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ABSTRACT 

The world has been on a fast track of industrial development thanks to human activities. 

On the back of the same coin is the fact that people are consuming more and more energy to 

support the fast-paced development. Studies have pointed out an increasing consumption on 

traditional, non-renewable energies such as coal and oil, while the application of renewable 

energies, such as wind power and solar power, are still quite far away from mass application 

because of various restrains. Therefore, it is essential to search for a better way for people to 

consume energy, especially electricity since it is a necessary every-day energy and it is 

overwhelmingly generated with non-renewable resources.  

Researches about smart grid have been quite fruitful with demand response being the 

most promising research area. A large number of previous studies have been done in the area of 

real-time pricing schemes and fairness in bill and cost for theses schemes, but real-time demand 

response using energy consumption scheduling algorithms did not attract much attention until 

recently because of the two-way communication capacity of smart grid and fair delay problem of 

the energy scheduling. Also, using optimal stopping rule to model these problems has yet to be 

studied. Solution to these problems will essentially make demand response program more 

flexible or even smart grid participation a more attractive choice to customers.  

This dissertation looks at three problems. The first problem is the cost minimization 

problem with real-time demand response using energy consumption scheduling modeling in a 

neighborhood area network. We simulate this problem with discrete event simulation with 

different sets of parameters, and provide the results analysis under several circumstances. The 
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second problem explores the importance of fairness in terms of delay. A formal concept of delay 

is defined using the energy scheduling model, and then the problem is formed based on a cost 

minimization problem with a fairness boundary constraint. The proposed algorithm solves the 

cost minimization while bounding the delays of all customers. The simulation results show that 

the algorithm with fair delay has much better performance than the algorithm without fair delay 

in terms of fairness index metric. In the third problem, we adopt the optimal stopping rule 

method to model the energy consumption scheduling problem. Then a cost minimization 

problem with comfortable delay is presented, and an optimal stopping rule based energy 

consumption scheduling algorithm is proposed to solve this problem. The simulation results 

show that the optimal stopping rule algorithm has better performance in terms of total cost than a 

greedy algorithm while satisfying the comfortable level constraint. 
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1 INTRODUCTION 

1.1 Motivation 

The world is developing fast. In the last decade, due to the fast growth of human 

population, the amount of energy consumption has increased rapidly. What also went up together 

with the number of population was the price of fossil fuels [2]. As Lior wrote in his 2012 report 

[2], energy resources and consumption are Òimmediately related to environmental quality and 

other vital resources such as water and foodÓ. The scarcity of the fossil fuels, in return, pushes 

the price to a higher level. To most countries, a stable national economy is the cornerstone of 

steady and healthy development. Therefore, it is undeniably important for the industry to 

maintain a low energy bill for industrial, commercial, and domestic electricity consumptions. 

Apart from economic issues, environmental conservation is yet another reason to work on 

the energy consumption problem. Although the research of renewable energies, such as wind, 

geothermal and solar power, have made some impressive breakthroughs, it is admittedly still 

quite far away for renewable energies to be widely applied to the world as a replacement for 

traditional energy generation resource because of reasons such as noise, lack of wind, or low 

efficiency [3]. In the paper on optimization problem of ÒGreenÓ buildings, researchers pointed 

out sometimes Òthe availability of a specific resource depends on the specific season and varies 

during the dayÓ [4]. In fact, in LiorÕs latest reports on the present situation of sustainable energy 

development, the combined energy production of all renewable energies only counted towards 3% 

of the worldÕs primary energy consumption in 2009, and that number decreased to 1.8% in 2011 
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[2]. The consumption of fossil fuels, such as coal and oil, on the contrary, has been rising 

continuously.  

In 2010, oil was still the dominating fuel for world primary energy consumption with a 

33.6% share [5]. On the other hand, coal also occupied a 29.1% share in 2010. Regardless of 

minor fluctuations in world energy consumption, simply by adding the two numbers together, as 

much as 62.7% of world primary energy consumption can be located into the category of fossil 

fuel consumption [5]. Not only have fossil fuels been the dominant fuel, their consumption 

amount has been growing throughout years as well. The combined consumption changed from 

below 7500 million tones oil equivalent in 2008 to more than 7500 million tones oil equivalent in 

2010 with the consumption of coal continues to grow [5]. The situation, therefore, can be 

described as growing consumption versus limited reserve. It is then of top priority for people to 

preserve fossil fuels as much as possible until replacement becomes available.  

Environmental pollutions have also become a confronting challenge in last decade. 

According to the ÒLiving Planet IndexÓ and ÒEcological FootprintÓ, we seem to be Òrunning out 

of environment much faster than out of resourcesÓ [5], [6]. 

 The environmental pollution concern, together with the conservation of fuels and 

economic concern all point to the direction that human race need a more efficient way to 

consume energy. Most countries in the world have started ongoing researches on energy cost and 

pollution reduction [3]. In the fruitful results of these researches, smart grid is by far the most 

promising one.  

1.2 Current Power Grid Issues and Smart Grid 

The electrical power grid has contributed greatly to our daily life and industry. Currently, 

however, the power grid system has many issues, which must be resolved. First, more voltage 
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sags, blackouts, and overloads have occurred in the past decade than over the past 40 years [7]. 

Second, as the population size has increased, the current grid is becoming old and worn out; thus 

adding new appliances into customerÕs houses and buildings gives more instability to the current 

power grid [7] . Third, the current electrical network contributes greatly to carbon emissions. The 

United StatesÕ power system alone produces 40% of all nationwide carbon emissions [8]. 

Considering both economic and environmental interests, changes must be made to such 

an unstable and inefficient system. It requires reliability, scalability, manageability, and 

extensibility, but also should be interoperable, secure, and cost-effective. This electric 

infrastructure is called ÒSmart GridÓ. 

A smart grid is Òan intelligent electricity network that integrates the actions of all uses 

connected to it and makes use of advanced information, control, and communication 

technologies to save energy, reduce cost and increase reliability and transparencyÓ [9]. Targeting 

at these issues makes smart grid an ally of both the earth and the community. In fact, as Fuselli et 

al. stated in their paper, smart grid aligns the interests of Òelectric utilities, consumers and 

environmentalistsÕÓ all at once [3]. Furthermore, with the help of smart grid, electricity supply 

industry has been able to make a lot of improvements. For instance, the philosophy of operation 

changed from Òto supply all the required demand whenever occursÓ to Òthe system will be most 

efficient if fluctuations in demand is kept as small as possibleÓ [10].  

The new philosophy can be fully addressed when smart grids reach their 100% potential 

for they will be able to intelligently address all the customersÕ energy needs without pressuring 

the grid and cause damage. The realization of this goal will then reinforce the reliability of the 

electricity system since a perfect balance between the supply and the load requests is what makes 

a system reliable [10]. The improved energy efficiency can also save a lot of energy. After all, Òa 
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Joule saved is worth significantly more than a Joule earnedÓ, because it takes much more than 1J 

of energy to generate 1J of power [6]. Moreover, the flexibility of smart grid also makes it quite 

favorable because it can be adapted to a large variety of grid environments that varies from micro 

scenarios (i.e. individual houses) to large scale systems (i.e. energy generation and distribution 

plants) [3]. With such reliability, scalability, manageability, extensibility, and other beneficial 

characteristics of smart gridÕs (Fig. 1.1) the confronting challenges the world faces, i.e. the 

decrease of fossil fuels, increasing prices, and pollution, will slowly fade away [11]. 

 

 

Fig. 1.1 Smart Grid Characteristics [2] 

 

Having said that, it is not easy to maintain a perfect balance of supply and load request.  

The possible rapid changes of both supply and load request levels are influential factors to the 

balance, no matter if they are caused by various outages or sudden load changes [10]. According 

to the literature, demand side response, which is also known as demand response, is the cheaper 
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resource that not only capable of operating the system, but also in accordance with the new 

philosophy [10].  

1.3 Demand Response and Issues 

Demand response programs are defined similarly by various researchers, yet they all 

slightly differ from one another. For instance, Vuppala defined demand response programs as 

Òvarious voluntary schemes offered by energy utility and distribution companies to their 

customers for curtailing their energy usage, particularly during periods of peak-loadÓ [12]. 

AlbadiÕs definition for demand response is Òthe changes in electric usage by end-use customers 

from their normal consumption patterns in response to changes in the price of electricity over 

timeÓ [10]. In this dissertation, the definition of demand response cites the one provided by the 

U.S. Department of Energy (DoE), which describes demand response as Òa tariff or program 

established to motivate changes in electricity usage by end-use customers from their normal 

consumption patterns in response to changes in the price of electricity over the time, or to 

incentive payments designed to induce lower electricity usage at times of high wholesale market 

prices or when system reliability is jeopardizedÓ [1]. Unlike VuppalaÕs definition, which 

emphasizes on voluntary participation from customers, the definition given by Albadi focuses 

more on the purpose of demand response, which is to encourage and motivate the customers to 

alter their consumption pattern in response to the change of price. The DoE definition 

summarizes these two important features of demand response, and, on top of that, also outlines 

the common method to motivate customers, which is through monetary incentives. Finally, it 

evaluates demand response as a method that saves customers a lot of dollars and at the same time 

ensures the reliability of the energy generating system. Based on what is included in DoEÕs 
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definition, it appears to be a very well rounded summary of all the important features of demand 

response.  

Demand response has many advantages that benefit both energy suppliers and customers. 

The diverse benefits offered by demand response include monetary savings, power efficiency 

improvements, flexibility, and reliability improvements [10], [12]. A detailed illustration of 

various demand response benefits can be found in Chapter II Literature Review (Fig. 2.15). 

Regardless of the convenience and improvements demand response has to offer, researchers have 

found the adoption rate of demand response programs has been unexpectedly slow [12]. Vuppala 

et al.Õs paper [12] shined some light into the leading causes. One of the reasons is that customers 

become hesitant when they find out about penalties related to contract breach. In addition, the 

unpredictable nature of peak load duration is not especially encouraging as well. Finally, the fact 

that even if customers participate in demand response programs they still have to pay high prices 

for must run services, such as lighting during peak hours makes the advantages of demand 

response programs less impressive.  

Demand response programs, as discussed, have huge potentials that may bring current 

smart grid to the next level and benefit the world as a whole. However, the interactive nature of 

demand response requires much more input than the effort of just researchers. It is the 

involvement of end-use customers that can eventually push demand response forward. Their 

participation will generate data that are crucial for the advancement and debugging of demand 

response programs and even smart grid. Without them, Demand Response programs will have 

nothing to respond to, let alone make the grid smarter or make the world greener. Therefore, it 

becomes urgent for demand response programs to become attractive enough to attract more 

participants.  
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Demand response programs can be categorized into two groups: incentive based 

programs (IBP) and price based programs (PBP) [10]. In IBP, participants receive credits or 

monetary rebates for their participation in demand response programs, whereas in PBP 

participants do not receive any rebate but are able to shift the load management to smart meters 

that have the automation functionality, or even become a power supplier by selling their extra 

load back to the power grid. 

PBP can be further divided into five categories: Time of Use Pricing (TOUP), Critical 

Peak Pricing (CPP), Extreme Day Critical Peak Pricing, Extreme Day Pricing, and Real Time 

Pricing (RTP) [10]. These PBP programs all aim at flatten the demand curve by offering a higher 

price during peak hours and lower price at off-peak hours [10], yet they offer different per unit 

consumption prices at different time blocks of the day. TOUP rates is the most commonly 

implemented PBP program. It offers two time blocks in the simplest model, which are peak and 

off-peak rates. The most efficient PBP program, even the most efficient demand response 

program is RTP program as a large number of economists believe [13]. Not only will RTP be 

reducing expenditures for end users, but also lead to economic and environmental advantages 

[14]. 

As implied by its name, RTP programs charge customers hourly fluctuating prices that 

Òreflect the real cost of electricity in the whole sale marketÓ [14]. Usually the programs inform 

customers about the prices on a Òday-aheadÓ or Òhour-aheadÓ basis. This characteristic of RTP 

leads economists to the conclusion that RTP programs fit for competitive electricity markets and 

should be paid more attention by policymakers [15]. In fact, Zhang et al. [16] found that RTP, 

and other demand response programs, did encourage and enable customers to take a much more 
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active role in scheduling their own energy consumptions to save energy, reduce cost, and in 

return benefit the power grid operation.  

1.4 Energy Consumption Scheduling and Fair Delay 

After the publication of Albadi and El-SaadanyÕs paper, smart grid has had more 

developments and advancements as a result of the vigorous studies done by researchers. Thanks 

to current available RTP-alike schemes, each and every customer within the smart grid now has 

the opportunity to dynamically schedule its loads at each time. Most of the scheduling at 

customersÕ end is performed by the energy consumption scheduling system. The energy 

consumption scheduling system can be as simple as a single smart meter, which is programmed 

to start, suspend, resume and stop one or many smart appliances [15]. On top of controlling and 

monitoring the smart devices, the energy consumption scheduling system also coordinates the 

communication between appliances and the power supplier. A graph illustration of the energy 

consumption scheduling system is presented in the Introduction section of Chapter 3. It is also 

important to realize that the available schemes are all performing fragments of RTPÕs 

functionality after all. Therefore, RTP is still in need in order to largely improve the efficiency of 

smart grid. But the challenge of RTP, that is the fact the customers might not be able to know the 

future power price, remains.  

In this dissertation, algorithm aiming at minimizing energy cost for customers is 

proposed. The algorithm adopts energy consumption scheduling and optimal stopping rule 

respectively to try and solve the cost minimization problem. The energy consumption scheduling 

algorithm is discussed in a neighborhood area network level. In addition, the approach with 

optimal stopping rule also considers the comfortable level of delay as a variation. 
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Fairness is another sub-topic of demand responseÕs that has been vigorously researched in 

past years. Vuppala et al.Õs paper [15] looked into the definition of fairness. For demand 

response participants, the lack of fairness features makes demand response programs much less 

attractive. In fact, having understood the importance of having as many participants as possible 

to get involved with demand response is the key to future advancements. Vuppala et al. explored 

the definition and criteria of a fair demand response. They proposed a fairness-incorporated 

pricing model and compared it against flat rate schemes and price-based schemes. Their 

simulation results supported their expectation that their model achieved better fairness than the 

other models for it not only flattened the demand curve, but also was able to create a win-win 

situation for both customers and power provider.  

The price-based foundation of VuppalaÕs scheme puts it under the category of fair bill. 

However, fair bill is not the only way to achieve fairness. In this dissertation, fair delay is 

explored and discussed as another option to offer fairness to the customers. The key idea is to 

avoid unfair delays during peak hours and keep delays fairly distributed among consumers. This 

dissertation proposes an energy consumption scheduling based algorithm to realize the above-

mentioned goal.  

The rest of this dissertation is organized as follows. Chapter II reviews a collection of 

current literatures that are related to the topics discussed in this dissertation and highlight the 

opportunities to contribute to the area. Real-time demand response in smart grid distribution 

using energy consumption scheduling methodology is explored and thoroughly discussed in 

Chapter III. In Chapter IV, fairness in the form of fair delay is studied to further engage the 

customers with demand response and smart grid. Following that, Chapter V studies and provides 

the solution to customer cost minimization problem using energy consumption scheduling with 
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optimal stopping rules in RTP demand response program. Finally, this dissertation concludes in 

Chapter VI, with a summary of this dissertation and an outline for possible future work 

directions.  
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2 LITERATURE REVIEW 

2.1 Power Grid Overview 

Power grid has changed quite a lot in the last couple of decades because of technological 

advancements in both industries and academics [15]. Although power grids are getting ÒsmarterÓ, 

the basic function of grids never changed. Their main function is still generating electricity and 

supporting energy consumption. Understanding the way a traditional power grid functions is still 

quite important for researchers who are dedicated to accelerate the evolvement of power grids 

and make them ÒsmarterÓ. 

An electrical grid system has four main elements. They are electricity generation plants, 

transmission substations, distribution substations, and end users. Fig. 2.1 is a graphic overview of 

an electrical grid system [15]. As shown in the figure, as it moves downward, more elements 

start to appear, which represents the service structure of a power plant very well since one plant 

supports the energy consumption of a large number of customersÕ.  

 



 12 

 

Fig. 2.1 Overview of Electrical Grid System [15] 

 

An important part of power grid is Supervisory Control And Data Acquisition (SCADA). 

SCADA systems are known for their diverse functionalities that include real-time monitoring, 

logging/archiving, report generation, and automation for smart grid [14]. Because of their 

function set, SCADA systems are widely used to monitor and control industrial processes. In the 

U.S., SCADA systems were developed among power delivery systems, and have already been in 

use for five decades. To date, many such advanced systems and their applications have been 

developed worldwide.  

In the past 10 years, an interest in improving the national power grids to make them 

ÒsmartÓ and productive has cropped up. This means, closed, isolated, and single user-based 

architectures will be changed into interlinked, standardized systems that support new 

functionalities, and they are also user friendly and cost efficient. SCADA being an important 
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feature of power grid will be required to become more robust and secure for the sake of the smart 

grid. Gao et al. studied the SCADA communication and security issues in their 2014 paper [20].  

Gao et al. [20] started their paper with a detailed overview of the functionalities of 

SCADAÕs. As mentioned, SCADAÕs main functionalities include monitoring, logging/archiving, 

report generation, and automation. In addition to these functions, SCADA is also features access 

control, multimedia interface, trending, and alarm handling. These functions are explained below 

and shown graphically in Fig. 2.2. 

Access control: users are allocated among groups that have defined read/write access 

privileges to the process parameters in the system and often to specific product functionality [17]. 

Multimedia interface: multimedia interface supports multiple screens, which can display 

combinations of synoptic diagrams and text [18]. 

Trending: most of the SCADA products provide trending facilities, and one can use it to 

summarize the common capabilities in a chart or a figure [18]. 

Alarm handling: alarm handling is based upon limit and status checking, and it is 

performed centrally in the data servers [19]. In other words, the information only exists in one 

place, all users see the same status (e.g., the acknowledgement), and multiple alarm priority 

levels (in general many more than three levels) are supported. It is usually possible to group 

alarms and to handle these as aggregation. E-mails can be generated, and predefined actions can 

be executed automatically in response to alarm conditions. 

Logging/archiving: logging can be described as the medium-term storage of data on a 

disk, and archiving can be described as the long-term storage of data either on a disk or on 

another permanent storage medium [19]. Logging is typically performed on a cyclic basis. In 

other words, once a certain file size, period, or number of points is reached, the data are 
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overwritten [19]. Logging of data can be performed at a set frequency, or it can be initiated only 

if the value changes or if a specific predefined event occurs. Logged data can be transferred to an 

archive once the log is full. The logged data is time stamped and can be filtered when viewed by 

a user. The logging of user actions is, in general, performed together with either a user ID or 

station ID. 

Report generation: one can send reports by using Structured Query Language (SQL) type 

queries to the archive, real-time database, or logs [19]. 

Automation: many of the products allow actions to be triggered automatically by events 

[19]. 

 

 

Fig. 2.2 SCADA Functionality [20] 
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SCADA systems have been evolving since they were created. The paper [21] summarized 

that distributed architecture and multimedia are two dominate techniques that would influence 

the SCADA systems. The paper [19] reviewed that SCADA was adopting Web Technology, 

ActiveX, and Java in the products and also adopting object linking and embedding for process 

control as a means of communication between client and server modules. The paper [22] argued 

that the future SCADA is not a stand-alone system, but rather, it is incorporated with a deep level 

implementation of information flows within the substation system featuring the advanced 

communication technologies. 

