ... 

Got the sliver credential, calling StartSliver on the sliver 

Could not start sliver 

 
Client-Server Program files: 

a. Client Program: 
 
#include <sys/types.h>   
#include <sys/socket.h> /* for socket(), connect(), send(), and recv() */ 
#include <netinet/in.h>  
#include <arpa/inet.h>  /* for sockaddr_in and inet_addr() */ 
#include <stdio.h>      /* for printf() and fprintf() */ 
#include <stdlib.h>     /* for atoi() and exit() */ 
#include <string.h>     /* for memset() */ 
#include <unistd.h>     /* for close() */ 
 
#define RCVBUFSIZE 32   /* Size of receive buffer */ 
 
void DieWithError(char *errorMessage);  /* Error handling function */ 
unsigned long ResolveName (char name[]); 
 
int main(int argc, char *argv[]) 
{ 
    int sock;                        /* Socket descriptor */ 



 

121 
 

    struct sockaddr_in echoServAddr; /* Echo server address */ 
    unsigned short echoServPort;     /* Echo server port */ 
    char *servIP;                    /* Server IP address (dotted quad) */ 
    char *echoString;                /* String to send to echo server */ 
    char echoBuffer[RCVBUFSIZE];     /* Buffer for echo string */ 
    unsigned int echoStringLen;      /* Length of string to echo */ 
    int bytesRcvd, totalBytesRcvd;   /* Bytes read in single recv()  
                                        and total bytes read */ 
 
    if ((argc < 3) || (argc > 4))    /* Test for correct number of arguments */ 
    { 
       fprintf(stderr, "Usage: %s <Server IP or Hostname> <Echo Word> [<Echo Port>]\n", 
               argv[0]); 
       exit(1); 
    } 
 
    servIP = argv[1];             /* First arg: server IP address (dotted quad) */ 
    echoString = argv[2];         /* Second arg: string to echo */ 
 
    if (argc == 4) 
        echoServPort = atoi(argv[3]); /* Use given port, if any */ 
    else 
        echoServPort = 7;  /* 7 is the well-known port for the echo service */ 
 
    /* Create a reliable, stream socket using TCP */ 
    if ((sock = socket(PF_INET, SOCK_STREAM, IPPROTO_TCP)) < 0) 
        DieWithError("socket() failed"); 
 
    /* Construct the server address structure */ 
    memset(&echoServAddr, 0, sizeof(echoServAddr));     /* Zero out structure */ 
    echoServAddr.sin_family      = AF_INET;             /* Internet address family */ 
    echoServAddr.sin_addr.s_addr = ResolveName(servIP);   /* Server IP address or hostname */ 
    echoServAddr.sin_port        = htons(echoServPort); /* Server port */ 
 
    /* Establish the connection to the echo server */ 
    if (connect(sock, (struct sockaddr *) &echoServAddr, sizeof(echoServAddr)) < 0) 
        DieWithError("connect() failed"); 
 
    echoStringLen = strlen(echoString);          /* Determine input length */ 
 
    /* Send the string to the server */ 
    if (send(sock, echoString, echoStringLen, 0) != echoStringLen) 
        DieWithError("send() sent a different number of bytes than expected"); 
 
    /* Receive the same string back from the server */ 
    totalBytesRcvd = 0; 
    printf("Received: ");                /* Setup to print the echoed string */ 
    while (totalBytesRcvd < echoStringLen) 
    { 
        /* Receive up to the buffer size (minus 1 to leave space for 
           a null terminator) bytes from the sender */ 
        if ((bytesRcvd = recv(sock, echoBuffer, RCVBUFSIZE - 1, 0)) <= 0) 
            DieWithError("recv() failed or connection closed prematurely"); 
        totalBytesRcvd += bytesRcvd;   /* Keep tally of total bytes */ 
        echoBuffer[bytesRcvd] = '\0';  /* Terminate the string! */ 
        printf(echoBuffer);            /* Print the echo buffer */ 



 

122 
 

    } 
 
    printf("\n");    /* Print a final linefeed */ 
 
    close(sock); 
    exit(0); 
} 
 

b. Server Program 
 
#include <sys/types.h>   
#include <sys/socket.h> /* for socket(), connect(), send(), and recv() */ 
#include <netinet/in.h>  
#include <arpa/inet.h>  /* for sockaddr_in and inet_addr() */ 
#include <stdio.h>      /* for printf() and fprintf() */ 
#include <stdlib.h>     /* for atoi() and exit() */ 
#include <string.h>     /* for memset() */ 
#include <unistd.h>     /* for close() */ 
 