Recent SCADA systems have shown a feature that many new technologies have applied 

into systems to make them more real-time, productive, robust, and secure. For example, those 

new technologies include advanced systems such as SCADA systems based on Internet [23]-[25], 

Intranet-based SCADA [26], web-based SCADA [27], industrial Ethernet-based SCADA [28], 

web-based SCADA display system via Internet [29], and so forth. 

In order to have a better understanding of the power grid, or even smart grid, the 

researchers analyzed the structure of the SCADA system as well.  

The traditional SCADA system is composed of a central host computer and a number of 

remote terminal units (RTUs), the operator terminals, and/or programmable logic controllers 

(PLCs) [30]. Some key components are as follows [30]: 

SCADA meter: used for gathering data from a plant (acquiring) and sending commands 

(control) to a plant. 

RTU: used for connecting to sensors in the plants, converting sensor signals to digital 

data, and sending digital data to the supervisory system. 
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PLCs: used as field devices because they are more economical, flexible, and configurable 

than special- purpose RTU. 

Communication infrastructure: used for connecting the supervisory system to the RTUs 

and/or PLCs. 

A proper understanding of SCADA is necessary to analyze the various security threats 

that need to be addressed. A SCADA system is a centrally controlled master system that 

commands terminal RTUs, and these RTUs include relay devices, actuators and sensors, circuit 

power breakers, voltage regulators, and so forth. Master terminal units (MTUs) are higher-level 

units, including supporting applications, human machine interfaces (HMIs), data storage, and 

acquisition systems. PLCs are used as control sensory devices and RTUs. Programmable 

automation controllers are used as the basic controlling unit. 

There are three generations of SCADA system architectures. The first generation uses the 

WAN for communication between MTUs, which execute decision-making, and RTUs, which 

serve the end users. The second generation uses local area networks (LANs) to communicate 

between MTUs and RTUs. The third generation uses wide area network (WAN) and Internet 

protocol (IP). 

The components of the SCADA architecture include the following: (i) on-field devices, 

for example, RTUs, PLCs, intelligent electronic devices (IEDs), and Process Automation 

Controllers (PACs); (ii) monitoring and controlling equipment, for example, HMI, historian, 

controller for SCADA, and real-time data processor; and (iii) communications, for example, 

Inter-Control Center Communications Protocol (ICCP), Odyssey Commutation Processor (OCP), 

Ethernet, wireless networks, serial network connections, and Modbus and DNP3 protocols. The 

terminal controller unit is responsible for communicating, analyzing the data, and displaying the 
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occurring events to the users as well as the service providers. The devices are generally 

controlling and controlled devices, which run on embedded operating systems to communicate 

data using various controlling protocols, such as Modbus and DNP3. 

To ensure that SCADA systems are well maintained, security measures should be given 

special importance [31]. Attacks on the SCADA system can cause threat to peopleÕs safety, a 

loss of productivity, and even some environmental damage [31]. Some basic network systems 

(e.g., ports, hubs, switches, routers, firewalls, and the Simple Network Management Protocol 

(SNMP)) are also general, electrical power grid components that are at risk of being attacked. 

The interconnection of microprocessors used in SCADA has been an increasing trend in 

recent times, and this interconnection makes the SCADA system less secure [31] PLCs and 

DCSs used as process controllers have been replaced by IEDs, which are generally applied to 

control power meters, to control power stations, and to trace heat [31] Power meters, wireless 

LANs, IEDs, relay networks, and Master Control Centers (MCCs) are interconnected in SCADA 

when setting up power grids [31]. With all these devices being interconnected, the network of a 

SCADA system is becoming less isolated and, thus, becoming prone to attacks [31]. 

¥ Hardware architecture 

One is able to distinguish between two basic layers in a SCADA system: the client layer, 

which caters to the humanÐmachine interaction and the data server layer, which handles most of 

the process data control activities. The data servers communicate with devices in the field 

through process controllers. Process controllers (e.g., PLCs) are connected to the data servers 

either directly or via networks or fieldbuses that are proprietary (e.g., Siemens H1) or 

nonproprietary (e.g., Profibus) [19]. Data servers are connected to each other and to client 
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stations by means of an Ethernet LAN. The data servers and client stations are NT platforms, but 

for many products, the client stations may also be Win95 machines.  

¥ Software architecture 

The products are multitasking and are based upon a real-time database that is located in 

one or more servers. Servers are responsible for data acquisition and handling (e.g., polling 

controllers, alarm checking, calculations, logging, and archiving) on a set of parameters, which 

are typically those to which they are connected [19].  

¥ Communication infrastructure 

A typical SCADA communication system generally consists of a master station and many 

other distributed RTUs [30]. The RTUs are interconnected to the master station through a variety 

of communication channels, such as radio links, leased lines, fiber optics, and others [30]. 

However, one of the greatest communication challenges is that the channel limits the speed of 

data acquisition and control that can be performed. Furthermore, random noise on the channel is 

another challenge that has hindered SCADA communication [30]. 

These security threats that SCADA faces alerts smart grid researchers about potential 

security issues that smart grid might face. Upon understanding the system, structure, and even 

potential threats that the traditional grid deals with, it is appropriate to move on to smart grid for 

more discussion related with this dissertation now.  

 

2.2 Current Infrastructures and Future Direction of Smart Grid 

2.2.1 Smart Grid 

One main objectives of the update from traditional grid to smart grid is to become more 

energy-efficient [32]. To realize this goal, smart grid takes advantages of latest technologies, 
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including intelligent and autonomous controllers, advanced software for data management, and 

two-way communications between power utilities and consumers. Before the discussion of smart 

grid goes further, it is necessary to clarify what smart grid is. 

In Chapter I, the definition of smart grid has been explored. Here in Chapter II, more in 

depth discussion can be carried out with the help of current literature.  

 

 

Fig. 2.3 Definition of Smart Grid [1] 

 

The U.S. DoE has an official definition of smart grid, which is presented in the format of 

a pyramid graph (Fig. 2.3) [11]. As the graph shows, essential components of a smart grid from 

bottom up are energy infrastructure, communication infrastructure, computing or information 

technology, and smart grid application. The bottom layer is physical energy infrastructure that 

distributes energy. Communication infrastructure is defined on the very top of the physical 

energy infrastructure to entire supply chain. Computing/information technology is above the 

communication infrastructure for timely decision-making. Smart grid applications are on the top 

to create electrical system/societal values. Security is in another dimension and covers all layers, 

so that the importance of security can be highlighted.  
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Generally, Smart grid is a data communications network integrated with the electrical 

grid that collects and analyzes data captured in near-real-time about power transmission, 

distribution, and consumption [33]. Based on these data, smart grid technology then provides 

predictive information and recommendations to utilities, their suppliers, and their customers on 

how best to manage power [33]. From another perspective, smart grid is a complex system of 

systems, and therefore National Institute of Standards and Technology (NIST) has developed a 

conceptual architecture for the entire smart grid [2]. This conceptual architectural reference 

model provides a means to analyze use cases, to identify interfaces for which interoperability 

standards are needed, and to facilitate the development of a cyber security strategy [2]. 

Though it emerged from the recent power grid system, smart grid has more requirements 

to meet and new characteristics to attain. The synthesized requirements of the desired smart grid 

are as follows:  

(1) Advanced Metering Infrastructure (AMI ): It is designed to help customers know the 

real-time prices of power and optimize power usage accordingly [2] [34]. Also, consumers 

become informed participants, and they can choose different purchasing patterns based on their 

needs and the gridÕs demand, which can ensure the reliability of the electric power system [35]. 

(2) Wide area Situational Awareness: It is intended to monitor and manage all the 

components of the electric power system. For example, their behaviors and performance can be 

modified and predicted to avoid or to address potential emergencies [2]. 

(3) IT Network Integration: The smart grid scopes (generation, transmission, distribution, 

consumption, and control center) [7] and sub-scopes will use a variety of communication 

networks which are integrated from IT networks. 
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(4) Interoperability: The smart grid will have the capability of two or more networks, 

systems, devices, applications, or components to exchange and readily use information securely, 

effectively, and with little or no inconvenience to the user [2]. The smart grid will be a system of 

interoperable systems. That is, different systems will be able to exchange meaningful, actionable 

information. The systems will share a common meaning of the exchanged information, and this 

information will elicit agreed-upon types of responses. The reliability, fidelity, and security of 

information exchanges among smart grid systems must achieve requisite performance levels [2]. 

(5) Demand Response and Consumer Efficiency: Utilities and customers will cut their 

usage during peak times of power demand. Mechanisms will also be made for consumers to 

smartly use their power devices to lower their cost [2]. 

Hence, we can conclude that smart grid, by definitions and requirements, will have the 

characteristics of being more efficient, reliable, intelligent, etc. There are many challenges and 

issues involved in the smart grid communication fields. Essentially, there is an effort to make the 

power generation and consumption more flexible, to allow dynamic pricing, the collection of 

energy from small, reusable energy producers and so on. To implement this, the electric grid 

needs to be upgraded with communication and computation devices. Moreover, with integrating 

information networks into the current power grid system will come many security and privacy 

issues, which must be addressed. Obvious vulnerabilities are introduced by IT networks. For 

example, hackers can steal customersÕ power without any trace being left their metering devices. 

The NIST therefore has released a guideline for addressing cyber security and privacy issues in 

the Smart Grid [36]. 

To achieve the characteristics of the desired Smart Grid addressed in the previous 

subsection, National Energy Technology Laboratory (NETL) described five key technology 
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areas that are integrated communication (IC), sensing and measurement, advanced components, 

advanced control methods, and improved interfaces and decision support [34], [35] as shown in 

Fig. 2.4.  

 

 

Fig. 2.4 Five Key Technology Areas in Smart Grid [34], [35] 

 

These key technologies will later be added onto the smart grid architecture to make it 

functional like muscles on bones. An overview of smart grid architecture is able to assist the 

understanding of smart grid in return.  

There are three major sources of smart grid architecture proposals: 

(1) Government & Organizations: Provisioned requirements and blueprints of smart grid. 

(2) Industrial: Proposals of communication infrastructure implementations. 

(3) Academia: Greater focus on defining communication architecture requirements and 

solutions. 

The architectures proposed above are focused on parts of the smart grid system, which 

are intended to address specific requirements that must be met. However, several conceptual 
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The DoEÕs Smart Grid System Report [7] proposed that a smart gridÕs architecture should 

include the following scopes: Market Operators, Reliability Coordinators, Gen/Load Wholesalers, 

Transmission Providers, Balancing Authorities, Energy Service Retailers, Distribution Providers, 

and End Users (Industrial, Commercial, and Residential). 

West VirginiaÕs white paper [34] proposed that smart grid architecture should be 

composed of the following four elements: Sensing and Measurement, Advanced Control 

Methods, Improved Interfaces & Decision Support, and Advanced Components. 

NIST proposed in the NIST Framework and Roadmap for Smart Grid Interoperability 

Standards [2] that smart grid architecture should include the following: Customers, Markets, 

Service Providers, Operations, Bulk Generation, Transmission, and Distribution. This is one the 

most fully described architectures proposed in recent smart grid literature. As depict in Fig. 2.5, 

Customers area can be further categorized into three types: Home Area Networks (HANs), 

Building Area Networks (BANs), and Industrial Area Networks (IANs). They can be either 

wired or wireless networks on customer premises (home, building and industry areas 

respectively) that support messaging among appliances, smart meters, electronics, energy 

management devices, applications, and consumers. Applications and communications in these 

networks may be driven by Home Energy Management Systems (HEMS), Building Automation 

and Control Networks (BACnet), or other energy management systems [37]. 
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Fig. 2.5 Smart Grid Architecture [38] 

 

After reviewing the existing organization-proposed smart grid architectures [2], [7], [34], 

[35], [39], I conclude that a smart grid architecture must address the following critical issues as 

also shown in Fig. 2.6 [33]: (1) transmitting data over multiple media; (2) collecting and 

analyzing massive amounts of data rapidly; (3) changing and growing with the industry; (4) 

connecting large numbers of devices; (5) maintaining reliability; (6) connecting multiple types of 

systems; (7) ensuring security; and (8) maximizing return on investment. 
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Fig. 2.6 Critical Issues in Smart Grid [33] 

NIST further broke down smart grid into seven domains according to collections of 

interconnected networks. The details of seven domains are shown graphically in the figure below 

Fig. 2.7 [2]. 

 

 

Fig. 2.7 Seven Domains of Smart Grid [2] 
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As these networks are interconnected, the way they communicate with each other is much 

more complicated and intertwined than the traditional Ògeneration-transmission-distribution-

customerÓ way. Fig. 2.8 is an illustration of the ongoing communications between these seven 

domains. The compact structure of the graph represents the frequent communications between 

these domains with operation at the center of communication network. However, it is important 

to realize that although several domains are communicating with more than one other domain, 

not all domains are communicating with same number of other domains. The domain of service 

provider only communicates with and connects markets, operations, and customers (including 

residential, commercial, and industrial) because of the role it plays in a smart grid only requires 

communication with these three other domains [2], [32]. An example from the other side of the 

scale is operations. It is in constant connections with all other six domains because its managerial 

role in electricity movement means it need to get the latest updates about what is going on in the 

grid and what needs to be done all the time.     
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Fig. 2.8 Communication Network Between Seven Domains [2], [32] 
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Microgrid is a variation of smart gridÕs among many. It is a combination of customer and 
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Microgrid is an example of the customer domain because of its capability of generating, storing, 

and managing energy. The resemblance shared between microgrid and operation is the 

management of energy movement. The operation cycle of microgridÕs is shown graphically 

below in Fig. 2.9.  
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Fig. 2.9 Microgrid Operation Cycle [32] 
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that aims at benefiting the end users [41], [43], [44]. To be specific, the benefits of smart homes 

include simplify the life of its inhabitants, reduce energy usage, and provide comfort and security 

[44]. In 2012, smart homes were already quite popular thanks to their ability to lower energy 

bills, allow flexibility on energy consumption, and benefit the environment. However, 

considering the difficulty of incorporating ÒdumbÓ appliances into smart homes, smart home 

technologies were generally limited to demonstration projects.  

In Sun and HuangÕs paper, they reviewed a large range of energy optimization methods 

for smart home appliances. A smart home usually has a set of devices that include those seen in 

following Fig. 2.10. Also in a smart home, all smart devices are Òtypically linked to a home 

network to which they report their states or from which they receive instructionsÓ [44]. 

 

 

Fig. 2.10 Smart Home Devices [45] 
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a number of previous researches and experiments that adopted above-mentioned method(s) in 

hope for the realization of the goal of optimizing the power scheduling in smart homes.  

 

 

Fig. 2.11 Major Energy Optimization Methods 

 

The above reviewed information about smart grid, microgrid, and smart homes makes it 

clear that smart grid is indeed a wonderful system with a lot of potential. With different 
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better in a lot of ways. However it is restricted in various aspects because of technological 

incompetence and lack of customer participation among other reasons. The following subsection 

will discuss DSM and demand response, the improvement of which will make smart grid more 

attractive to the customers.  

2.3 Demand Side Management & Demand Response 

A concept that is quite important in smart grid is called Demand Side Management 
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integration of distributed generation and reduces costs in both energy generation and 

transmission.  

A lot of researchers believe DSM is an umbrella term for the collection of energy-

efficiency, conservation program and demand response program [12], while other researchers 

and practitioners see DSM and demand response as interchangeable equals [47], [48]. In this 

dissertation, they are treated as synonyms. 

The paper written by Albadi and El-Saadany gave a very well-rounded overview of 

demand response in electricity markets [10]. Their paper started by offering descriptions of 

demand response. They highlighted three ways in which customers can take action. These 

actions are reducing only peak-hour electricity usage, shifting load demand from peak hours to 

off-peak hours, and using onsite generation, which is also known as Òcustomer owned 

Distributed GenerationÓ.  The paper went on by looking into the different groups of demand 

response programs. However because of the stance their paper was written from, they mainly 

looked at demand response programs based on offered motivations. In another demand response 

survey presented by Vardakas et al. [32], they also mentioned demand response programs based 

on control mechanism and demand response programs based on decision variables. A graphical 

presentation of these programs can be found here in Fig. 2.12.  
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Fig. 2.12 Collection of Demand Response Programs [32] 

 

Another difference between Albadi and El-SaadanyÕs survey and VardakasÕ survey is that 

they grouped demand response programs based on offered motivations differently. A graphical 
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2.13 [32]. 
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Fig. 2.13 Vardakas' Version of Demand Response Programs Based on Offered Motivations [32] 

 

The differences between the two groupings are mainly found in non-incentive-based 

demand response programs. Instead of calling the non-incentive-based programs Òprice-based 

programsÓ, Vardakas named them Òtime-based programsÓ. In both groups, there are time-of-use 

pricing scheme, RTP, and critical peak pricing scheme. In VardakasÕ paper, peak load pricing 

scheme divided a day into a number of periods and different electricity rate was applied to each 

period. Peak day rebates scheme allows customers to make their own decision on whether or not 
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scheme has a higher price for electricity, which is in effect for the whole 24 hours of the extreme 

day that will be known one day ahead [10]. Finally, extreme day critical peak pricing is the 
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differences between the focuses of the two groups, which in return explained why they were 

grouped in such ways.  

 

 

Fig. 2.14 Main Objectives of Demand Response [32] 

 

The various demand response programs, regardless of their different designs, all aim at 

achieving one or many of main objectives. Fig. 2.14 illustrates the objectives of demand 

response schemes [32]. In fact, various demand response programs were created based on these 

objectives. Usually, above-mentioned demand response programs aim at fulfilling more than one 

objective with their algorithm to increase its implementation rate. For instance, the primary 

objective of price-based programs is to reduce or even elimination of overloads or to change the 

demand in order to follow the available supply depends on the consumption profiles of the 

customers. On top of that, there is also a secondary objective that these programs are aiming to 

achieve, which can be both to reduce the total power consumption and to reduce total needed 

power generation, since these two objectives are somehow interconnected.  

Albadi and El-Saadany [10] also evaluated the benefits and costs of demand response 

programs, which are also shown graphically in Fig. 2.15 and 2.16, respectively. 
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On top of merits and costs evaluation, this paper also highlighted the most common 

indices used for demand response evaluation, which are the actual peak demand reduction and 

the variations of this factor. The indices decision was made based on the ultimate goal of demand 

response that is to reduce the peak demand for smart grid. To make the indices more suitable for 

making comparisons between different demand response programs, the actual peak demand 

reduction factor was also normalized into percentage. Because of the different characteristics and 

functionality of various demand response programs, demand price elasticity, which was found by 

calculating the ratio of the percent change in demand to the percent change in price (E=ΔQ/ΔP). 

Apart from measuring the achievements made by demand response programs in a numeric 

manner, the authors also noted that customer acceptance and enrolment were also important 

factors that make considerable impacts on demand response programs.  

 



 36 

 

Fig. 2.15 Benefits of Demand Response [10] 
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the smart appliances will function when the power price is ideal for the customers and as a result 

minimizes power bills. Because of the important role energy consumption scheduling performs 

in smart grid and bill minimization, researchers have conducted various researches to exploit as 

much potential as possible from the energy consumption scheduling.  

Targeting at improving demand response efficiency in residential power usage, Chen et al. 

[45] proposed a RTP-based algorithm that adopted a Stackelbrg game model. In their model, the 

leader level game was played by the power provider for it sets the real-time price of electricity, 

and the follower level game was played by energy consumption scheduling for it schedules the 

power consumption of smart appliances at the customersÕ end. Instead of working on the 

minimization of customersÕ bills, the algorithm proposed was more focused on the benefits of the 

power providerÕs. According to their simulation result, the algorithm was able to balance the 

difference between customersÕ actual demand and planned supply, as well as reduce the peak 

load [45]. 

Lee et al. [49] proposed  program that can be embedded in the energy consumption 

scheduling with a focus on peak load reduction in homes and buildings. Their design works best 

in the scenario where appliances are no more than 10, the power load profile is practical, and the 

search space size is reasonable. Although the limitations can pose a question regarding the 

practicality of this proposed scheme, they are a reflection of the complex nature of the energy 

consumption scheduling. 

From the above reviews, it is clear that a large number of projects done on the energy 

consumption scheduling are actually aiming at optimization as their goal. A revision of 

optimization-related works can be found below.  
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2.4.2 Optimization 

Optimization is an important part of smart grid and demand response because it is the 

process that makes smart grid and demand response as perfect, effective, and functional as 

possible. The objectives of demand response-based optimization models usually fall into one of 

five categories that are 1. minimization of electricity cost, 2. maximization of social welfare, 3. 

minimization of aggregated power consumption, 4. minimization of both electricity cost and 

aggregated power consumption, and 5. both the maximization of social welfare and minimization 

of aggregated power consumption [32].  

In Samadi et al.Õs [50] paper, the authors looked into a real-time energy consumption 

scheduling algorithm with load uncertainty that aims at bill minimization for individual 

residential customers. The load-scheduling problem was formulated as an optimization problem. 

The researchers adopted an approximate dynamic programming approach to make the computing 

simpler. They also studied the difference between must-run appliances (such as lighting) and 

controllable appliances that are much more flexible. Instead of assuming the demand response 

algorithm understands customersÕ energy needs perfectly, the algorithm proposed in this paper 

survives on only some estimates of future demand. Their algorithm combined RTP with inclining 

block rates to balance residential load in order to achieve a low peak average ratio (PAR) [50]. 

Chen et al. [18] evaluated real-time price-based demand response through applications 

installed in energy consumption scheduling with a focus on Stochastic Optimization and Robust 

Optimization. Their research was strictly conducted with residential appliances, which is the 

same with Samadi et al.Õs study. On top of considering bill minimization as their main goal, 

Chen et al. also took energy efficiency into consideration when designing their model. In order to 

achieve their goal, the proposed demand response program would automatically determine Òthe 
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optimal operation in the next 5-minute time interval while considering future electricity price 

uncertaintiesÓ [18]. In addition, the researchers also employed the risk aversion formulation to 

control the financial risks that comes with real-time price uncertainties. 

The success of optimization will highlight the benefits of demand response, and as a 

result makes demand response more attractive to the customers and pushes up the participation 

rate. The increasing participation rate will then become the motivation of further technological 

advancements in smart grid. Eventually, smart grid will find the optimal balance point between 

human electricity consumption and environmental costs. All this described train reaction happens 

with the urge of striving for a better future.  
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Fig. 2.16 Costs of Demand Response [10] 
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programs. The findings presented in Albadi and El-SaadanyÕs paper offer valuable insights for 

future researches in terms of available room left for improvements. Having said this, it is 

important to remember their research was conducted in 2007. A lot more achievements and 

advancements have been made in the field since then.  

Mohsenian-Rad and Leon-Garcia conducted research on the topic of optimal residential 

load control with price prediction in RTP [14]. The researchers identified a couple of barriers 

that were blocking RTP from getting fully utilized based on literature. The barriers were: 1. the 

lack of knowledge among customers about how to respond to the time-varying prices and 2. the 

lack of effective building automation systems that can provide assistance to the customers. The 

solutions that researchers came up with were an optimal and automatic residential energy 

consumption scheduling framework which targeted at achieving a desired trade-off between 

minimizing the electricity payment and minimizing the waiting time for each appliance in the 

resident subject to customers special needs [14].  

Their proposed solutions were embedded in a scenario that includes a smart meter for 

every household, which connects to a smart meter, and an energy consumption scheduling device 

in every smart meter. Also they adopted a price predictor unit which was an addition to the 

energy consumption scheduling and estimated future price by applying a weighted averaging 

filter to past price [14]. By taking advantage of the actual hourly-based rates adopted by Illinois 

Power Company from January 2007 to December 2009 and a weighted average price prediction 

filter, the researchers found the optimal coefficients for different days of the week. The 

simulation results confirmed the merits of combining energy consumption scheduling and price 

predictor, especially in terms of reducing energy bills for end users.  
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An interesting note about smart meter is that in VardakasÕ paper [32] he confirms the 

advantage of smart meter installation for it allows the implementation of more dynamic pricing 

schemes that can trigger peak-demand reduction, while on the other hand he mentioned some 

consumer groups may have different reactions. According to [51], the lower level of price-

elasticity of low-income consumer group makes it quite difficult for customers in that group to 

respond to the changing electricity rates. This is just one implication among many when various 

pricing schemes applied to a wide range of customers.  

2.5.2 Fairness 

Vuppala et al.Õs paper also discussed the issue of fairness in demand response programs, 

with an emphasis on fairness principles that customers regard highly of [12]. To decide what 

kind of demand response program is ÒfairÓ, they considered the criteria listed as following. For 

mustÐrun appliances, such as lighting, power price will be fixed [12]. On the other hand, power 

consumed by non-must-run appliances will be charged at multi-dimensional prices [12]. User 

category, income level, and appliance category will be taken into consideration when 

determining the exact power price [12]. A graphical illustration of the criteria can be found as 

Fig. 2.17.  

 

 

Fig. 2.17 Criteria for Fairness [12] 
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If a deal meets all the described criteria, it was then labeled as fair. However, after 

comparison, none of the available programs was able to meet all criteria. Even RTP was 

considered ÒunfairÓ because the differences between appliances and income levels were not 

important variables of RTPÕs. They then established the lack of fairness principles in demand 

response programs for current programs only address part of the criteria. . 

The fair demand response scheme they proposed promised to address all the above 

criteria [12]. They made sure that the price of must-run services was time irrelevant, and that 

price varies according to different user types, appliances and income levels. The simulation 

results supported their expectation and, as a result, achieved a higher level of customer 

satisfaction. The result also showed a loss of economic efficiency as a side effect. 

Zhang et al. looked at fair cost in smart homes with microgrid [41]. Sometimes a number 

of smart homes share one microgrid, and this sharing feature would eventually lead to 

competition between homes, especially when local distributed energy resources cannot respond 

to all load requests.  

In this paper, fairness was achieved through fair cost and it was defined differently from 

Vuppala et al.Õs. Instead of coming up with their own definition, the authors cited Mathies and 

GuderganÕs definition, which described fairness as Òthe reasonable, acceptable or just judgment 

of an outcome which the process used to arriveÓ [52]. Zhang et al. proposed and experimented 

with a mathematical programming formulation that aims at maintaining the fair cost during such 

competition between smart homes that share the same microgrid. They utilized lexicographic 

minimax method with a focus on mixed integer linear programming approach to minimize one-

day forecasted energy cost for each smart home. They studied two groups of 10 and 50 smart 

homes with their distributed energy resource operation and output examined. The simulation 
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result showed a 30% and 24% cost saving for the two groups respectively and a fair cost 

distribution among smart homes in their scenario.  

Fan [53] proposed a distributed demand response program and user adaptation in smart 

grid. The proposed program and adaptation was established with a reference to the congestion 

pricing in IP networks. In Kelly et al.Õs [54] work on proportionally fair pricing scheme, it was 

concluded that additive increase and multiplicative decrease rate control can achieve 

proportional fairness. The criterion for fairness was a willingness to pay parameter, which held 

the belief that customers who are willing to pay more should get more. FanÕs work was 

established on top of Kelly et al.Õs work and the simulation showed pricing could indeed help 

with shifting the load leveling burden from power supplier to the customers while maintaining 

proportional fairness [53].  

Baharlouei et al. also introduced their criteria for fairness which was defined as Òthe 

variational distance between normalized billing vector for billing mechanism and normalized 

billing vector for billing mechanismÓ [55]. Based on this fairness index, Baharlouei et al. 

proposed a billing model that aims at not only improve the optimal general system performance, 

but also improve the fairness of the billing system [55].  

 

2.6 Related Work Conclusion 

This section reviewed the broad context where this dissertation is working in by zooming 

in from the big picture to more specific areas. First, it introduced the structure and functionality 

of traditional grid and details of SCADA, which is an important part of traditional power grid. 

Upon understanding what smart grid is built on, the discussion proceeded into the next section. 

The revision moved onto current situation of smart grid, system structure, and the seven domains 
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of smart grid. As the part with most potential, demand response was then reviewed, in terms of 

various current available demand response programs and the difference between various 

grouping principles. energy consumption scheduling and optimization problems were also 

discussed as the introduction to the next section. A series RTP and fairness related works were 

also reviewed and commented to gain insights on the specific areas that this dissertation will 

build on.  

From this review of related work, it is quite obvious that although a lot of research has 

been done in smart grid, especially in terms of demand response and RTP, according to our 

research none of them dealt with real time demand response with fair delay as a constraint, 

which is how we contribute to the field with this dissertation.  

The next chapter looks at the first problem this dissertation studies Ð how to achieve real 

time demand response using energy consumption scheduling.  
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3 SCHEDULABLE ENERGY SCHEDULING ALGORITHM IN SMART GRID 
DISTRIBUTION 

 

3.1 Introduction 

In recent years, there has been a rapid development of technologies in smart grid. One the 

most popular and promising area within it is the field of demand response. In this research area 

hides the potential key to the next stage of a more efficient smart grid. It also offers possibilities 

for the customers to receive a smaller and more reasonable bill, which in return will further 

encourage current and potential customers to utilize their smart-grid-compatible appliances.  

After several years of vigorous research and experimentations, the most up-to-date 

demand response in smart grid has had the capability of lowering the peak time load 

consumption and reducing the utility and customerÕs cost. Along with the development of smart 

meter and two-way communication schemes are also developed methods for near real-time 

energy consumption scheduling.  

Regardless of the mentioned achievements, there are still problems and challenges remain 

yet to be solved, such as real-time demand response, automation with energy consumption 

scheduling, and fairness issues. Among them the main problem that requires a timely solution in 

demand response is the real-time demand response issue. 

Demand response issue has a couple of challenges to it, with the first being customersÕ 

participation [32]. According to the definition given by the DoE, demand response refers to Òa 

tariff or program established to motivate changes in electricity usage by end-use customers from 

their normal consumption patterns in response to changes in the price of electricity over the time, 
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or to incentive payments designed to induce lower electricity usage at times of high wholesale 

market prices or when system reliability is jeopardizedÓ [1]. This definition makes it clear that 

end-use customersÕ power usage preferences have the possibility of benefiting the power grid on 

top of benefiting themselves [32]. In other words, it is the customers who are at the center of 

successful demand response. Therefore, it is vital to design real-time demand response schemes 

in a way that customers can easily perceive the benefits of the demand response program, so that 

the customersÕ active participation will ensure the normal functionality of the power grid.  

The improvements on real-time demand response, in return, concern the customers as 

well. With the introduction of the Plug-in Hybrid Electric Vehicle (PHEV) into smart grid, a 

regular customer can now be both a power consumer and/or a power supplier. That is to say, 

when real-time market power price is lower than the expectation of the customer, it has the 

opportunity to download the power load and store it locally as a consumer. When the real-time 

power price is greater than the expectation, the customer has the choice of either consume the 

power that had been downloaded earlier, or sell the extra amount of load back to the grid as a 

power supplier. Thus, to make the transition between the two roles a much smoother experience 

for the customer, real-time demand response is much needed for it offers the consumer much 

more choices and flexibility on its own power consumption. 

The second challenge of the demand response issue is RTP. Thanks to current available 

RTP-alike schemes, each and every customer within the smart grid now has the opportunity to 

dynamically schedule its loads at each time. That is to say, schemes, such as TOUP scheme, CPP 

scheme, and Day-Ahead Pricing (DAP) scheme, that performs part/parts of RTPÕs function have 

enabled the customers to lower their power costs and have more flexibility with their power 

usage. It is also important to realize that regardless of how these available schemes have their 
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own advantages, they are all performing fragments of RTPÕs functionality after all. For instance, 

DAP scheme estimates the power price one day ahead, which creates unnecessary deviations 

from the real price. As a result, customers might actually be paying more for their power 

consumption. The merits of the mentioned schemes only make their lacking of systematic 

wholeness more obvious. Therefore, RTP is still in need in order to largely improve the 

efficiency of the smart grid. But the challenge of RTP, that is the fact the customers might not be 

able to know the future power price, remains. In this paper, this challenge is referred to as the 

Òdelay challengeÓ. 

In real-time demand response system, price prediction challenges are preventing the 

system from minimizing customersÕ bills using the RTP scheme [32].  

In a scenario where the customer can manage its smart appliances energy consumption 

using smart home console while the demand response program is transparent to it, instead of 

having the customer worry about how to optimize the load management to reduce the bill 

payment, the demand response program will provide the automatic energy scheduling 

functionality to it. In this scenario, at time t1, the customer wants to do laundry and tells the 

washer to wash using real-time demand response program. Then the washer communicates with 

the smart home automation console with a desired task schedule based on the customerÕs 

predefined settings on the washer and the smart home console. 
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Fig. 3.1 Real-Time Demand Response Architecture (Partially From) [56] 

 

As seen in Fig. 3.1, all the appliances are controlled by the energy consumption 

scheduling console system. This is the system that assists the customers with their scheduling for 

energy consumption. A good schedule of energy consumption will not only save the customer a 

lot of dollars, but also reduce possible pressure that the power grid receives during peak hours.  

Here we assume that only the schedulable energy is considered in this chapter. This 

scenario assumes the energy consumption scheduling system has the ability to pause or resume. 
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¥The smart meter shows the current real-time power price and displays on the energy 
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In order to reduce the cost for power providers while deducting the customersÕ bills, 

energy consumption scheduling researchers attempts to provide a new way to the realization of 

this goal. This chapter proposes a real-time demand response system and its matching 

distribution energy consumption scheduling algorithms that aim at solving the total cost 

minimization problem. Forthcoming discussion about the problem and its solutions are hosted in 

the above-mentioned energy consumption scheduling system setup. A simulation is conducted to 

find the experimental-optimal results based on different parameter setups. The simulation results 

are analyzed to shine some light to the energy consumption scheduling problem from a new 

angle. The paperÕs goal is to focus on the customersÕ cost minimization. The cost is not only 

composed of the money that each customer pays for the bill, but also of the cost that incurs when 

customer does not get to consume the energy in time. Also, unlike focusing on the energy 

consumption scheduling of appliances within a customerÕs HAN level, this chapter focuses on 

the energy consumption scheduling with each customer considered as an entity at neighborhood 

area network level. 

In the upcoming passages, this chapter discusses a number of related works that have 

been done previously in the field of energy scheduling. Then, it proceeds into section 3.3 System 

Model and section 3.4, in which section the problems under discussion are defined in detail. 

After this, proposed solutions to the problems, i.e. total cost minimization strategies, are 

presented in section 3.5 Simulation Setup and analysis is found in section 3.6. Finally, section 

3.5 concludes this chapter.  
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3.2 Related Works 

Traditional demand response is achieved through SCADA infrastructure, but it is not as 

real-time as in smart grid environment. Real-time demand response requires the power provider 

to update retail power price at each time-slot level for all the customers. It also obliges each and 

every customer to report load consumption to the power provider at each timeslot.  

In most researches the methods of achieving demand response through energy 

consumption scheduling can be grouped into two categories: task scheduling and energy based 

scheduling [32]. The task scheduling is focused on scheduling the fixed load requests throughout 

the timeline, while the energy based scheduling focuses on scheduling flexible load requests 

throughout the timeline [32]. The flexible load requests means that load requests can be partially 

consumed and rescheduled throughout the timeline. It gives more flexibility to the customers on 

the energy consumption scheduling. The following work is an example.  

The paper [57] proposed an autonomous DSM framework to solve the optimization 

problem of reducing the utilityÕs operational cost, using the energy consumption scheduling 

algorithm. The author assumes that the energy consumption scheduling devices that are assumed 

built in smart meters would facilitate the two-way communications in the smart grid 

infrastructure, and find the optimal energy consumption schedule for each customer. Their aim 

was to reduce the total energy cost and the PAR at the same time for the utility. They also 

provided a pricing mechanism to reduce customerÕs bill payment using game theory as the 

incentive to encourage the usage of energy consumption scheduling devices. But the framework 

faces several challenges. Firstly, their paper assumed that customers use other customersÕ load 

information to optimize a game. But in reality sometimes customers do not fully trust each other, 

especially those within the same network, due to potential privacy leaking issues [1]. Moreover, 
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it is important to realize that in their study, incentives were offered to the participants as the 

proposed pricing scheme to encourage the use of the energy consumption scheduling devices. 

However, this pricing scheme is linearly proportional to the load that each customer uses, but in 

reality the power price is not always proportional to the customers load consumption, especially 

during the peak-time of the utility. In addition, the work in [1] focused on the energy 

consumption scheduling of the appliances within a household instead of that of the whole 

neighborhood area network.  

Caron and Kesidis [15] also introduced an energy consumption scheduling framework, 

with optimal solutions in their paper. They proposed an algorithm that can reduce the total cost 

and PAR of the system when all the customers share their complete load profile. On the other 

hand, they also took the customersÕ concern about privacy into consideration and came up with 

distributed stochastic strategies that will extract partially enough information to improve the 

overall load profile. The strategies offered [15] are considering how to minimize the power 

providerÕs cost and PAR without trying to motivate the customers. Their schemes may have 

some insights into modeling of customers autonomous energy consumption scheduling within 

neighborhood area network distribution network and optimal goal of minimizing the utilityÕs 

operational cost. But if one considers how the customers, instead of the power grid, are playing 

the center role of successful demand response, the challenges would be the lack of methods 

focusing on reducing customersÕ cost.  

The following sections looks into the details of the problem of reducing customersÕ cost, 

in terms of the model of the system and the outline of the problems. 
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3.3 System Model 

3.3.1 Customer Model 

Assume that there are  customers, denoted as . Assume that time is 

divided into timeslots, and therefore let timeslot  denote the time period , where 

, and  is a unit time per timeslot. 

Assume that all the load demands from customers are schedulable power loads and they 

are known at the beginning of each timeslot. For customer , its demand of power load at 

timeslot  is defined as , where  and , and let  denote the 

maximum load capacity that the customer  can handle, which is normally a constant defined by 

each customerÕs setup of its own power system. 

At each timeslot, all the customers send their load demand request to the power provider. 

Then they wait for the power providerÕs response of the current power price. In the RTP scheme, 

each customer has the opportunities to dynamically schedule its load at each timeslot. Assume 

the energy consumption scheduling algorithm exists and it uses load demand  and RTP 

power price as inputs and how much load it consumes as output.  

Let  denote the actual energy consumption of customer  at timeslot , and itÕs 

defined as 

 or     (3.1a) 

     (3.1b) 

N 1,2,...,i,...N

j [ j ! t,( j +1)! t)

j =1,2,... ! t

i

j li ( j ) j = 1,2,... 0 ! li ( j) < li
max( j) li

max ( j)

i

li ( j)

oi ( j ) i j

0 ! oi ( j ) ! li ( j )

oi ( j ) > li ( j )
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If customer  consumes the energy within the load demand of  timeslot , then (3.1a) 

satisfies. On the other hand, if customer  actually consumes not only all the load demand of  

timeslot , but also the delayed load demand from previous timeslots, then (3.1b) satisfies.  

Let  denote the instantaneous bill payment for customer  at timeslot , and it is 

calculated as follows.  