 
#define MAXPENDING 5    /* Maximum outstanding connection requests */ 
 
void DieWithError(char *errorMessage);  /* Error handling function */ 
void HandleTCPClient(int clntSocket);   /* TCP client handling function */ 
 
int main(int argc, char *argv[]) 
{ 
    int servSock;                    /* Socket descriptor for server */ 
    int clntSock;                    /* Socket descriptor for client */ 
    struct sockaddr_in echoServAddr; /* Local address */ 
    struct sockaddr_in echoClntAddr; /* Client address */ 
    unsigned short echoServPort;     /* Server port */ 
    unsigned int clntLen;            /* Length of client address data structure */ 
 
    if (argc != 2)     /* Test for correct number of arguments */ 
    { 
        fprintf(stderr, "Usage:  %s <Server Port>\n", argv[0]); 
        exit(1); 
    } 
 
    echoServPort = atoi(argv[1]);  /* First arg:  local port */ 
 
    /* Create socket for incoming connections */ 
    if ((servSock = socket(PF_INET, SOCK_STREAM, IPPROTO_TCP)) < 0) 
        DieWithError("socket() failed"); 
       
    /* Construct local address structure */ 
    memset(&echoServAddr, 0, sizeof(echoServAddr));   /* Zero out structure */ 
    echoServAddr.sin_family = AF_INET;                /* Internet address family */ 
    echoServAddr.sin_addr.s_addr = htonl(INADDR_ANY); /* Any incoming interface */ 
    echoServAddr.sin_port = htons(echoServPort);      /* Local port */ 
 
    /* Bind to the local address */ 
    if (bind(servSock, (struct sockaddr *) &echoServAddr, sizeof(echoServAddr)) < 0) 
        DieWithError("bind() failed"); 



 

123 
 

 
    /* Mark the socket so it will listen for incoming connections */ 
    if (listen(servSock, MAXPENDING) < 0) 
        DieWithError("listen() failed"); 
 
    for (;;) /* Run forever */ 
    { 
        /* Set the size of the in-out parameter */ 
        clntLen = sizeof(echoClntAddr); 
 
        /* Wait for a client to connect */ 
        if ((clntSock = accept(servSock, (struct sockaddr *) &echoClntAddr,  
                               &clntLen)) < 0) 
            DieWithError("accept() failed"); 
 
        /* clntSock is connected to a client! */ 
 
        printf("Handling client %s\n", inet_ntoa(echoClntAddr.sin_addr)); 
 
        HandleTCPClient(clntSock); 
    } 
    /* NOT REACHED */ 
} 
 
 
 
 
 
 
 
 

 
c. Supporting files 

 
i. DieWithError 

 
#include <stdio.h>  /* for perror() */ 
#include <stdlib.h> /* for exit() */ 
 
void DieWithError(char *errorMessage) 
{ 
    perror(errorMessage); 
    exit(1); 
} 
 

ii. HandleTCPClient 
 
#include <stdio.h>      /* for printf() and fprintf() */ 
#include <sys/socket.h> /* for recv() and send() */ 
#include <unistd.h>     /* for close() */ 
 
#define RCVBUFSIZE 32   /* Size of receive buffer */ 
 
void DieWithError(char *errorMessage);  /* Error handling function */ 



 

124 
 

 
void HandleTCPClient(int clntSocket) 
{ 
    char echoBuffer[RCVBUFSIZE];        /* Buffer for echo string */ 
    int recvMsgSize;                    /* Size of received message */ 
 
    /* Receive message from client */ 
    if ((recvMsgSize = recv(clntSocket, echoBuffer, RCVBUFSIZE, 0)) < 0) 
        DieWithError("recv() failed"); 
 
    /* Send received string and receive again until end of transmission */ 
    while (recvMsgSize > 0)      /* zero indicates end of transmission */ 
    { 
        /* Echo message back to client */ 
        if (send(clntSocket, echoBuffer, recvMsgSize, 0) != recvMsgSize) 
            DieWithError("send() failed"); 
 