.       (3.2) 

 

Let  denote the accumulative bill payment of customer  during time period 

 and it is calculated as follows,  

.      (3.3) 

3.3.2 Power Provider Model 

Assume there is only one power provider within the power distribution system. For the 

power provider, it receives the load requests  from all the customers at 

timeslot .  

Let the  denote instantaneous aggregate load of the power provider and is defined as  

.      (3.4) 

Let  denote the accumulative aggregated power load of the power provider at 

timeslot  and it is defined as  

.      (3.5) 
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Above is the actually consumed aggregated load , but the aggregated original load 

demand also needs to be defined. Let  denote the instantaneous aggregated load demand of 

the power provider requested by all the customers  at timeslot . It can be 

calculated as  

.      (3.6) 

Let  denote the accumulative aggregated load demand for the duration from 

timeslot 1 to timeslot . It can be calculated as 

.      (3.7) 

Let  denote the Peak-Average load Ratio (PAR) of the power provider at timeslot , 

and is defined as follows,  

,      (3.8) 

where  is the peak instantaneous aggregate load during the time duration 

 and  is the average load during the same time period. Note that [14] also defined 

this ratio, but the definition of this ratio is not exactly the same due to different load 

representation. 

The paper [17] defined a two-step conservation rate model for calculating the  

accumulative cost function for the utility of a 6-hour time duration, which was adopted by the 

BC Hydro company [17]. The time variable in paper [58] is a continuous variable instead of a 
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discrete variable in the model in [58]. Also the paper [15] provides an energy consumption 

scheduling problem with a fixed time duration = 6 hours, while our scheduling problem is a 

real-time demand response problem in this chapter. However, the real-time demand response 

system is not a fix-time system. Therefore, we use the same concept, and apply its global 

threshold cost model into the instantaneous cost model in discrete timeslots to make it more 

realistic. 

Let  denote the instantaneous cost of the power provider. Based on the paper [15], 

 can be calculated as  

    (3.9) 

where  is the instantaneous peak load threshold of a specific power provider, which is the 

constant known to the power provider. , , , and  are the power providerÕs preset 

constant parameters by based on its own situation measured in $/kW, $/kW, and $, $. This 

equation shows that the instantaneous operational cost  for the power provider will be a 

linear function of the instantaneous aggregate load , if   is lower than the peak load 

threshold , and  will be an increasing quadratic function of the , if  is higher 

than the peak load threshold . 

Then let  denote the accumulative cost of power provider at timeslot  and is 

defined as in [15] 

   . (3.10) 
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3.4. Total Cost Minimization Problem in RTP Demand Response Program Using Energy 

Consumption Scheduling  

3.4.1 Problem Statement 

In a demand response system, the power provider always seeks to lower its load demand 

during peak time stage. In terms of measurement, the power provider seeks to minimize its PAR 

 in (3.8). To achieve that, the power provider tries to persuade its customers to decrease 

their load consumption from the peak time or shift the load to non-peak time. But to incentivize 

the customers to lower the load consumption during peak time, the power provider employs the 

RTP scheme so that every customer uses the providerÕs real-time power price to adjust the load 

consumption accordingly.  

Assume that all the load demand  for each customer  at timeslot  may be 

schedulable. Assume that at timeslot , the customer  has the ability to automatically assign 

certain tasks to its householdÕs appliances. Then all the appliances can automatically schedule 

the appliancesÕ load based on the tasks that customer has assigned them to accomplish. Then the 

smart home console will have a load demand  known before the beginning of timeslot  for 

each customer.  

In order for the power provider to measure the performance of energy consumption 

scheduling algorithm in terms of reducing the bill of the customers, we introduce the following 

metric to measure the performance. Let  denote the average bill of N customers over  

timeslots. It is calculates as 

.
     (3.11) 
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Since  is the accumulative value of the average bill of N customers over  

timeslots, the above normalization makes more sense than just an accumulative bill over  

timeslots. 

We assume that the energy consumption scheduling algorithm exists, and that it can help 

the customers to make decisions on how to consume the energy request at each timeslot. Assume 

that at each timeslot, the energy consumption scheduling makes decision on oi ( j) . If the load 

demand  is partially consumed as , there will be an instantaneous load remainder 

 delayed for the later consumption scheduling. At  timeslot, customer  may have 

multiple previously accumulated delayed remainders and they are all waiting for consumption 

scheduling. Let  be the accumulated delayed remainders for customer  at  timeslot. 

Then  can be calculated as  

ri ( j ) =

ri ( j −1)+[li ( j )− oi ( j )],

     if  oi ( j ) ≤ li ( j ),  j = 2,3,...;

ri ( j −1)− [oi ( j )− li ( j )],

     if  oi ( j ) > li ( j ),  j = 2,3,...;

li ( j )− oi ( j ),   if   j =1.

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪  

   (3.12) 

Based on this accumulative load remainder, there is a case that the customers want to 

avoid. That is, some of their load requests are kept in the remainder for such relatively long time 

that they donÕt get used. Besides, for the power provider, if the customers put too much load 

requests in the load remainder, it makes it difficult for the power provider to calculate and 

announce the real-time power price. Therefore, the unused part of load request stored in the load 

remainders means some cost for the customers. Let  denote the remainder load cost at 

timeslot  for customer , and it can be calculated as  

ci ( j ) = ! [ri ( j )] ,     (3.13) 
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where  is a function of  in terms of . It means the price function for unused load 

requests. Let  denote the average remainder cost of N customers over  timeslots, and it 

is calculated as 

     (3.14) 

In order to measure the performance of using the energy consumption scheduling 

algorithm to schedule the power consumption, a weighted performance is needed. Let  

denote the accumulative total cost for customer  at  timeslot. It can be calculated as  

.    (3.15) 

Therefore, it can be assumed that all the customers may respond to the RTP price scheme 

with load shifting operation when they find out the price is higher than how much they are 

willing to pay.  

  

Customer’s Total Cost Minimization Problem: 

Objective: 

      (3.16) 

 

3.4.2 Real-time Pricing (RTP) Scheme 

Let  denote the retail power price at timeslot . According to the paper [15],  

is defined by the power provider, either based on the wholesale power market price [14], or 

based on the aggregated load [15]. In practice,  the paper [14] adopted the power price prediction 

methods for the customers to make decisions on scheduling energy consumption. On the other 
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hand, instead of using price prediction, the paper [17] pointed out that for power prediction, no 

matter it is off-peak or peak hour, estimation accuracy is very poor, especially for the off-peak 

with its accurate rate lower than 30% in most months. Therefore, a non-prediction-dependent 

RTP scheme is required for the customers in the demand response program. Based on the paper 

[18], a practical and polynomial real-time power price,  can be calculated as a function of 

the instantaneous aggregated load demand [18],  

     (3.17) 

where  and  are the parameters that defined by the power provider. In general,  is a 

constant and ,  is the instantaneous aggregated load demand in (3.6). To enable the 

power provider to persuade customers to use less power during the peak time, can be 

calculated as  

    (3.18) 

 

Now that the power price is calculated by the power provider based on (3.17), and then 

RTP price information is broadcasted to all the customers at the beginning of each timeslot. 

Based on the price information, customerÕs energy consumption decision  can be 

determined based on optimal strategies to minimize the bill payment .  

Then the problem can be further broken down into customer side and the power provider 

side. Subsection C will illustrate the two parts respectively. 
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3.4.3 Distributed Energy Consumption Scheduling on Bill Minimization 

On the customer side, energy consumption scheduling is responsible for making the 

decision of its own energy consumption at each timeslot. The decision result will impact its bill 

payment individually. Thus all the customerÕs decisions at each timeslot will impact the whole 

distribution systemÕs performance. 

Solving the problem of minimizing customerÕs bill is an optimal process of decision-

making on choosing  over the j  timeslots for customer . Meanwhile, flattening the 

systemÕs overall load demand is a byproduct of this optimal process. 

For each timeslot, the decision of choosing  is made by the customer i  based on the 

real-time power price and a power price threshold. The threshold is dynamically calculated at 

each timeslot based on the RTP, so that it will help the customer to minimize its bill payment. In 

a real-time demand response power system, each customer optimally consumes or schedules its 

load demands  based on the power price of each timeslot using the energy consumption 

scheduling. Each customer minimizes its bill payment calculated in (3.2).  

In order to let the customerÕs energy consumption scheduling to make decisions that will 

benefit the customersÕ bill minimization, we introduce the power price threshold as the (3.19) to 

assist the customers to make decisions on .  

pi
threshold ( j ) = pi

avg( j )       (3.19) 

¥ pi
threshold ( j )  is the threshold of power price that the customer iÕs energy consumption 

scheduling will use to manage all their appliances.  

¥ pi
avg( j )  is the average power price that customer i  has been observed over the j  

timeslots, and it is a customized parameter for customer i .  
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oi ( j )

oi ( j )

oi ( j )
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Remark I: Here we assume that every customer use the same time window to observe the 

average power price pi
avg( j ) , which means that each customer starts to observe RTP price from 

timeslot 1 until timeslot j . 

We develop a strategy based on the threshold defined in (3.19). The idea behind the 

strategy is, if the RTP price is not expensive, each customer seeks to schedule more energy for 

consumption, and if the RTP price is expensive, each customer tends to schedule less energy for 

consumption. Thus the strategy is each customer uses a stationary policy y  to decide how much 

remainder to consume if the p( j ) > pi
threshold ( j ) . Each customer uses a stationary policy x  to 

decide how much remainder to consume if the p( j) > pi
threshold ( j) . Therefore, the decision of 

actually consumed energy at j th  timeslot oi ( j )  can be calculated as  

 

oi ( j ) =
x!li ( j ),!!!!!!!!!!!!!!!if ! p( j ) > pi

threshold ( j );

li ( j ) + y!ri ( j ),!if ! p( j ) " pi
threshold ( j ).

#
$
%

&%
   (3.20) 

where 0 ! x <1 and 0 ! y ! 1.  

From (3.20), the solution to problem in (3.16) is now to find the optimal stationary policy 

(x,y)  in (3.20) that will give the customer the minimized total cost in (3.16). Here we use 

simulation to find out the optimal policies for all the customers. 

3.4.4 Simulation  

3.4.4.1 Simulation Design 

Assume that at every timeslot each customer generates a load request, but the request 

could be zero. Assume every timeslot there is a load request, but the request could be zero. Also 

assume that the amount of each customerÕs load demand follows the same normal distribution as 

seen in Table 3.1. 
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Table 3.1 Stream Table 

Stream Purpose 

1 load requests time is constant and 

requests at each timeslot 

2 load request of a customer follow the 

above normal distribution 

 

Note that all the time in the simulation is integer, marked as timeslots such as 1,2,3, É. 

Here time of 1 means that itÕs the 1st timeslot. Initially, every customer schedules its first load 

request at the beginning of the 1st timeslot and sends the request to the power provider. Assume 

the communication overhead and delay between all the customers and the power provider are 

ignored. Then the power provider updates the real-time power price for the current timeslot after 

receiving the load requests. Finally, each customer makes its own energy consumption decision 

on how much load to consume and how much load to delay at current j th  timeslot. 

 

Fig. 3.2 Flow Chart of Load Request Function 

 

FUNCTION
loadRequest

Each customer uses Normal distribution 
function to generate the amount of the load 

request at the beginning of each timeslot

Return;
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As seen in Fig. 3.2, the flow chart of load request function is at the beginning of each 

timeslot, each customer uses normal distribution function to generate the certain amount of load 

request. The normal distribution functionÕs definition is given next subsection.  

 

FUNCTION
updatePrice

Power provider updates aggregated load request at 
timeslot j

Power provider updates RTP price by using 
(3.17)

Return;

 

Fig. 3.3 Flow Chart of Updated Price Function 

 

As seen in Fig. 3.3, after the load requests are generated by all the customers, the power 

provider aggregates all load requests at current timeslot, and then use the real-time price function 

(3.17) to calculate the power price for the current timeslot and let all the customers know the 

price. 
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Fig. 3.4 Flow Chart of Updated AVGPrice Function 

 

As seen in Fig. 3.4, after the customer receives the real-time power price for the current 

timeslot, it will make the decision on whether the current power price is expensive enough to 

delay the consumption or cheap enough to consume the load request. Therefore, this update 

average price function is called by each customer at each timeslot to determine whether the 

current power price is cheap or not by comparing it with the average power price. 

 

FUNCTION
scheduleEnergy

Update the actual energy consumption and energy 
reminder using (3.20)(3.12)

Return;
 

Fig. 3.5 Flow Chart of Schedule Energy Function 

 

FUNCTION
updateAVGPrice

If the current timeslot j is the first timeslot, then the 
average price is the RTP price; 

else, update the average price using RTP prices from 
timeslot 1 to j

Return;
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As seen in Fig. 3.5, since each customer has the power price of current timeslot and the 

updated average power price, it makes the decision of consuming or delaying load request based 

on equation (3.20) and update the energy remainder based on equation (3.12). The output of the 

simulation is the total cost of all the customers (3.15) at each timeslot, which is the performance 

metric of energy consumption scheduling algorithm. 

 

3.4.4.2 Simulation Input Design 

As seen in Fig. 3.6, let µ  denote the peak load defined by power provider. Let the normal 

distribution N(µ,! 2)  beN(µ / N,(µ / 3N)2) , and this will guarantee the values of 99.7% of 

observations fall in the interval[0,2µ / N] , as seen in Fig. 3.6 [59]. Even though the possibility 

of generating negative number is small, this design still eliminates them by regenerating another 

normal distribution number when it happens. N  is the number of customers within the 

distribution network. As seen in Fig. 3.6, the mean of normal distribution is µ / N  and the 

standard deviation isµ / 3N . 
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Fig. 3.6 Load Requests Following Normal Distribution N(µ / N,(µ / 3N)2)  by Each Customer 

3.4.4.3 Non-peak Input Setup 

The above subsection shows a simulation setup with stable input of load requests , which 

produces a convergent average bill.  

However, in this simulation setup, to make the aggregated input load request less intense, 

we setup a dynamic way of generating normal distribution load request for each customer at each 

timeslot. If setting up input as letting each customer follow a normal distribution of 

N(µ / N,(µ / 3N )2) , it will make the e( j ) = li ( j )
i=1

N

!  in (3.6) stable as high as µ . But in order for 

the e( j )  to fluctuate within[0,µ] , we let the aggregate load requests follow the normal 

distribution of N[µ / 2,(µ / (2* 3))2] . In this way, a random aggregated load requests is generated 

at current timeslot j , which is denoted as ej
rand . Then, the aggregate load requests follow the 

normal distribution means that  ej
rand ! N[µ / 2,(µ / (2* 3))2] .   

Then let each customer generate the load requests based on this random aggregated load 

request. We still use the normal distribution to let each customer generates its load request at 
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each timeslot. But the normal distribution N(µ,! 2)  follows N(ej
rand / N,(ej

rand / 3N)2) . Since 

ej
rand  is a random value of the range[0,µ] , each customer follows a varying normal distribution 

to generate its own load request at different timeslot. In this way, both the aggregated load 

request and the individual load request follow the normal distribution to generate load request at 

each timeslot, as seen in Fig. 3.7. 

 

 

Fig. 3.7 Intermittent Setup-Flow Chart of Load Request Function 

As seen in Fig. 3.8, from 1st timeslot 1 to 1000th timeslot, the aggregated load requests 

fluctuate approximately from above 0 to load peak range.  

 

FUNCTION
loadRequest

Each timeslot generate an aggregated load 
request following normal distribut ion 

Return;

Each customer uses Normal distribution 
function to generate the amount of the load 

request at the beginning of each timeslot 
using the above aggregated load
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Fig. 3.8 Fluctuate Setup- Input Sample of Aggregated Load Request 

Based on this input, the following experiment is subcategorized two setups, based on the 

!  value in equation (3.15), which is the weight value to determine the total cost for the customer, 

with ! = 0.5 and ! = 0.1. Also, we assume that ! [ri ( j )] =10"ri ( j )  in equation (3.13), which is 

linear. 

3.4.4.3.1 Simulation Setup One--! =0.5 

Table 3.2 Simulation Parameters 

Experiment 

Parameters 

Values 

Load Peak 1000kWh 

N 100 

Sim_time 1000 

!  0.5 

!  1E-2 

µ  500kWh 
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Using the set of parameters in Table 3.2, as seen in Fig. 3.9 and Fig. 3.10, they show that 

the total cost based on different x values, the lowest total cost is when x=0 or x=0.1 and y is 

approximately at [0.8, 1.0] area. 

 

 

Fig. 3.9 Total Cost for fixed x=0.5, x=0.6,É x=0.9. 

 

 

Fig. 3.10 Total Cost for fixed x=0, x=0.1,É x=0.4. 
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Fig. 3.11 Total Cost for fixed y=0.5, y=0.9, É, and y=1. 

 

 

Fig. 3.12 Total Cost for fixed y=0.0, y=0.1,É ,and y=0.4. 

 

Fig. 3.11 and Fig. 3.12 show that the total cost based on different y values, and the lowest 

total cost is when y is approximately at [0.5,1.0] area, and the x=0.0. Also in Fig. 3.12, when y = 

0.0, the total cost has the largest values. This means if the load requests are delayed, they will 
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never be used even when the real-time price is cheap. Therefore, the remainder load cost keeps 

growing. 

 

 

Fig. 3.13 Total Cost 

 

As seen in Fig. 3.13, it is seen that the total cost has the largest value when x = 0 and y = 

0, this is because that there is no load requests consumed that the large cost incurred by the 

customers waiting has dominate the total cost. For the smallest value of the total cost is when x = 

0 and y = 1. This means the best policy for customers is not to consume at all when the real-time 

price is expensive and delay them to the next timeslot as a load remainder, then try to consume 

more of the remainder in the next possible cheap timeslot. 

 

3.4.4.3.2 Simulation Setup Two-- ! =0.1 

Using the set of parameters in Table 3.3 and adopting the previous setup, Fig. 3.14 and 

Fig. 3.15 show the total cost based on different x values, the lowest total cost is when x=0 or 
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x=0.1 and y is approximately at [0.8, 1.0] area, but with a lower minimal total cost comparing to 

the previous setup. 

Table 3.3 Simulation Parameters 

Experiment 

Parameters 

Values 

Load Peak 1000kWh 

N 100 

Sim_time 1000 

!  0.1 

!  1E-2 

µ  500kWh 

 

 

 

Fig. 3.14 Total Cost for fixed x=0.5, x=0.6,É x=0.9. 
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Fig. 3.15 Total Cost for fixed x=0, x=0.1,É x=0.4. 

 

 

Fig. 3.16 Total Cost for fixed y=0.5, y=0.9, and y=1. 
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Fig. 3.17 Total Cost for fixed y=0.0, y=0.1,É ,and y=0.4. 

 

Adopting the previous setup, Fig. 3.16 and Fig. 3.17 show that the total cost based on 

different x values, the lowest total cost is when x=0.1 and y is approximately at [0.8, 1.0] area, 

but with a lower minimal total cost comparing to the previous setup. 

 

 

Fig. 3.18 Total Cost 

As seen Fig. 3.18Õs 3D plot, the results of ! =0.1 are similar to the last setup ! =0.5. The 

largest value of total cost is still when x= 0 and y =0, and that is when the customers donÕt 



 76 

consume energy at all. But the smallest value are quite similar, which is when x=0.1 and y =1. 

Therefore, the best policy for the customers for the smallest total cost at this setup is to lower the 

consumption of load requests generated at the current timeslot as 10% when the real-time price is 

expensive and delay them to the next timeslot as a load remainder, then try to consume more of 

the remainder in the next possible cheap timeslot. 

To summarize both the setup in Table 3.2 and Table 3.3, for the aggregated load requestÕs 

average e( j )  is fluctuate within [0, µ ], the best policy is not to consume or lower the 

consumption to approximately as low as 0.1 when the real-time price is expensive and delay 

them to the next timeslot as a load remainder, then try to consume more of the remainder in the 

next possible cheap timeslot.  

Next subsection conducts the simulation experiment of large load request input as a setup. 

 

3.4.4.4 Large Load Request Input 

Since the e( j )  defined in last subsection as the aggregated load fluctuate within [0,µ] , a 

large peak load request input is introduced in this subsection, which make the e( j )  stable at the 

µ  level, and let the µ = Load Peak, as seen in Fig. 3.19. 

3.4.4.4.1 Large Load Request and ! =0.1 

Let every customer generate a load request following the normal distribution 

N(µ / N,(µ / 3N)2)  at each timeslot, where µ  is equal to Load Peak. Load Peak is the parameter 

set by the power provider. Because the timeslot here is considered to be a very small unit time, it 

is assumed that the Load Peak is 1000kWh by the power provider. Also assume that the total 

simulation running time is 1000 timeslots. Assume that there are 100 customers within the power 

providerÕs distribution network. The rest of the experiment parameters are shown in Table 3.4. 
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Table 3.4 Simulation Parameters 

Experiment 

Parameters 

Values 

Load Peak 1000kWh 

N 100 

Sim_time 1000 

!  0.1 

!  1E-2 

µ  1000kWh 

 

As illustrated in Fig. 3.19, from 1st timeslot 1 to 1000th timeslot, the aggregated load 

requests e( j )  maintains closely with of the Load Peak of the power provider. This means that 

the aggregated load requests are quite stable at the peak load level for the power provider 

throughout all timeslots. 

 

 

Fig. 3.19 Large Load Request Setup-Aggregated Load Requests 
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As seen in Fig. 3.20 and Fig. 3.21, they show that the total cost performance based on the 

large peak load requests when α =0.1. Based on different x values the lowest total cost is when 

x=0. 

 

 

Fig. 3.20 Total Cost for fixed x=0.5, x=0.6,É x=0.9 

 

 

Fig. 3.21 Total Cost for fixed x=0, x=0.1,É x=0.4. 
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Fig. 3.22 and Fig. 3.23 show the total cost based on different y values, and when y is 

approximately at the area [0.5,0.9], the total cost has the lowest values. 

 

 

Fig. 3.22 Total Cost for fixed y=0.5, y=0.9, and y=1. 

 

 

Fig. 3.23 Total Cost for fixed y=0.0, y=0.1,É ,and y=0.4. 
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Fig. 3.24 Total Cost 

 

Based on Fig. 3.20 to Fig. 3.23 and the Fig. 3.24Õs 3D plot, it can bee seen that the largest 

value of the total cost is still when x =0 and y=0. But for the smallest total cost is when x is from 

0 and y is approximately at the area [0.5,0.9]. That is to say, when policy is within the (x,y) area, 

the smallest total cost can be found. 

But for each customer, it runs its own energy consumption scheduling algorithm based on 

RTP power price. Given this relatively large and intense aggregated load requests, the power 

provider will impose high RP power price. Consequently, the policy of consuming load 

remainder when real-time price is cheap, which is the y value, moves from previous setup of 1 to 

[0.5,0.9]. 

 

3.4.4.4.2 Simulation Setup Three—Large Load Requests and α =0.5  

The experimental parameters are shown in Table 3.5 with large load requests and =0.5.  !
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As seen in Fig. 3.25 and Fig. 3.26, the total cost based on different x values is 

demonstrated. When x=0, it has the lowest total cost. 

Table 3.5 Simulation Parameters 

Experiment 

Parameters 

Values 

Load Peak 1000kWh 

N 100 

Sim_time 1000 

!  0.5 

η  1E-2 

µ  1000kWh 

 

 

Fig. 3.25 Total Cost for fixed x=0.5, x=0.6,É x=0.9. 
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Fig. 3.26 Total Cost for fixed x=0, x=0.1,É x=0.4. 

 

As seen in Fig. 3.27 and Fig. 3.28, the total cost based on different y values is illustrated. 

But in these two Figures, the lines with different y values are so closely laid out that it is hard to 

tell which y is the lowest. But as seen Fig. 3.26, when y is at the area [0.3,0.6] and x=0, the total 

cost has the lowest value.  
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Fig. 3.27 Total Cost for fixed y=0.5, y=0.9, and y=1. 

 

 

Fig. 3.28 Total Cost for fixed y=0.0, y=0.1,É ,and y=0.4. 
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Fig. 3.29 Total Cost 

 

In Fig. 3.29, it can be seen that the largest value of the total cost is when x =0.9 and y =0, 

which mean every customer consumes 90% of the load request at current timeslot when the real-

time power price is expensive and donÕt consume the load remainder at all even if the real-time 

power price is cheap.  

For the smallest total cost, it is within the area of x=0, y ranges [0.3, 0.6]. It means that 

each customer donÕt consumes load request at current timeslot if the real-time power price is 

expensive and wait to consume them at next cheap timeslot with a remainder using y belongs to 

[0.3, 0.6]. 

 

3.4.4.4.3 Simulation Setup Three—Large Load Requests and ! =0.9 

The simulation experimental parameters are shown in Table 3.6, when =0.9. For this 

 value, the weighted total cost in (3.15) is more preferable to the load consumption bill.  

α

!
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Fig. 3.30 and Fig. 3.31 show the total cost based on different y values. It is when x=0 

total cost has the lowest value and when x =0.9 total cost has the largest value. This means that 

when the customers want to lower the total cost, they need to focus on lower the consumption of 

power when the real-time price is expensive. 

Table 3.6 Simulation Parameters 

Experiment 

Parameters 

Values 

Load Peak 1000kWh 

N 100 

Sim_time 1000 

!  0.9 

!  1E-2 

µ  1000kWh 
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Fig. 3.30 Total Cost for fixed x=0.5, x=0.6,É x=0.9. 

 

 

Fig. 3.31 Total Cost for fixed x=0, x=0.1,É x=0.4. 

 

Fig. 3.32 and Fig 3.33 show the total cost based on different y values. When y=0, the 

total cost has the lowest value. This means that even if the real-time power price is cheap, the 

customers still just consume the load requests generated the current timeslot, and ignore the load 

remainder consumption, in order to lower the total cost.  
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Fig. 3.32 Total Cost for fixed y=0.5, y=0.9, and y=1. 

 

 

Fig. 3.33 Total Cost for fixed y=0.0, y=0.1,É ,and y=0.4. 
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Fig. 3.34 Total Cost 

 

It can be seen in Fig. 3.34 that the largest total cost is when x =0.9 and y ranges within 

[0.1,1]. The smallest total cost is when x =0 and y =0, which means that each customer doesnÕt 

consume energy at all. It is practically unreasonable for the customers to not consume load 

requests at all. The reason to that is when ! =0.9, it makes the bill cost, which is part of the 

weighted total cost (3.15), so dominating that the cost incurred by the delay of energy 

consumption is neglected.  

Remark II: All the above simulation result is based on N=100 customers. But in reality, 

the customersÕ number is dynamic instead of a fixed number. 

3.5 Conclusion & Future Work 

This chapter has proposed a problem of how to minimize the total cost for customers who 

participate in the operation of smart grid by using demand response and real-time pricing scheme. 

Mathematical formation of the system and the problem statement is provided. To solve the 

problem, a new real-time price scheme is proposed, and based on which, the algorithm to find 

total cost minimization is proposed. But in order to find the minimal total cost, the method is to 
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use discrete event simulation to conduct experiments based on different sets of parameters. The 

simulation experiments are divided into two major categories: 1. Average Load Requests Input, 

which means that the aggregated load requests fluctuate within [0, peak load] following Gaussian 

distribution with a mean value of half of the peak load; 2. Large Load Requests Input, which 

means that the aggregated load requests maintains stable at the peak level. In the 1st category, 

since the load requests are not very large, the best policy for the customers is to use as low of 

load request as possible when the real-time price is expensive. When the real-time power price is 

cheap, based on different weighted parameter !  in (3.15), customers may adjust the 

corresponding y value based on the simulation results, in order to get the lowest total cost. In the 

2nd category, the load requests are very large. When !  is lower than 0.5, which means bill cost 

is less or equally important as load remainder cost, the customers can adjust the policy in a 

similar way as in the 1st category. However, when the !  is as high as 0.9 or larger, the billing 

cost dominates the total cost, which means the customer will have to try not to consume load 

request to lower the total cost.  

The solution and the sets of discrete simulation experimental results may potentially lead 

to a new angle of energy consumption scheduling problem. Knowing that current literature does 

not offer much insight in solving the total cost minimization problem using real-time pricing 

scheme, this chapter has filled another blank space on the big canvas that is smart grid. 

Hopefully it will encourage more research to be carried on based on the work presented in this 

chapter. 

Apart from focusing the benefit party as the customers, it would also be an interesting 

journey for future work to consider how to enable the power providers to make the best out of 
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smart grid, that is to say how to maximize its profit while the customers total cost is also 

minimized. 
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4 TOTAL COST MINIMIZATION PROBLEM WITH FAIR DELAY IN SMART GRID 
DISTRIBUTION 

 

4.1 Introduction 

In the last decade, human population increased rapidly. According to the United States 

Census Bureau, world population increased from nearly 6.5 billion in 2005 to almost 7.3 billion 

in 2015 [66]. Along with the growth of world population is the growth of world energy 

consumption. The combined consumption of oil and coal changed from below 7500 million 

tones oil equivalent in 2008 to more than 7500 million tones oil equivalent in 2010 with the 

consumption of coal continues to grow [5]. The large growth of energy consumption during a 

decade can be easily mapped out based on the growth of this two-year period.  

Knowing the non-renewable nature of worldÕs primary energy resources, i.e. oil and coal, 

two choices are available to maintain the sustainability of the world. These choices are the 

development in renewable energy resources and energy conservation. Renewable energies only 

counted towards 3% of the worldÕs primary energy consumption in 2009, and that number 

decreased to 1.8% in 2011 [5], [6]. The shortcomings of the renewable energies, such as noise, 

lack of wind, or low efficiency [3], make it difficult for them to challenge the primary position of 

traditional energy resources. On the other hand, energy conservation can be implemented 

through improving energy efficiency, and smart grid is proven to be a promising research field. 

A smart grid is Òan intelligent electricity network that integrates the actions of all uses 

connected to it and makes use of advanced information, control, and communication 

technologies to save energy, reduce cost and increase reliability and transparencyÓ [9]. The key 
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functionality of a smart grid lies in communication because it is a network between the 

customers and the power provider. This key function is known as demand response. According 

to the Department of Energy (DoE), demand response is Òa tariff or program established to 

motivate changes in electricity usage by end-use customers from their normal consumption 

patterns in response to changes in the price of electricity over the time, or to incentive payments 

designed to induce lower electricity usage at times of high wholesale market prices or when 

system reliability is jeopardizedÓ [1].  

Successful demand response can benefit both energy suppliers and customers. The 

diverse benefits offered by demand response include monetary savings, power efficiency 

improvements, flexibility, and reliability improvements [10], [12]. However, researchers have 

found the adoption rate of demand response programs has been unexpectedly slow [12]. 

According to the paper [12], possible penalties related to contract breach and the limited 

flexibility of current demand response programs together with other factors make customers 

hesitant to adopt demand response programs. This can be a huge barrier to successful demand 

response.  

The interactive nature of demand response and demand response programs determines 

the vital role of customer participation [32]. Without customer participation, demand response 

would not be able to gather enough data to further their developments, demand response 

programs would have nothing to respond to, and smart grid would not be able to improve energy 

efficiency to conserve the resources. Therefore, to attract more customers to participate becomes 

a necessary condition for demand response programs.  

Current demand response programs have two major concepts of customer attraction. 

They are real-time and fairness [32]. The program that incorporates the real-time concept is 
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known as the Real-Time Pricing (RTP) Scheme. This pricing scheme charges customers hourly 

fluctuating prices that Òreflect the real cost of electricity in the whole sale marketÓ [10]. In fact, 

Zhang et al. [41] found that RTP did encourage and enable customers to take a much more active 

role in scheduling their own energy consumptions to save energy, reduce cost, and in return 

benefit the power grid operation. In terms of the fairness concept, current literature suggests 

different definitions, which are discussed in detail in section 4.2 Relate Works [12], [41], [52]. 

Researches done in fairness have mainly been done in the area of Òfair billÓ [12], [60]. Fair bill 

scheme aims at making the bill fare for different customers according to different grouping 

criteria. One shortcoming of the fair bill schemes is that customers might have to wait for a long 

time for their energy request to be answered. However, this waiting time might be too long to 

tolerate for some customers who need timely respond to their load request. Therefore, instead of 

fair bill, this chapter proposes an algorithm based on the concept of fair delay.  

This concept of fair delay for energy consumption scheduling has yet to be discussed in 

the literature. Its aim is to maintain the delays among customers are fair with other within a 

neighborhood area network distribution network in smart grid. As a result, all customers can 

have their energy requests met in a same timely manner, while having their total cost minimized 

at the same time. This algorithm is based on switching between out-of-bound control strategy 

and in-bound cost minimization strategy. The simulation has confirmed that the algorithm 

proposed in this chapter was able to respond promptly while lower the customerÕs total cost.  

The rest of the chapter is organized as below. Section 4.2 discusses the related works. 

Section 4.3 describes the system model in which the problem discussion is conducted. Section 

4.4 discusses total cost minimization problem with fair delay boundary. The solution to the 
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problem is presented in section 4.5. Simulation design and results analysis can be found in 

section 4.6. 

4.2 Related Work 

Using energy consumption scheduling method to study the demand response system has 

been in trend for some time now for the RTP demand response problem [45], [46], [18], [15], 

and [61]. The method provides many RTP solutions to benefit both the customers and the power 

provider in terms of reducing cost and/or lowering the peak demand load, which in turn makes 

the power grid more efficient.  

The study of demand response in smart grid also started paying more attention to fairness 

in recent decades [12], [60], [62], [63], and [41]. Vuppala et al.Õs paper discussed the issue of 

fairness in demand response programs, with an emphasis on fairness principles that customers 

regard highly of [12]. To decide what kind of demand response program is ÒfairÓ, they 

considered the criteria listed as following. For mustÐrun appliances, such as lighting, power price 

will be fixed [12]. On the other hand, power consumed by non-must-run appliances will be 

charged at multi-dimensional prices [12]. User category, income level, and appliance category 

will be taken into consideration when determining the exact power price [12]. 

After almost two decades, fairness now has had its share of in depth discussion among 

the researchers. The discussion of fairness also developed into different branches with the main 

one being fair bill.  

Zhang et al. looked at fair cost in smart homes with microgrid [41]. Sometimes a number 

of smart homes share one microgrid, and this sharing feature would eventually lead to 

competition between homes, especially when local distributed energy resources cannot respond 

to all load requests. In this chapter, fairness was achieved through fair cost and it was defined 
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differently from Vuppala et al.Õs. Instead of coming up with their own definition, the authors 

cited Mathies and GuderganÕs definition, which described fairness as Òthe reasonable, acceptable 

or just judgment of an outcome which the process used to arriveÓ [52]. The paper [41] proposed 

and experimented with a mathematical programming formulation that aims at maintaining the 

fair cost during such competition between smart homes that share the same microgrid. The paper 

[41] utilized lexicographic minimax method with a focus on mixed integer linear programming 

approach to minimize one-day forecasted energy cost for each smart home. The paper [41] 

studied two groups of 10 and 50 smart homes with their distributed energy resource operation 

and output examined. The simulation result in the paper [41] showed a 30% and 24% cost saving 

for the two groups respectively and a fair cost distribution among smart homes in their scenario. 

Baharlouei et al. also introduced their criteria for fairness which was defined as Òthe 

variational distance between normalized billing vector for billing mechanism and normalized 

billing vector for billing mechanismÓ [55]. Based on this fairness index, Baharlouei et al. 

proposed a billing model that aims at not only improve the optimal general system performance, 

but also improve the fairness of the billing system [55]. 

Fan [53] proposed a distributed demand response program and user adaptation in smart 

grid. The proposed program and adaptation was established with a reference to the congestion 

pricing in IP networks. In Kelly et al.Õs [54] work on proportionally fair pricing scheme, it was 

concluded that additive increase and multiplicative decrease rate control can achieve 

proportional fairness. The criterion for fairness was a willingness to pay parameter, which held 

the belief that customers who are willing to pay more should get more. FanÕs work was 

established on top of Kelly et al.Õs work and the simulation showed pricing could indeed help 



 96 

with shifting the load leveling burden from power supplier to the customers while maintaining 

proportional fairness [53]. 

In terms of fairness performance, Jain [64] proposed a matrix that determines if users of a 

system is having a fare share of the resources. In this chapter, we apply the same method to 

measure the fairness in terms of the delay of load requests among all the customers.  

From the above review on current literature, it is established that most of the researches 

have been done in the fair bill area, where as none has been done to study fair delay. Bearing the 

different approaches to achieve fairness in existing literature, this chapter attempts to achieve 

fairness through fair delay. 

4.3 Cost Minimization Problem With Fair Delay in RTP Demand Response Program Using 

Energy Consumption Scheduling 

4.3.1 Delay 

One challenge for the utility to deploy the RTP demand response system is to attract the 

customers to participate in the demand response program. Beside the real-time need from the 

customers, fairness is another important factor to achieve it [32]. Fairness study of the demand 

response system has incorporate a fairness index into the demand response programs 

emphasizing on fair bill between customers [12]. To the best of our knowledge, little attention 

has been paid to fairness delay for the RTP demand response systems.  

Let di ( j )  denote the accumulative delay for customer i  from timeslot 1 to timeslot j . 

For every timeslot j , we can calculate di ( j )  at the beginning of each timeslot using following 

iterative procedure,  
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di ( j ) =

di ( j ! 1)+
oi ( j ) ! li ( j )

li ( j )
,!if ! j = 2,3,4,...,

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!0 " li ( j ) < oi ( j )!;!!

di ( j ! 1)+
li ( j ) ! oi ( j )

li ( j )
,!if ! j = 2,3,4,...,

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!0 " oi ( j )!" li ( j );!

0,!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!j =1.

#

$

%
%
%
%%

&

%
%
%
%
%      (4.1) 

 and oi ( j )  is calculated by customer i Õs energy consumption scheduling decision. 

However, since in the real-time demand response system, customers are not only 

concerned about minimizing the billing payments but also the delay of time that will come with 

scheduling of their energy consumption. Within a power system, each of the customer will 

demand its own desired amount of energy, if the power system can handle the load without step 

into the peak stage, then the power system will let every customer to schedule the energy 

consumption to fulfill the load demand immediately. But if the power system canÕt handle a large 

amount the energy load demand from all the customers, the power provider will need customers 

to delay some energy for later consumption. Therefore, in order for the customers to feel fair, the 

individual delays among all the customers are supposed to be bounded at a predefined level. 

Thus, it is important to deal with the fair delay boundary.  

For ! !i1,i2 !" {1,2,...,N} , where i1  
and i2  are any two customers, their accumulative 

delays di1
( j )  and di2

( j )  can be calculated from (4.1). Let 
di1

( j )

j
 and 

di2
( j )

j
 denote the 

normalized delay for the two customers at timeslot j . Thus the fair delay boundary can be 

defined as follows,  
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di1
( j )

j
!

di2
( j )

j
" #0

for!!$ !i1,i2 !%{1,2,...,N}

,    (4.2) 

where ! 0  is a parameter set by the power provider of demand response system and ! 0 " 0 . In the 

extreme case of ! 0 = 0 , this indicates that every customer has exactly same level of the delay 

during the system. But usually, in practice, ! 0 > 0 . 