        /* See if there is more data to receive */ 
        if ((recvMsgSize = recv(clntSocket, echoBuffer, RCVBUFSIZE, 0)) < 0) 
            DieWithError("recv() failed"); 
    } 
 
    close(clntSocket);    /* Close client socket */ 
} 
 

iii.  ResolveName 
 
#include <stdio.h>      /* for fprintf() */ 
#include <netdb.h>      /* for gethostbyname() */ 
#include <stdlib.h>     /* for exit() */ 
 
unsigned long ResolveName(char name[]) 
{ 
    struct hostent *host;            /* Structure containing host information */ 
 
    if ((host = gethostbyname(name)) == NULL) 
    { 
        fprintf(stderr, "gethostbyname() failed"); 
        exit(1); 
    } 
 
    /* Return the binary, network byte ordered address */ 
    return *((unsigned long *) host->h_addr_list[0]); 
} 
 
 
 
 
 
 
 
 
 
 
 
 



 

125 
 

Ping details of wireless nodes pcwf1, pcwf3, pcwf5, and pcwf7 
 

no. of 
pkts. Environment node-id 

node-
address rtt (ms)         

loss of 
packets(n
o.) 

loss of 
packets(%
) 

        min max avg mdev 
pip
e     

10 one-by one pcwf1 10.1.1.2 0.653 2.021 7.702 2.211 2 0 0 
    pcwf3 10.1.1.3 1.564 4.033 9.108 2.021 2 0 0 
    pcwf5 10.1.1.5 1.996 5.469 20.998 5.577 2 0 0 
    pcwf7 10.1.1.4 0.717 1.883 3.782 0.709 2 0 0 
                      

10 all together pcwf1 10.1.1.2 0.663 1.517 6.002 1.62 2 0 0 
    pcwf3 10.1.1.3 1.129 1.689 3.709 0.711 2 0 0 
    pcwf5 10.1.1.5 2.383 4.007 11.73 2.697 2 0 0 
    pcwf7 10.1.1.4 1.75 2.386 7.467 1.696 2 0 0 
                      
                      

50 one-by-one pcwf1   0.536 1.307 4.381 0.789 2 2 4 
    pcwf3   1.444 2.355 5.918 1.055 2 0 0 
    pcwf5   1.394 2.616 8.941 1.449 2 2 4 
    pcwf7   0.576 1.233 5.526 0.749 2 0 0 
        0.9875 1.8778 6.1915 1.0105       
                      

50 all together pcwf1   0.522 1.24 9.204 1.362 2     
    pcwf3   1.51 2.749 7.753 1.436 2     
    pcwf5   1.551 2.452 7.472 1.113 2 1 2 
    pcwf7   0.642 1.529 5.168 0.819 2     
        1.05625 1.9925 7.39925 1.1825       
                      

100 one-by-one pcwf1   0.554 1.426 8.732 1.137 2     
    pcwf3   1.397 2.49 9.037 1.439 2     
    pcwf5   1.52 2.878 8.805 1.503 2 2 2 
    pcwf7   0.531 1.185 10.902 1.234 2     

  

Average of all 
four in each 
case     1.0005 1.9948 9.369 1.32825       

100 all together pcwf1   0.645 1.216 4.992 0.855 2 1 1 

    pcwf3   1.508 2.412 11.226 1.318 2     

    pcwf5   1.534 2.397 11.366 1.578 2     

    pcwf7   0.572 1.07 4.487 0.788 2     

        1.06475 1.7738 8.01775 1.13475       

                      

200 one-by-one pcwf1   0.556 1.261 6.527 0.963 2 2 1 

    pcwf3   1.509 2.441 6.805 1.032 2 1   



 

126 
 

------ continue 

    pcwf5   1.481 2.237 11.05 1.212 2 1   

    pcwf7   0.489 1.095 10.304 1.203 2 0   

        1.00875 1.7585 8.6715 1.1025       

                      

200 all together pcwf1   0.458 1.247 8.796 1.114 2     

    pcwf3   1.252 2.604 16.242 1.687 2     

    pcwf5   1.34 2.277 8.263 1.058 2 1   

    pcwf7   0.524 14.148 1810.63 139.659 3     

        0.8935 5.069 460.983 35.8795       

                      

300 one-by-one pcwf1   0.623 1.416 13.992 1.199 2 2   

    pcwf3   1.391 2.564 12.639 1.635 2 2   

    pcwf5   1.301 2.603 11.299 1.658 2 2   

    pcwf7   0.537 1.043 12.76 1.216 2 0   

        0.963 1.9065 12.6725 1.427       

                      

300 all together pcwf1   0.618 1.375 8.256 1.066 2 2   

    pcwf3   1.108 5.28 787.506 45.486 2 3 1 

    pcwf5   1.388 2.313 11.101 1.245 2 3 1 

    pcwf7   0.454 4.401 1010.22 58.182 3 0   

        0.892 3.3423 454.272 26.4948       

                      

400 one-by-one pcwf1   0.636 1.449 15.625 1.256 2 1   

    pcwf3   1.404 3.939 407.391 20.36 2 4 1 

    pcwf5   1.279 5.003 1011.78 50.553 3 2   

    pcwf7   0.369 1.013 12.264 1.316 2 0   

        0.922 2.851 361.766 18.3713       

                      

400 all together pcwf1   0.612 1.204 8.725 0.922 2 3 0 



 

127 
 

-----continue 

    pcwf3   1.262 5.154 1023.63 51.135 3 2 0 

    pcwf5   1.252 2.399 12.641 1.387 2 1 0 

    pcwf7   0.418 8.488 3010.27 150.657 5 2 0 

        0.886 4.3113 1013.82 51.0253       

                      

500 one-by-one pcwf1   0.584 1.144 5.141 0.76 2 4 0 

    pcwf3   0.993 5.312 1005.67 48.03 2 4 0 

    pcwf5   1.272 2.364 14.716 1.469 2 4 0 

    pcwf7   0.457 1.145 10.196 1.201 2 0 0 

        0.8265 2.4913 258.93 12.865       

            
500 all together pcwf1   0.433 3.422 1004.46 45.117 2 6 1 

    pcwf3   1.383 2.77 12.429 1.755 2 4 0 

    pcwf5   1.22 8.338 2883.3 129.102 4 3 0 

    pcwf7   0.417 0.943 10.879 0.924 2 0 0 

        0.86325 3.8683 977.766 44.2245       
 

Table 4.2: Wireless communication between Emulab resources 
 
 

 


	PKI is being used to authenticate principals. Credentials are signed by the appropriate authority (slice). X.509 format certificate is being used to implement ProtoGENI public key infrastructure. Certificates are transferred using X.690 ASN.1 DER (Distinguished Encoding Rules) [41]. The aggregate which receives these credentials can verify it using a set of root certificates. 
	6.2. Emulab Security Issues
	6.3. Other Security issues in ProtoGENI
	1) TIED (Trial Integration Environment built on DETER) 
	2) PlanetLab 
	3) ProtoGENI
	4) ORCA
	5) ORBIT

	Other research facilities
	Federated Testbeds
	Support for experimenters: Ease of Use; Observability; Fail-safe
	What is critical in GENI Security?
	What are goals and principles of GENI Security Architecture?
	Threat Model and Security Requirements
	Registry
	Clearinghouse
	Aggregates and Components
	ProtoGENI Principals
	ProtoGENI Slices
	Authentication
	Authorization
	Credentials
	Component Programming
	Resource to Resource connections
	/
	python   registerslice.py –n myslice
	python  createsliver.py  –n myslice shailrspec.xml
	Now sliver is created and we have remote machines details, we can login to those machines by following command.
	Since you need a credential to do most anything in ProtoGENI, you first have to get your "self" credential, which is just a generic credential that gives you permission to do basic kinds of things, like register a slice name. 
	2) Information Operations
	3) Registration operations

	C. Component Manager Operations
	1) Information Operations

	2) Ticket Operations
	3) Manipulation Operations

	Special operations
	Advanced operations
	Additional Test Scripts
	2) Rememberpassphrase.py and forgetpassphrase.py
	3) Showuser.py

	Software installation on remote nodes through RSpec file
	Slice creation with Specific Type of Resources through RSpec
	python  createsliver.py  –n myslice shailrspec.xml
	(a) Requesting few resources in too many slices/slivers
	Stress test

	/
	1. Communication between two ProtoGENI nodes as Client and Server: 
	Please see Appendix for Client-Server program file Details. We uploaded these files on remote machines.  Server has to be initiated first.
	2. Communication between nodes of different slivers
	3. Communication between a ProtoGENI sliver and outside network node
	/
	Future Work
	Manipulation Operations
	System bugs: Problem observed in execution of all test scripts
	a. Client Program:
	b. Server Program
	c. Supporting files
	i. DieWithError
	ii. HandleTCPClient
	iii.  ResolveName