4.3.2 Problem Definition 

Customer’s Total Cost Minimization with Fair delay Problem 

Objective: 

minCTot ( j )       (4.3a) 

subject to 

 

di1
( j )

j
!

di2
( j )

j
" #0

!!!!!!!for!$ !i1,i2 %{1,2,...,N}

 .   (4.3b) 

Remark I: Here we assume that each customer is honest about its load demand li ( j )  at each 

timeslot j . This problem is the same bill minimization problem as in (4.1) with a fair delay in 

(4.2). The challenge here is to satisfy the fair delay condition. In order to satisfy the Òfair delayÓ, 

two concepts are introduced in the following subsection: the average normalized delay among all 

the customers and each customerÕs normalized delay deviation from the average normalized 

delay of at each timeslot j . 
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4.4  Solution 

4.4.1 Average Normalized Delay and Delay Deviation 

Let ! ( j )  denotes the average normalized delay at timeslot j , and it is defined as  

! ( j ) =
di ( j )

i=1

N

"
N #j

     (4.4). 

The power provider at each timeslot j  can calculate this average normalized delay.  

Let ! i ( j )  denote the normalized delay deviation between customer i Õs normalized delay 

and the average normalized delay at timeslot j . In addition, ! i ( j )  is defined as follows,  

! i ( j ) =
di ( j )

j
" #( j )       (4.5) 

Lemma 1: 
di1

( j )

j
!

di2
( j )

j
" #0  in (4.2) of the problem (4.4) is the same as the following, 

! i1
( j ) " ! i2

( j ) # ! 0 ,      (4.6) 

where ! i1
( j )  and ! i2

( j )  are the deviations for any two customers i1, i2  at timeslot j . 

Proof:  

! i1
( j ) " ! i2

( j ) = [
di1

( j )

j
" #( j )] " [

di2
( j )

j
" #( j )]

!!!!!!!!!!!!!!!!!!!!!!!=
di1

( j )

j
"

di2
( j )

j
.

 

Thus,   
di1

( j )

j
!

di2
( j )

j
" #0  is equal to (4.3b).     

Therefore the problem (4.3) can also be equally expressed as follows, 

Objective: 

 !
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 minCTot ( j )      (4.7a) 

subject to 

! i1
( j ) " ! i2

( j ) # ! 0 ! for!$ !i1,i2 %{1,2,...,N} .     (4.7b) 

Lemma 2: (4.7b) will be satisfied if both conditions are both met, 

maxi=1
N ! i ( j ) " #( j ) +

! 0

2
    (4.8) 

mini=1
N ! i ( j ) " #( j ) $

! 0

2
    (4.9) 

Proof:  

! i1
( j ) " ! i2

( j ) # maxi=1
N ! i ( j ) " mini=1

N ! i ( j )

!!!!!!!!!!!!!!!!!!!!!!# [$( j ) +
! 0

2
] " [$( j ) "

! 0

2
]

!

!!!!!!!!!!!!!!!!!!!!!= ! 0       !

4.4.2 Delay Deviation Awareness Operations 

Given the above two conditions (4.8) and (4.9), it is possible to bound the fair delay by 

making sure that each customer i Õs deviation is bounded as ! i ( j ) " [#( j ) $
! 0

2
,#( j )+

! 0

2
] . But to 

achieve this, each customer needs to know the average normalized delay each time from the 

power provider before scheduling the consumption of its own energy. This means that every 

customer need to be aware of whole ÒdelayÓ situation of the neighborhood area network grid as 

well as its own delay.  

Then taking advantage of this awareness, the energy consumption scheduling can apply a 

Òfair delayÓ strategy to make decisions on oi ( j )  and reschedule li ( j )  if necessary if it is not 

fully consumed at each timeslot.  

 !
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Fig. 4.1 Back-Off and Carry-On Operations for Fair Delay Bounding 

As seen in Fig. 4.1, each customer is aware of the average normalized delay and its own 

delay deviation of the normalized delay. If the delay deviation δ i ( j ) <π ( j )− δ 0

2
, it means the 

customer i   is leading within the N customers on the normalized delay, then in order to achieve 

the Òfair delayÓ, the customer performs a BACK-OFF operation at timeslot j . On the other hand, 

if the deviation ! i ( j ) > " ( j ) +
! 0

2
, it means that the customer i Õs consumption is falling behind 

among all N customers in terms of the normalized delay, then the customer performs a CARRY-

ON operation. However, if the deviation satisfies! i ( j ) " [#( j ) $
! 0

2
,#( j )+

! 0

2
] , then customer i

performs regular bill payment minimization through the energy consumption scheduling.  

BACK-OFF: if the customer chooses to back-off, it means that customer i  makes the 

decision 

 oi ( j ) = 0  ,      (4.10a) 

and reschedule its li ( j )  by adding it to the ri ( j )  at this timeslot, which ri ( j )  is defined as follows, 

ri ( j ) = ri ( j ! 1)+ li ( j )      (4.10b) 

This means that customer  adjusts its leading normalized delay 
di ( j ! 1)

j ! 1
 more back to the 

average normalized delay
 

di ( j ! 1)+1

j
.  

i
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CARRY-ON: if the customer chooses to carry-on, it means that customer i  makes the 

decision to consume the load demand of this timeslot and some of the remainder load of the 

previous timeslot. Let ! ri ( j )  denote the consumed remainder load by the carry-on operation, 

then 

ri ( j ) = ri ( j ! 1) ! " ri ( j ) ,    (4.11a) 

oi ( j ) = li ( j ) + ! ri ( j ) ,     (4.11b) 

where ! ri ( j )  is the solution of  

! ri ( j )
ri ( j )

= " i ( j )       (4.11c) 

This operation will reduce the normalized delay of customer i  from ! ( j ) +" i ( j )  to ! ( j ) . 

4.4.3 Balanced RTP Price Threshold 

For each timeslot, the decision of choosing oi ( j )  is made by the customer i  based on a 

power price threshold. Let pi
threshold ( j )  be the power price threshold. In a real-time demand 

response power system, each customer optimally consumes or schedules its load demands oi ( j )  

based on the power price of each timeslot using the energy consumption scheduling. Each 

customer minimizes its cost calculated in (3.15).  

In order to let the customerÕs energy consumption scheduling to make decisions that will 

both minimize the bill payment and bound the normalized fair delay of the customers, we 

introduced the power price threshold in a weighted way in (3.14) to assist the customers to make 

decisions on oi ( j ) .  

pi
threshold ( j ) = pi

avg( j ) + ! "pi
feedback( j )     (4.12) 
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¥ pi
threshold ( j )  is the threshold of power price that the customer i Õs energy consumption 

scheduling will use to manage all their appliances.  

¥ pi
avg( j )  is the average power price that customer  has been observed over the j  

timeslots, and it is a customized parameter for customer i .  

¥ pi
feedback( j )  is the power providerÕs feedback parameter from the power provider that 

indicates the delay deviation strategy depending on the neighborhood area network 

situation.  

!  is a predefined parameter by each customer, and ! " [0,1]  and it balances the impact 

between each customerÕs need of minimizing its bill payment and the power providerÕs 

coordination of fair delay. 

4.4.4 Power Provider Feedbacks 

Each timeslot j , j = 2,3,..., the power provider wants to encourage all the customers to 

help the power provider to flatten its peak. This is executed by the RTP power price in (4.12). 

But they can also adopt delay strategy to help customers to bound their delays to be fair.  

Now that when the customerÕs delay deviation ! i ( j ) < " ( j ) #
! 0

2
 or ! i ( j ) > " ( j ) +

! 0

2
, the 

energy consumption scheduling program will perform Back-Off or Carry-On operations to force 

restrict the delays of the customers whose delay is out of fair bound to the ! 0  delay deviation 

level. But at timeslot j  for the customers whose delay deviation
 
! i ( j ) " [#( j ) $

! 0

2
,#( j )+

! 0

2
] , 

we introduce the Differentiated Delay Feedback for each customer based on their own delay 

deviation status usingpi
feedback ( j) . 

Differentiated Delay Feedback (DDF) 

i
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The idea let the power provider compare each customerÕs delay deviation with the 

normalized average delay of all the customers at each timeslot j . If the delay deviation is

! i ( j ) = 0, that means that at timeslot j , customer Õs delay is as fair as the average level of all 

N  customers. Then the power provider doesnÕt give any feedback to impact the customerÕs 

energy consumption scheduling decision. If ! i ( j ) " [#( j ) $
! 0

2
,0) , then the power provider gives 

a feedback pi
feedback( j )  to make the customerÕs price threshold pi

threshold ( j )  higher than it normally 

uses to dissuade customer to contribute more delay of the energy consumption scheduling load 

consumption. If ! i ( j ) " (0,#( j ) +
! 0

2
] , then the power provider should give the opposite feedback 

of pi
feedback( j ) . Therefore, we propose to design the delay-differentiated feedback as follows,  

pi
feedback( j ) =

! " i ( j )
#( j )

$p( j )
.
    (4.13) 

Remark I: In (4.13), if the ! i ( j ) = 0 , the pi
threshold ( j ) = pi

avg( j ) , this means that the 

customer only takes the threshold as the normal cost minimization problem. If 

! i ( j ) " [#( j ) $
! 0

2
,#( j )) , then the pi

threshold ( j ) = pi
avg( j ) + ! [

" #i ( j )
$( j )

%p( j )] , this makes the price 

threshold pi
threshold ( j ) > pi

avg( j ) . The larger pi
threshold ( j )  makes the energy consumption scheduling 

possibly to schedule more energy for consumption at timeslot j . If ! i ( j ) " [#( j ),#( j ) +
! 0

2
] , then 

the situation is the opposite. 

4.4.5 Distributed Energy Consumption Scheduling Algorithm 

The idea of the energy consumption scheduling is to set the energy consumption 

scheduling decision making into 2 stages:  

i
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Stage 1: Fair delay Bounding Stage 

For each customer i , let the energy consumption scheduling program check the delay 

situation based on the current normalized delay and the average delay of all the customers given 

by the power provider. If it runs out of the boundary in (4.8) or (4.9), the energy consumption 

scheduling performs Back-Off or Carry-On operation.  

State 2: Cost Minimization and Fair delay Optimization Stage 

For each customer i , the energy consumption scheduling program uses a stationary 

policy y  to decide how much remainder to consume if the p( j ) ! pi
threshold ( j ) . Each customer 

uses a stationary policy x  to decide how much remainder to consume if the p( j ) > pi
threshold ( j ) . 

Therefore, the decision of actually consumed energy at j  timeslot oi ( j )  can be calculated as  

oi ( j ) =
x!li ( j ),!!!!!!!!!!!!!!!if ! p( j ) > pi

threshold ( j );

li ( j ) + y!ri ( j ) / j ,!if ! p( j ) " pi
threshold ( j ).

#
$
%

&%
    (4.14) 

where 0 ! x <1 and 0 ! y ! 1.  

 

Energy Consumption Scheduling Algorithm: 

Executed by Each Customer i  

// busy-waiting  

1: wait for ! ( j )  from the power provider until 

receiving it; 

// This means that this customer  has delayed much 

less than the average 

2:   if ! i ( j ) < " ( j ) #
! 0

2
 

i
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3:   perform Back-Off operation in (4.10) 

4:   if ! i ( j ) > " ( j ) +
! 0

2
; 

5:   perform Carry-On operation in (4.11) 

6:   if ! i ( j ) " [#( j ) $
! 0

2
,#( j )+

! 0

2
]  

7:   using pi
threshold ( j )  calculated in (4.12) to find the 

optimal policy (x,y)  defined in (4.14). 

4.5 Simulation 

4.5.1 Simulation Design 

Assume every timeslot there is a load request, but the request could be zero. Also assume 

that the amount of each customerÕs load demand follows the same normal distribution.  

Note that the time in the simulation is integer, marked as timeslots such as 1,2,3, É. Here 

time of 1 means that itÕs the 1st timeslot. Initially, every customer schedules its first load request 

at the beginning of the 1st timeslot and sends the request to the power provider. Assume the 

communication overhead and delay between all the customers and the power provider are 

ignored. Then the power provider updates the real-time power price for the current timeslot after 

receiving the load requests. Finally, each customer makes its own energy consumption decision 

on how much load to consume and how much load to delay at current  timeslot using the 

energy consumption scheduling algorithm in last section.  

Table 4.1 Stream Table 

Stream Purpose 

1 load requests time is 

j th
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constant and requests at 

each timeslot 

2 load request of a 

customer follow the 

above normal 

distribution 

 

For the measurement of delay fairness, we borrow the concept of fairness index proposed 

by Jain [64] as, 

![d1( j ),d2( j ),...,dN ( j )] =
( di

i=1

N

" ( j ))2

N # di ( j )2

i=1

N

"
,   (4.15) 

where di ( j )  is the delay for customer i  defined in (4.1), and !  denotes the fairness index of a set 

of N  customersÕ delays. Its result ranges from 
1
N

 and 1, which are the worst case and best case 

respectively. 

4.5.2 Simulation Setup 

Let every customer generate a load request following the normal distribution 

N(µ / N,(µ / 3N)2)  at each timeslot, where µ  is equal to Load Peak. Load Peak is the parameter 

set by the power provider. Because the timeslot here is considered to be a very small unit time, it 

is assumed that the Load Peak is 1000kWh by the power provider. Also assume that the total 

simulation running time is 1000 timeslots. Assume that there are 100 customers within the power 

providerÕs distribution network. This means the aggregated load requests e( j )  maintains stable 

at the peak load level. 
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4.5.2.1 ! =0.1 and ! 0  =0.1  

Table 4.2 Simulation Parameters 

Experiment 

Parameters 

Values 

Load Peak 1000kWh 

N 100 

Sim_time 1000 

!  0.1 

!  1 

! 0  0.1 

µ  1000kWh 

 

The simulation set of parameters are given as shown in Table 4.2, and the weighted 

parameter  is set to 0.1, to emphasize the importance of the load remainderÕs delay cost in 

(3.15). Also, the fair delay boundary is set as =0.1.  

As seen in Fig. 4.2 and Fig. 4.3, they show the total cost plot lines based on different x 

values. When x=0, the total cost has the lowest value, and the other lines plotted by the rest of x 

values are quite close with each other. But as seen in Fig. 4.4 and Fig. 4.5, when x=0.1, the total 

cost is slightly lower than the rest of x values. 

!

! 0
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Fig. 4.2 Total Cost for fixed x=0.5, x=0.6,É x=0.9. 

 

 

Fig. 4.3 Total Cost for fixed x=0, x=0.1,É x=0.4. 

 

As seen in Fig. 4.4 and Fig. 4.5, they show the total cost plot lines based on different y 

values. The results show that all the lines with different y values are overlapping with each other. 

This means that when the y value varies from 0 to 1, the total cost does not change much. This 

result can also be verified in the Fig. 4.2 and Fig. 4.3. 
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Fig. 4.4 Total Cost for fixed y=0.5, y=0.9, É, and y=1. 

 

 

Fig. 4.5 Total Cost for fixed y=0.0, y=0.1, É ,and y=0.4. 
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Fig. 4.6 Total Cost 3D 

 

As seen in Fig. 4.6, it shows that the performance of the total cost in 3D plot, and when 

x=0.0, the total cost has the lowest value. This means that the best policy for the customer to do 

is not to consume any load requests when the real-time power price is expensive. The varying y 

value does not have much impact on the total cost, this means if the real-time power price is 

cheap, the best policy for the customer is consume all the load requests generated at the current 

timeslot and load remainder is consumption is not relevant in terms of lowering the total cost. 

But all the above result is not considering the fairness boundary in delay yet. Therefore, the fair 

delay results are analyzed below.  

As seen in Fig. 4.7 and Fig. 4.8, they show the fair delay performance as several lines 

based on different x values. It is quite obvious that when x=0, the fair delay index is lower than 

0.8, which is much lower than the rest of x values, which are higher than 0.99. This means even 

when x=0, the policy makes the customers have lower total cost, but in terms of the fair delay 

index, the performance is bad. Therefore, even the total cost is the lowest when x=0, the policy is 

not acceptable due to its bad fair delay boundary violation. 
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Fig. 4.7 Fairness Index for fixed x=0.5, x=0.6, É x=0.9. 

 

 

Fig. 4.8 Fairness Index for fixed x=0, x=0.1, É x=0.4. 

 

As seen in Fig. 4.9 and Fig. 4.10, they show the fair delay performance as several lines 

based on different y values. The results show that the varying y values all have the same good 
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performance on fairness delay index, which are over 0.99, except for the case when x =0. This 

means that the y value is not important for making the policy in order to have a high fair delay. 

 

 

Fig. 4.9 Fairness Index for fixed y=0.5, y=0.9,  É, and y=1. 

 

 

Fig. 4.10 Fairness Index for fixed y=0.0, y=0.1,É ,and y=0.4. 
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Fig. 4.11 Fairness Index 3D 

 

As seen Fig. 4.11, it shows that most of the fairness delay performance is as good as 0.99, 

which means that 99% of the customersÕ delays are maintained at the same level. But when the 

x=0, it show the fairness index is somehow below 0.8. It is because even when the real-time 

price is greater than the threshold price, the policy still makes customers to choose to delay all 

the load requests consumption for cheaper price, which break the fair delay boundary. Therefore, 

to best policy for the customers to choose to have the lowest total cost while maintaining the fair 

delay boundary is x=0.1 with all the possible y values. 

4.5.2.2 ! =0.1 and ! 0  =0.5 

This set of simulation parameters is given as shown in Table 4.3. In this setting, the 

weighted parameter  is still set to 0.1, to emphasize the importance of the load remainderÕs 

delay cost in the total cost. Also, the fair delay boundary is set as =0.5, which has a larger 

space for all the customers to bound their delay comparing to the previous simulation setup. 

 

!

! 0
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Table 4.3 Simulation Parameters 

Experiment 

Parameters 

Values 

Load Peak 1000kWh 

N 100 

Sim_time 1000 

!  0.1 

!  1 

! 0  0.5 

µ  1000kWh 

 

 

Fig. 4.12 Total Cost for fixed x=0.5, x=0.6,É x=0.9. 
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Fig. 4.13 Total Cost for fixed x=0, x=0.1,É x=0.4. 

 

As seen in Fig. 4.14 and Fig. 4.15, they show the total cost plot lines based on different y 

values. When y=1.0, this total cost has the lowest value throughout the x-axis. This means that 

when the real-time power price is lower than the threshold price, the best policy for the 

customers is to consume the load requests generated at the current timeslot, as well as the 100% 

of the normalized load remainder.  
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Fig. 4.14 Total Cost for fixed y=0.5, y=0.9, É, and y=1. 

 

 

Fig. 4.15 Total Cost for fixed y=0.0, y=0.1, É ,and y=0.4. 

 

As seen in Fig. 4.16, when x=0.9 and x=0 it has 2 lines with the lowest total cost. x=0.9 

means that the best policy for the customers is to consume 90% percent of the load requests 

generated at the current timeslot if the real-time power price is higher than the threshold price. 

Whereas when x=0, it is best for customers to choose to delay all the load requests generated at 

the current timeslot if the real-time power price is higher than the threshold price. 
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Fig. 4.16 Total Cost 3D 

 

As seen in Fig. 4.17 and Fig. 4.18, they show the fair delay performance as several lines 

based on different x values. It is quite clear that when x=0, the fair delay index is lower than 0.85, 

which is obviously lower than the rest of x values. When x=0.1, the fair delay index is at 

[0.9,0.95]. The x is greater than and equal to 0.2, the fair delay index is higher than 0.95. 
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Fig. 4.17 Fairness Index for fixed x=0.5, x=0.6, É x=0.9. 

 

 

Fig. 4.18 Fairness Index for fixed x=0, x=0.1, É x=0.4. 

 

Fig. 4.19 and Fig. 4.20 show the fair delay performance as several lines based on 

different y values. It is shown that when x is greater than or equal to 0.2, the y value does not 

impact the fair delay index much. 

 



 120 

 

Fig. 4.19 Fairness Index for fixed y=0.5, y=0.9,  É, and y=1. 

 

 

Fig. 4.20 Fairness Index for fixed y=0.0, y=0.1,É ,and y=0.4. 
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Fig. 4.21 Fairness Index 3D 

 

As seen in Fig. 4.21, it shows that the performance of fair delay, and it shows that the 

fairness delay index is as good as 0.95 in most cases. This means 95% of the customersÕ delays 

are maintained at the same level. Only when the x=0, it shows the fairness index is somehow 

below 0.85. The reason behind this result is that even when the real-time price is smaller than the 

threshold price, the customer still chooses to delay for the next timeslot to consume the load 

requests. Therefore, the best policy for the customers to choose from is to have the lowest total 

cost while maintaining the fair delay boundary at x=0.9 and y=1. 

 

4.5.2.3 Fairness Index Comparison With Non-Fair Delay Energy Consumption Scheduling 

In order to show the effectiveness of the fair delay control algorithm, we compare fair 

delay performance of the algorithm in this chapter with the energy consumption scheduling 

algorithm without fair delay control with the same set of simulation parameters listed in Table 

4.2. 
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From Fig. 4.22 it can be seen that the fair delay control algorithm in this chapter has 

effectively improved the fairness of the delay among all the customers with all the x values 

comparing to the energy consumption scheduling algorithm without the fair delay control. The 

algorithm with fair delay control has the fair delay index mostly at the level of 0.99 while the 

algorithm without fair delay control is mostly below 0.8. 

 

 

Fig. 4.22 Fairness Index Comparison Between Energy Scheduling algorithms with and without 

Fair delay control 

 

From Fig. 4.23 it can be seen that the fair delay control algorithm in this chapter has 

effectively improved the fairness of the delay among all the customers with all the y values 

comparing to the energy consumption scheduling algorithm without the fair delay control. The 

algorithm with fair delay control has the fair delay index mostly at the level of 0.99 while the 

algorithm without fair delay control is mostly below 0.4. 
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Fig. 4.23 Fairness Index Comparison Between Energy Scheduling algorithms with and without 

Fair delay control 

 

4.6 Conclusion 

This chapter has studied the total cost minimization problem with fair delay constraint 

using energy consumption scheduling method in smart grid distribution. In order to bound all the 

customersÕ delay within a fairness range, an algorithm is proposed with back-off, carry-on and 

optimize procedures. In order to find the best policy for using this algorithm, discrete event 

simulation is used to find the best policy in order to lower all the customersÕ total cost while 

bounding the customersÕ delays within a fairness range. In order to let the system reflect the 

delay impact, the load requests are setup as high as load peak level. Then the simulation is 

categorized with two setups: 1. Fair delay boundary =0.1; 2. Fair delay boundary =0.5. In 

the 1st simulation setup, the best policy for the customers is to choose is x=0.1 with all the 

possible y values, in order to have the lowest total cost while maintaining the fair delay boundary. 

The best policy of the 2nd simulation setup for the customers is to choose to have the lowest total 

cost while maintaining the fair delay boundary is x=0.9 and y=1. From the above two simulation 

! 0 ! 0
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setups, it is shown that if the fair delay boundary is too tight, the customers will have to consume 

less energy while maintaining the fair delay boundary. Therefore, it is vitally important for the 

power provider to pick up a proper fair delay boundary to let the customers consumes energy at a 

lower total cost and maintaining the fair delay at the same time.  

At last the fair delay index is compared between the algorithm with and without fair 

delay control function. The results showed that the algorithm without fair delay control has a fair 

delay index lower than 0.4, while the algorithm with the fair delay control in this chapter has a 

much better fair delay index performance, which is higher than 0.99. 

However, the limitation on the length of the chapter only allowed a certain amount of 

discussion to be conducted. Future work can look further into fairness problem from fair bill, fair 

delay, or otherwise. 
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5 SCHEDULABLE ENERGY SCHEDULING ALGORITHM USING OPTIMAL 
STOPPING RULE IN SMART GRID DISTRIBUTION 

 

5.1 Introduction 

The relationship between people and energy has been changing rapidly in the past several 

decades. The simple consumption of energy is becoming a more complicated issue because of 

the growing population and revealing shortage of natural resources. Instead of pure consumption, 

energy is now being scheduled, conserved, and even sold back to the power grid by consumers as 

a method to contribute to a more environmentally friendly society.  

The emergence of smart grid is a huge step forward for people to use energy in a more 

efficient manner. A smart grid is known as Òan intelligent electricity network that integrates the 

actions of all uses connected to it and makes use of advanced information, control, and 

communication technologies to save energy, reduce cost and increase reliability and transparencyÓ 

[9]. Smart grid is altering the old-fashioned energy consumption pattern slowly. Because of its 

smart feature, such as flexibility and cost minimization, consumers are now much more educated 

about their own energy consumption pattern. To ensure the world continues to develop in a 

sustainable manner, it is essential for smart grid to be further studied and optimized from various 

angles.  

Among all the researchable topics of smart grid, demand response is one of the most 

promising ones [1]. In fact it has been shown through literature that demand response is capable 

of delivering significant benefits to not only the customers but also the whole society [9]. The 

definition of demand response, as cited from the Department of Energy, is, Òa tariff or program 
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established to motivate changes in electricity usage by end-use customers from their normal 

consumption patterns in response to changes in the price of electricity over the time, or to 

incentive payments designed to induce lower electricity usage at times of high wholesale market 

prices or when system reliability is jeopardizedÓ [1]. What makes it easier for demand response 

to accomplish above-mentioned purposes is energy consumption scheduling.  

energy consumption scheduling is a trendy topic among the researchers. Using energy 

consumption scheduling method offers the opportunity to conquer the real-time and automation 

challenges [14]. In other words, energy consumption scheduling helps with motivating customers 

to change their consumption pattern. In terms of real-time, there are various types of methods 

that target at situations when real-time price is not known before the energy consumption 

scheduling decision is made. One of them is to make RTP price predictions [14]. Customers then 

make energy consumption scheduling decisions based on the prediction. Another method is to 

make believable assumptions of the energy consumption scheduling decisions, which are based 

on other customersÕ load demands and their energy consumption scheduling decisions [57] or the 

power providerÕs cost [15]. Regardless of the various programs that adopts energy consumption 

scheduling method, there is room left for energy consumption scheduling to advance further.  

Optimal stopping rules is an optimization model that minimizes or maximizes solution if 

conditions are satisfied [65]. The paper [17] applied it to the Home Energy Management (HEM) 

using it to optimally schedule all the appliances. It has the advantage to schedule each appliance 

individually, which allows flexibility when peak arrives. It will automatically run some or all the 

household appliances. Another advantage of optimal stopping rule is that apart from being a 

model, it also offers mathematical solutions to the model based on it.  
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In this chapter, optimal stopping rule is combined with energy consumption scheduling to 

achieve cost minimization. Unlike  the paper [17] focusing on scheduling all the appliances 

within the HAN in the smart grid distribution, this chapter is focusing on the customersÕ 

scheduling behavior within the neighborhood area network. Moreover, this chapter also 

considers comfortable level as a constraint for the cost minimization problem and seeks its 

solution.  

The rest of this chapter is be organized into five sections. Related work is in section 5.2. 

The system model built upon optimal stopping rule can be found in section 5.3. Section 5.4 is the 

solution to the problems. Simulation is then conducted in section 5.5. Finally, the chapter 

concludes in section 5.6. 

5.2 Related Work 

Using energy consumption scheduling method to study the demand response system has 

been in trend for some time now for energy consumption scheduling has been widely used in the 

exploration of RTP demand response programs [15], [18], [45], [46], and [61]. The method 

provides many RTP solutions to benefit both the customers and the power provider in terms of 

reducing cost and/or lowering the peak demand load, which in return makes the power grid more 

efficient. Most residential demand response studies are mainly focused on the appliance 

scheduling during the RTP environment. This focus has brought many useful designs of energy 

consumption scheduling techniques into the RTP demand response solution set. 

In the paper [50], the authors looked into a real-time energy consumption scheduling 

algorithm with load uncertainty that aims at bill minimization for individual residential 

customers. The load-scheduling problem was formulated as an optimization problem. The 

researchers adopted an approximate dynamic programming approach to make the computing 
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simpler. They also studied the difference between must-run appliances (such as lighting) and 

controllable appliances that are much more flexible. Instead of assuming the demand response 

algorithm understands customersÕ energy needs perfectly, the algorithm proposed in this chapter 

survives on only some estimates of future demand. Their algorithm combined RTP with inclining 

block rates to balance residential load in order to achieve a low PAR [50]. 

Demand response programs designed in a distributed network have also been discussed. 

The paper [9] proposed a distributed framework for demand response and user adaptation in 

smart grid networks. The author in the paper [9] utilized his knowledge in Internet traffic control 

and transferred the concept of congestion pricing into demand response problem and attempted 

to shift the burden of load leveling from energy provider to the customers through pricing. Based 

on the assumption that customers will definitely adapt to the price signals to maximize their own 

benefits, Fan modeled user preference as a willingness to pay parameter, which was treated as 

same as an indicator of differential quality of service. Although the analysis and simulation in the 

paper both demonstrated the convergence of the proposed algorithm, as Fan himself writes in the 

paper, the model used in this chapter is highly abstract that makes it impractical. In other words, 

regardless of the success of analysis and simulation, FanÕs framework is not practical enough to 

be adapted into industrial application. But the idea of solving demand response issues with 

concept originated from the Internet is quite enlightening and will hopefully come in handy for 

future exploration.  

The paper [17] proposed an opportunistic scheduling scheme based on optimal stopping 

rule as a real-time distributed scheduling algorithm for smart appliancesÕ automation control. 

They assumed that a smart appliance has the ability to automatically schedule its operation based 

on RTP, and that the operation of every appliance in the customerÕs home is independent. Their 
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scheduling scheme focused on reducing customerÕs bill while considering the waiting time that 

the customer has to put up with. Thus Yi et al. [17] assumes that the power price using statistic 

method following uniform or Gaussian distribution. The single load cost minimization problem 

defined in [17] is very similar to the house selling model in [58]. Then Yi et al. [17] extends the 

minimization problem on the single applianceÕs cost minimization to multiple appliances 

scheduling with and without maximum load allowance at each timeslot. 

The following section explores the problem discussed in this chapter and establishes the 

system model. 

5.3 Single Load Demand Cost Minimization Using Optimal Stopping Rule 

5.3.1 System Model 

Assume that there are N  customers {1,2,...,N}  within the power distribution system. 

Assume that time is divided into timeslots, and therefore let timeslot j  denote the time period 

[ j ! t,( j +1)! t) , where j =1,2,..., and ! t  is a unit time per timeslot. 

For each timeslot j =1,2,..., the customer i  may have a load demand, and let li ( j)  

denote the customer i Õs load demand generated at timeslot j . Then at timeslot j  the load 

demand may be consumed at the very timeslot j  or may also be kept waiting and consumed at a 

later timeslot of a lower price.  

Let P(1),P(2),...P( j ),...  denote a sequence of price random variables; thus, let 

p(1), p(2),...,p( j ),...  denote the observations of the sequence of random variables

P(1),P(2),...P( j ),.... Thus, p( j )  means the real-time power price at timeslot j .  

Let j  denote the current timeslot. But how to find the exact timeslot for the load demand 

li ( j )  to be consumed in order to minimize customer's cost is the problem. Noted that if the 
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customer waits for a future timeslot for that load consumption, it may have a lower power price 

later, but then it will pay for the cost of delaying that load demand during the waiting period.  

LetÕs assume there is a scheduling algorithm for each load demand li ( j )  run by each 

customer, based on the input of load demand and RTP price from server. Let n  denote one 

scheduled timeslot for load demand li ( j ) , where n ! j .  

Then the li ( j ) ! p(n) denotes the scheduled bill for load demand li ( j )  if it is consume at 

timeslot n , and (n ! j )"c  denote the delayed cost for load demand li ( j ) . For an arbitrary load 

demand li ( j )  generated at timeslot j  for customer i , we consider two trade-off costs: the 

scheduled bill payment and the delay cost. Thus the total cost of the load demand is expressed as

li ( j ) ! p(n)+ (n" j ) !c , where c is the delay cost per timeslot, which is defined by all customers. 

Now the problem of minimizing the cost means minimizing the above total cost for the load 

demand li ( j ) .  

Let yi , j (n)  denote the reward function for the load demand li ( j )  if it is scheduled nth  to 

timeslot. It be can defined as, 

yi , j (n) = ! ! xi , j (n)+ (n ! j )"c#$ %&,    (5.1) 

where n = j, j +1, j + 2,.... Therefore, this reward is the negation of the total cost of load demand 

li ( j )  if it is scheduled at nth  timeslot.  

To summarize, in order to solve the above single load demand cost minimizing problem, 

finding the optimal timeslot for the single load demand to minimize the total cost is the key 

procedure. Fortunately, optimal stopping rule [58], [65] provides a mathematical model that can 

find the optimal timeslot. The following content introduces how to model this problem in the 

optimal stopping rule model and how to solve it.  
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Let Xi , j (n)  denote the random variable of final bill paymentÕs negation if the load 

demand li ( j )  is scheduled at nth  timeslot. It can be defined as 

Xi, j (n) = ! li ( j )"P(n) .     (5.2) 

Xi , j (n)
  

is a function of the random variable P(n) , and for each n , li ( j )  is a known 

constant value. Let xi , j (n)  denote the observation of Xi , j (n) . Let Yi , j (n)  denote the random 

variable of the rewards. 

Consequently, the equation (1) can be expressed as,  

Yi , j (n) = ! [ Xi , j (n)+ (n ! j )"c] .    (5.3) 

Then we can get yi , j (n) = Yi, j (n) |Xi , j (n)=xi , j (n) . 

The optimal stopping rule model of the cost minimization problem for the single load 

demand li ( j )  can be defined as follows. Let yi , j ( j ) , yi , j ( j +1) , É, yi , j (! )  denote a sequence of 

real valued reward functions. Given a sequence of random variables Xi, j (n) , Xi , j ( j +1) , 

Xi , j ( j + 2), É, assume that their joint distribution is known. Therefore, the optimal stopping rule 

problem is finding the optimal timeslot for the load demand to stop in order to get the maximum 

rewards. Here the load demand li ( j )  continue observing the bill payment and delaying its 

consumption, and here stopping means that the load demand li ( j )  stops delaying and starts to 

consume. For example, this model can be described as an asset-selling problem. If there is a 

house decided to be sold in the market at timeslot j , then the owner can observe all the price 

offers since timeslot j . Then the owner has two options to choose at each timeslot. Option I is 

that the owner can accept the price observation at timeslot  and sell the house. Similar for the 

load demand, the customer can observe the bill payment Xi , j ( j ) = xi , j ( j )  that is needed to pay if 

j
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the load demand is scheduled at timeslot j . Option II is that the owner can delay the selling at 

timeslot j  and observe the future sequence of house prices but with advertising cost of each 

timeslot. Similar to the delay cost of the load demand, the customer can observe future bill 

payments Xi, j ( j +1) = xi , j ( j +1) , Xi , j ( j + 2) = xi , j ( j + 2) , É for as long as the customer wish to 

continuing delay. In general, for eachn = j, j +1, j + 2,... , after observing
 

Xi, j ( j ) = xi , j ( j ) , 

Xi , j ( j +1) = xi , j ( j +1) , É, Xi , j (n) = xi , j (n) , the customer may stop and receive the rewards.  

Let ! n[ xi , j ( j ),xi , j ( j +1),...,xi , j (n)]
 
denote the probability of stopping at each of the 

following observations are observed from timeslot j  to timeslotn , which depends on 

observations ofXi, j ( j ) = xi , j ( j ) , Xi , j ( j +1) = xi , j ( j +1) , É, Xi , j (n) = xi , j (n) . Then a stopping rule 

is defined as a probabilities vector as follows [58], 

! (i, j ,n) = {" j [ xi , j ( j )]," j+1[ xi , j ( j ),xi , j ( j +1)],

!!!!!!!...," n[ xi , j ( j ),xi , j ( j +1),...,xi , j (n)]}
,   (5.4) 

where n ! j . 

Let ni ( j )  denote the ni ( j )th  timeslot that yield the maximum rewards, and at which 

timeslot that stopping occurs, and j ! ni ( j ) ! " , where ni ( j ) = !  if stopping never occurs, 

which means that the load demand is never scheduled for consumption. Moreover, it is 

determined by both the observations Xi, j ( j ) = xi , j ( j ) , Xi , j ( j +1) = xi , j ( j +1) , É, Xi , j (n) = xi , j (n)

and the stopping rule! (i, j ,n) . 

Let ! n[ Xi , j ( j ),...,Xi , j (n)]  denote the random variable of the stopping occurs given a 

sequence of random variables Xi, j ( j ),...,Xi , j (n) . Therefore, given observations xi , j ( j ) , É, and 

xi , j (n) , let ! n denote the probability of ni ( j ) = n , and it is defined as 
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! n[ xi , j ( j ),xi , j ( j +1),...,xi , j (n)]

= P[ni ( j ) =  n | Xi, j ( j ) = xi , j ( j ),

!!!!!!!!!Xi , j ( j +1) = xi , j ( j +1),...,

!!!!!!!!!!!!!!!!!!!!!!!!Xi , j (n) = xi , j (n)]

    (5.5) 

for n = j, j +1,..., and here Pr  stands for probability function. 

Based on the Chapter 1 of [58], ! n can be calculates using ! n  as follows,  

! n[ xi , j ( j ),xi , j ( j +1),...,xi , j (n)]

= [ (1" #k[ xi , j ( j ),xi , j ( j +1),...,xi , j (k)
k= j

n" 1

$ ]

!!!!!!%#n[ xi , j ( j ),xi , j ( j +1),...,xi , j (n)]

  .  (5.6) 

Then optimal stopping rule is the rule that achieves that maximum reward value. Let 

! * (i, j ,n)  denote the optimal stopping rule, and let V[! * (i, j ,n)]  denote the Optimal stopping 

rule reward value by choosing the optimal stopping rule ! * (i, j ,n) , and the reward can be 

calculated as [58], 

V[! * (i, j ,n)] = E[Yi, j (ni ( j ))]

!!!!!= E " n[ Xi , j ( j ),...,Xi , j (n)]#Yn(Xn)
n= j

$

%
,    (5.7) 

for n = j, j +1,..., here E  stands for the mean expectation of the random variable. 

5.3.2 Single Load Request Of A User Cost Minimization Problem Using Optimal Stopping 

Rule 

Therefore, based on (5.3) the maximum reward of the single load request cost 

minimization problem can be defined as 

n= j , j+1,...
maxE[Yi, j (n)]

=
n= j , j+1,...
maxE{ ! [ Xi , j (n)+ (n ! j )"c]}

.    (5.8) 
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Noted that when n = ni ( j ) , the maximum reward is achieved. Based on (5.1), it equals as 

follows, 

n= j , j+1,...
maxE[Yi, j (n)]

=
n= j , j+1,...
minE[P(n)!li ( j ) + (n" j ) !c]

    (5.9) 

We can derive the following theorem based on the Theorem in Chapter 4 of book [58]. 

 

Theorem 1: if { P(n)}  is an i.i.d. process, then the optimal stopping rule which solves the 

single timeslot cost minimization problem in (5.8), exists, and is calculated as  

ni ( j ) = min{n ! j : p(n) " z* }      (5.10) 

where z*  is the unique solution of  

E[z! p( j )]+ =
c

li ( j )
,      (5.11) 

where E[]+  stands for the value is larger than zero. 

The proof of Theorem 1 is given by the theory of optimal stopping rule in the Chapter 4 

of book [58], by transforming (5.2) into their Theorem of Optimal Solution to Housing Selling 

problem (without recall). 

Note that by using this optimal method, the problem of (5.9) is transformed into a price 

threshold problem. By stopping here it means when the real-time pricing is lower than a 

threshold price value, the load demand will be consumed at the timeslot. 

Even though the power price is not a pre-known but mathematically, the statistic 

distribution of the power price should be pre-known, in order to solve the threshold in (5.11).  

If P(n)  is uniformly distributed on [ pa, pb] , then the solution of z*
 can be calculated by 

plug into the solution in [17] as  
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z* =
2(pb ! pa)c

li ( j )
+ pa .    (5.12) 

Remark I: If the real-time power price of each timeslot is following other distributions, such as 

Gaussian distribution, it can also using (5.11) to calculate the threshold to make the stopping 

decision. 

5.4 Customer Cost Minimization Problem Using Optimal Stopping Rule Within 

Comfortable Level 

Since the optimal stopping rule model gives a solution to find the optimal timeslot for 

scheduling each single load demand to minimize its total cost, it can also be designed to solve the 

problem of multiple load demands throughout a day or several days. To achieve this, we can put 

multiple load demands into the delaying status, and check the price threshold for each load 

demand at each timeslot. Assume that there is no instantaneous load cap for each customer. If the 

RTP price is lower than the price thresholds of several load demands, then these load demands 

can stop delaying and start to consume.  

However, the problem is that theoretically it is possible that some of the load demands 

will be kept delaying for a long time so that the customer will not be satisfied with optimal 

stopping rule scheduling results. But in practice the customer cannot let the load demands delay 

unlimitedly to later timeslots. Therefore, in order for customer i  to have a comfortable level of 

power consumption, it needs to satisfy an accepted energy consumption level for the customer to 

be tolerant about the energy consumption delay.  

Let ! Oi  denote the predefined acceptable comfort level of energy consumption of 

customer i  for a day. This is the minimum total load demand that customer i  can be tolerant 

with the delay of load consumption. Assume that each customer is honest about its load demands.  
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Let K  be number of timeslots for a day. Then the current timeslot j  can be expressed as 

j = Kv+u ,     (5.13a) 

where  

u = 0,1,...,K ! 1

v = 0,1,...      (5.13b)
 

Let oi ( j )  denote the actually consumed power load for customer i  during the timeslot j .  

Cost Minimization Problem within Comfortable Level  

Then the problem can be formulated as, 

Objective:  

n= j , j+1,...
minE[ Yi, j (n)!" i ( j )

j=Kv+u

[ K (v+1)+u]#1

$ ]     (5.14a) 

subject to: 

Yi , j (n) = ! [ Xi , j (n)+ (n ! j )c]     (5.14b) 

Xi , j (n) = li ( j )P(n)      (5.14c) 

! i ( j ) =
0!,!!!if !!li ( j ) = 0;

1!,!!!if !!li ( j ) " 0.
#
$
%   

   (5.14d) 

! Oi " oi ( j )
j=Kv+u

[ K (v+1)+u]#1

$ .     (5.14e) 

Assume that each two load demands during the day are independent to each other. That is, 

for ! j1, j2 " { j , j +1,..., j + K #1} , li ( j1)  and li ( j2)  are independent to each other. Since last 

subsection we introduced how to solve single load cost minimization problem using optimal 

stopping rule model. Therefore, for all load demand that is generated by the customer during the 

day, they are put into the delay status and using the optimal stopping rule model to calculate its 
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price thresholds. If the real-time price is higher than their price thresholds, they are kept delaying 

for the lower price to minimize the total cost until they are at ni ( j1)
th  and ni ( j2)th  timeslot.  

Let Si ( j )  denote the set of all the load demands that are scheduled to the timeslot j . It 

can be expressed as, 

Si ( j ) = { li (k) | k ! {1,..., j " 1}

!!!!!!!!!!!!!!and!ni (k) = j}
.    (5.15) 

Let oi ( j )  denote the actually consumed power load for customer i  during the timeslotj . 

Here we assume that there is no maximum constraint of the instantaneous load consumption at 

each timeslot, that is, if multiple load demands are scheduled to consume at current timeslotj , 

then the customer will consume all of them. Thus, oi ( j ) can be calculated as, 

oi ( j ) =

li (k)
k! Si ( j )
" ,!!!!!!!!!!!if !ni ( j ) # j;

li (k)
k! Si ( j )
" + li ( j ),!if !ni ( j ) = j

$

%

&
&

'

&
&

  . (5.16) 

Another challenge of this problem is that if the customer keeps delaying its load 

consumption, it may miss the acceptable comfortable level of energy consumption constraint. 

Therefore, the need for customer to be aware of the how far it is away from missing the 

acceptable comfortable level of energy consumption. 

Let ci , j  denote the comfortable cost per timeslot before the ! Oi  is consumed for every 

individual load demand li ( j )  after it is generated and it can be defined as 

ci , j =
! Oi " oi (k)

k=Kv+u

j

#
K " [ j " (Kv+u)]

.     (5.17) 
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In order to improve the chance of guaranteeing the comfort level of consumption of the 

load demands while the optimal stopping rule scheduling keeps delaying the load demands to 

minimize the total cost. The solution is to integrate this li ( j )  unit comfortable cost into the 

optimal stopping rules model, it means if the customer chooses to delay load demand li ( j )  for 

one timeslot, it not only pays the fixed delay cost each timeslot, but also pays a corresponding 

comfortable cost for the load demand per timeslot. It means that if the customer keeps delay that 

load demand, then there are two costs that each load would pay for.  

By using the model from last subsection. LetXi, j (n) = li ( j )P(n) , and let ci , j
total  denote the 

total cost per timeslot that the customer pays for the load demand li ( j )  each timeslot. Then it can 

be defined as, 

ci , j
total = c+ ci , j .      (5.18) 

Then we can derive to Theorem 2. 

Theorem 2: if { P(n)}  is an i.i.d. process, then the optimal stopping rule which solves the 

single time-slot bill payment minimization problem in (5.9), exists, and is calculated as  

ni ( j ) = min{n ! j : p( j ) " z*} .    (5.19) 

where z*  is the unique solution of  

E[z! p( j )]+ =
c+ ci, j

l i ( j ) .
     (5.20) 

If P(n)  is uniformly distributed on [ pa, pb] , then the solution of z*  can be calculated as 

z* =
2(pb ! pa)(c+ ci , j )

li ( j )
+ pa .    (5.21) 
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Remark II: each customer can apply this modified optimal stopping rule model with 

comfortable delay cost con using solution (5.21) as the threshold for each load demand. If the 

RTP power price is lower than the threshold in (5.21), the customer decision to run the load 

consumption for demand li ( j ) . This method is expected to minimize the cost for customer with 

an acceptable level comfort constraint.  

 

Energy Consumption Scheduling Algorithm 

Using Optimal Stopping Rule: Executed by Each 

Customer i  

// busy-waiting for the real-time price p( j )  

1: wait for p( j )  from the power provider until 

receiving it; 

2:   if ! Oi " oi (k)
k=Kv+u

j

# $ 0  

3:   update the threshold using (5.21) 

4:    make the decision of (5.16) based on (5.21) 

5:   if ! Oi " oi (k)
k=Kv+u

j

# < 0  

6:  update the threshold using (5.12)  

7:   make the decision of (5.16) based on (5.12) 
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5.5 Simulation 

5.5.1 Simulation Design 

Assume that at every timeslot each customer generates a load request, but the request 

could be zero. Assume every timeslot there is a load request, but the request could be zero. Also 

assume that the amount of each customerÕs load demand follows the same normal distribution.  

 

Table 5.1 Stream Table 

Stream Purpose 

1 load requests time is 

constant and requests at 

each timeslot 

2 load request of a 

customer follow the 

above normal 

distribution 

3 Power price follows the 

uniform distribution 

over timeslots 

 

Note that all the time in the simulation is integer, marked as timeslots such as 1,2,3, É. 

Here time of 1 means that itÕs the 1st timeslot. Initially, every customer schedules its first load 

request at the beginning of the 1st timeslot and sends the request to the power provider. Assume 

the communication overhead and delay between all the customers and the power provider are 
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ignored. Then the power provider updates the real-time power price for the current timeslot after 

receiving the load requests. Finally, each customer makes its own energy consumption decision 

on how much load to consume and how much load to delay at current j th  timeslot. 

 

Table 5.2 Simulation Parameters 

Experiment 

Parameters 

Values 

Load Peak 1000kWh 

N 100 

K 1000 

pa  0 

pb  0.1 

! Oi  50% of Load Peak 

µ  1000kWh 

c 0.2 

 

Assume all the customers have the same level of comfortable requirements, which means 

that  is all equal where . Let every customer generate a load request  

following the normal distribution  at each timeslot, where  is equal to Load 

Peak as seen in Table 5.1. Load Peak is the predefined gridÕs load handling status, which is 

constant set by the power provider. Because the timeslot here is considered to be a very small 

unit time, it is safe assumed that the Load Peak is 1000kWh by the power provider. Also assume 

! Oi i =1,2,...,N li ( j )

N(µ / N,(µ / 3N)2) µ
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that the total simulation running time of a day is K=1000 timeslots. Assume that there are 100 

customers within the power providerÕs distribution network. Price random variable  follows 

the uniform distribution . The full set of simulation parameters are shown in 

Table 5.1. 

With the above simulation design and set of parameters, in order to compare the 

performance of two algorithms, we introduce a normalized metric. Let ci
total ( j )  denote the 

normalized total cost for customer i  at timeslot j . It is calculated as 

ci
total ( j ) =

[oi (k)p(k)+ c(k ! m)]
k=1,m" Si (k)

k= j

#
j

,    (5.22) 

where Si (k) is defined in (5.15). 

5.5.2 Total Cost Comparison with Greedy Algorithm 

For the greedy algorithm, intuitively, it consumes the load requests whenever the real-

time power price is lower than the average RTP power price.  

From Fig. 5.1, it is seen that the total cost using the Optimal Stop Rules is much lower 

than of the Greedy algorithm after the 100th timeslot. 

 

P( j )

 P( j ) ! U(pa, pb)
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Fig. 5.1 Total Cost Of Optimal Stop Rules Algorithm And Greedy Energy Scheduling Algorithm 

Throughout 

 

5.5.3 Performance Comparison Based on Different Waiting Costs 

The simulationÕs setup is seen in Table 5.3. The real-time power price still follows the 

uniform distribution  P( j ) ! U(pa, pb) . The comfortable level is 70% of the Load Peak level. 

Load requestÕs normal distribution µ =70%*Load Peak. Therefore, the goal of this simulation 

setup is analyze the performance of total cost (5.22) by varying the parameter of waiting cost per 

timeslot c.  

From Fig. 5.2, it can be seen that the total cost of energy scheduling doesnÕt vary much 

with the increasing of waiting cost changing when using the optimal stopping rules algorithm. 

Especially when the waiting cost c ! 0.7, the total cost of the optimal stopping rules algorithm is 

almost convergent to 0.5. However, the total cost of energy scheduling increases linearly with 

the growing of the waiting cost when using greedy algorithm. 
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Table 5.3 Simulation Parameters 

Experiment 

Parameters 

Values 

Load Peak 1000kWh 

N 100 

K 1000 

pa  0 

pb  0.1 

! Oi  70% of Load Peak*j/N  

µ  1000kWh 

 

 

Fig. 5.2 Total Cost Of Optimal Stopping Rule Algorithm And Greedy Energy Consumption 

Scheduling Algorithm With Different Waiting Cost 
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5.5.4 Performance Comparison Based on Different Load Requests 

The simulationÕs setup is seen in Table 5.4. The real-time power price still follows the 

uniform distribution  P( j ) ! U(pa, pb) . The comfortable level is 70% of the Load Peak level. Let 

the waiting cost per timeslot c=0.2. Therefore, the goal of this simulation setup is analyze the 

performance of total cost (5.22) by varying the parameter of Load requestÕs normal distribution 

µ . 

Table 5.4 Simulation Parameters 

Experiment 

Parameters 

Values 

Load Peak 1000kWh 

N 100 

K 1000 

pa  0 

pb  0.1 

! Oi  70% of Load Peak*j/N  

c  0.2 

 

As seen in Fig. 5.3, the total cost of energy scheduling increases linearly with the 

growing of the load requestÕs parameter µ  when using greedy algorithm. But the total cost of 

using optimal stopping rule is growing non-linearly. After the µ ! 0.9*Peak Load, the total cost 

of using the optimal stop rules algorithm is even slightly smaller than the µ = 0.8*Peak Load. 
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Fig. 5.3 Total Cost Of Optimal Stopping Rule Algorithm And Greedy Energy Consumption 

Scheduling Algorithm With Different Load RequestÕs Parameter 

 

5.5.5 Performance Comparison Based on Different Comfortable Levels 

Table 5.5 Simulation Parameters 

Experiment 

Parameters 

Values 

Load Peak 1000kWh 

N 100 

K 1000 

pa  0 

pb  0.1 

c  0.2 

µ  1000kWh 

 

µ
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The simulationÕs setup is seen in Table 5.5. The real-time power price still follows the 

uniform distribution . Let the waiting cost per timeslot =0.2. Let the parameter 

of Load requestÕs normal distribution =Peak Load. Therefore, the goal of this simulation setup 

is analyze the performance of total cost (5.22) by varying the comfortable level. 

 

 

Fig. 5.4 Total Cost Of The Optimal Stopping Rule Algorithm And Greedy Energy Consumption 

Scheduling Algorithm With Different Comfortable Level 

 

As seen in Fig. 5.4, the total cost of greedy energy scheduling algorithm does not vary 

with the growing of the comfortable level ! Oi . But the total cost of using optimal stopping rule 

has a non-linear growth from 10% of Load Peak*j/N  to 90% of Load Peak*j/N . Therefore, in 

terms of the total cost, the optimal stopping rules energy scheduling has much better 

performance comparing to the greedy algorithm. 

However, it is vital to point out that the optimal stopping rule algorithm has a limitation, 

which is it not always satisfy the comfortable level constraint when ! Oi  is too large. As 

 P( j ) ! U(pa, pb) c

µ
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! Oi = 70%*  Load Peak*j/N , the actual total consumed energy for a customer at the end of the 

day li ( j )
j=1

K

!  is 71%* Load Peak*j/N , which meet the comfortable level constraint. But when 

! Oi = 80%*  Load Peak*j/N  and ! Oi = 90%*  Load Peak*j/N , the actual total consumed 

energy loads for a customer for a day are 76.1%* Load Peak*j/N  and 78.8%* Load Peak*j/N . 

Whereas, the greedy algorithm still meets the comfortable level, when ! Oi = 80%*  Load 

Peak*j/N  and ! Oi = 90%*  Load Peak*j/N . 

5.6 Conclusion 

This paper studies the cost minimization problem for all customers within a 

neighborhood area network. First, it models the single load request cost minimization problem 

with the Optimal Stopping Rule method. Thus, a mathematical solution of the optimal result is 

given by optimal stopping rule deduction. Second, we define the cost minimization problem with 

a comfortable level constraint. An optimal stopping rule based energy consumption scheduling 

algorithm is proposed. Finally, the simulation results show that the proposed algorithm has much 

better performance in terms of the total cost comparing with a greedy based energy scheduling 

algorithm. 

Because of the length restriction of this paper, some future work could not be included. 

For example, two other possible comparison could be as following. Strategy I: use greedy 

strategy to satisfy the ! Oi   since the beginning of the time until and then using regular optimal 

stopping rule in (5.12) to schedule the load demand. Strategy II: use greedy strategy to satisfy the 

! Oi  soon after the day starts until the ! Oi  constraint is satisfied, the rest of the time use regular 

optimal stopping rule in (5.12) to schedule the load demand. 
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6 CONCLUSION & FUTURE WORK 

How to consume energy in a more efficient manner has never been studied more 

vigorously by the researchers. In smart grid, successful demand response has a large impact on 

the success of smart grid. As a result, the importance of customer participation has been raised to 

a whole new level. No one would question the fact that customers would always respond to a 

smaller energy bill. Therefore, if a program can minimize the energy cost for customers, then it 

will ultimately benefit the whole smart grid and every user that is connected to it.  

This dissertation studies three problems: real-time demand response in smart grid 

distribution using energy consumption scheduling, fair delay in energy consumption scheduling 

demand response problem in relation to cost minimization, and customer cost minimization 

problem using energy consumption scheduling with Optimal Stopping Rules in RTP demand 

response program. All of these problems are yet to be studied in the academia. Chapter 3 

proposes a real-time demand response system with its energy consumption scheduling algorithm 

that intends to solve RTPÕs total cost minimization problem. This problem has yet to be 

discussed especially in a neighborhood area network level. The simulation results confirm that 

the solution offered achieved total cost minimization while considering the customers as an 

entity in the neighborhood area network. In Chapter 4, fairness is discussed and explored in 

terms of fair delay, instead of the existing fair bill approach. The algorithm proposed focuses on 

how to make the waiting time fair so that all customers can have their energy load requests met 

in a relatively reasonable time frame while minimizing the cost for their energy consumption. 

Chapter 5 aims at solving the cost minimization problem through the optimal stopping rule 
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approach. The discussion takes into consideration of the character of neighborhood area network, 

which is one energy provider to multiple customers. Simulation results demonstrate the 

advantages of the proposed energy consumption scheduling algorithm with optimal stopping rule. 

The algorithm solutions proposed can effectively solve the discussed problems as shown 

through the success of computer simulations in Chapters 3, 4 and 5. The proposed solutions, 

when applied to the industry, will bring in more customers to participate in demand response 

programs and smart grid. The flourish of smart grid participation will for sure push smart grid 

forward and bring forth more technological advancements to make the grid more effective.  

It is also important to be aware of the fact that the proposed solutions were successful 

when tested by simulations because they were constrained by a number of assumptions. However, 

in the everyday production at the power plant, constrains must be overcome for it to become 

compatible with the current systems. For example, both Chapters 3 and 4 model the energy 

consumption scheduling problem with a mathematical approach, and then adopt simulation as a 

method to reach the optimal result. In practice application, different sets of parameters should be 

implemented to reach the best results. Similarly, in Chapter 5, optimal stopping rule brings its 

own limitation to the dissertation for it assumes that RTP price is following some statistical 

distribution, otherwise the mathematical solution would not be solvable in deduction. Regardless 

of the mentioned limitations, the solutions provided in this dissertation still have their own 

advantages and benefits.  

In addition, while we value the customers, the benefits of power providerÕs should not be 

neglected as well for it is also an important participant of smart grid and demand response. 

Future work could look at the possible programs that aim at maximizing the power providerÕs 

profit or minimizing the operational cost while using the same energy consumption scheduling 
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model and simulation study. Both of the above-mentioned problems may take fair delay into 

consideration, as well. Moreover, it is plausible to use the optimal stopping rule model as another 

approach to offer a mathematical solution.  
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