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ABSTRACT

The world has beeona fast track of industrial development thanks to human activities.

On the back of the same coin is the fact that people are consuming more and more energy to
support the fagpaced development. Studies have pointed out an increasing consumption on
traditional, nonrenewable energies such as coal and oil, while the application of renewable
energies, such as wind power and solar power, are still quite far away from mass application
because of various restraingherefore, i is essentiato search for detter way for people to
consume energy, especially electricity since it is a necessary-@sgregnergy and it is
overwhelmingly generated with naenewable resources.

Researches about smart grid have been quite fruitful with demand response being the
most promising research area. A large number of previous studies have been done in the area of
reakttime pricing schemes and fairness in bill and cost for theses schemes, timeetdmand
response using energy consumption scheduling algorithdhsot dtract much attention until
recently because die twoway commuication capacity of smart grahd fair delay problem of
the energy schedulindilso, using optimal stopping rule to model these problems has yet to be
studied. Solution to these problems Wiessentially makedemand responsprogram more
flexible or even smart grid participation a more attractive choice to customers.

This dissertatiorlooks at three problems. The first problem is the cost minimization
problem with reatime demand responsesing energy consumption scheduling modeling in a
neighborhood area networkVe simulate this problemvith discrete event simulatiowith

different sets of parameters, apibvide theresultsanalysisunderseveralcircumstance The



second problem explasg¢he importance of fairness tarms of delayA formal conceptof delay

is definedusing the energy schedulimgodel, andtien the problem is formed based anost
minimization problem with a fairness boundary constraint. The proposed algorithm s$mves t
cost minimization while bounding the detagf all customersThe simulation results show that

the algorithm with fair delay has much better performance than the algorithm without fair delay
in terms of fairness index metritn the third problem, we agt the optimal stopping rule
method to model the energy consumption scheduling problem. Then a cost minimization
problem with comfortable delay igresented,and anoptimal stopping rulebasedenergy
consumption schedulinglgorithm is proposed to solvéi$ probem. The simulation results
showthat theoptimal stopping rulalgorithm hasetter performance in terms total cost tham

greedy algorithm while satisfying the comfortable level constraint.
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1 INTRODUCTION

1.1 Motivation

The world is developing fast. In the ladecade, due to the fast growtth human
population, the amount of energy consumption has increased rapidly. What also went up together
with the number of population was the price of fossil fy2]JsAs Lior wrote in his 2012 report
[2], energy resources and consumption are Oimmediately related to environmental quality and
other vital resources such as water and fodt@.scarcity othe fossil fuels, in return, pushes
the price to a higher level.o most countries, a stable natioealonomy is the cornerstone of
steady and déalthy development. Thereford, is undeniably important for théndustry to
maintain a low energy bill fomdustrial commercialand domestielectricityconsumptions.

Apart from economic issuesnvironmentatonservation is yet another reason to work on
the energy consumption problem. Although the research of renewable ensugiesas wind
geothermaland sdar power,have made some impressive breakthroughs, it is admittedly still
quite far away for renewable energies to be widely applied to the world as a replacement for
traditional energy generation resoultmecause of reasons such as noise, lack of winéhvo
efficiency [3]. In the paper on optimization problem of O@m® buildings, research@minted
out sometimes Othe availatlilof a specific resource depends on the specific season and varies
during the day@]. In fact, inLiorOs latest repsrbn the present situation of sustainable energy
developmentthe combined energy production of all renewable energies only counted towards 3%

of the worldOs primary energy consumption in 2009, and that number ditoeh 856 in 2011



[2]. The consumption of fossil fuels, such as coal and aml the contrary, has been rising
continuously.

In 2010, oilwasstill the dominating fuel for world primary energy consumption with a
33.6% shard5]. On the other hand:oal also ocqpied a 29.1%share in 2010Regardless of
minor fluctuations in world energy consumptiompgly by adding the twmumbers together, as
much as 62% of world primary energy consumption can be located into the category of fossil
fuel consumption5]. Not only have fossil fuels been the dominant fuel, tisemsumption
amounthas been growing throughoy¢ars as wellThe combinecconsumptio changed from
below 7500 milliontonesoil equivalent in 2008 to more than 7500 millimmesoil equivalent in
2010 with the consumption of coal continues to gr¢sy. The situation, therefore, can be
described as growing consumption versus limited resérgethen of toppriority for people to
preserve fossil fuels as much as possilitl replacement becomes available.

Environmenta pollutions have also becoena confronting challenge itast decade
According to the OLiving Planet IndexO and OEcological FootprintO, we seem to be Orunning ou
of environment much faster than out of resour¢gs{5].

The environmental pollution concermogether with theconservation of fuels and
economicconcernall point to the directiorthat human race neeal more efficient way to
consume energylost countries in the wial have started ongoing researches on energy cost and
pollution reduction[3]. In the fruitful results of these remehes, smamgrid is by farthe most

promisingone
1.2 Current Power Grid Issues and Smart Grid

The dectrical power grid has contributggeatlyto our daily life and industry. Currently,

however, the power grid system has many isswbgch mustbe resolved. Fits morevoltage



sags, blackouts, and overloads haveurredin the past decade than over the past 40 \J&hrs
Secondas the population ¢ has increased, the currgntd isbecomingold and worn oytthus
adding new appliances into custof@enouses and buildings ga/moreinstability to the current
power grid[7] . Third,the current electrical network contributes greatly to carbon emissions. The
United StatesO power system alone produces 40%natiatiwide carbon emissiof8y.

Considering both economic and environmental interests, changes must be made to such
an unstable and iffecient system. It requires reliability, scalability, manageability, and
extensibility, but also should be interoperable, secure, andeffestive. This electric
infrastructure is calledSmart GridO.

A smart grid is Oan intelligent electricity netwdhiat integrates the actions of all uses
connected to it and makes use of advanced information, control, and communication
technologies to save energy, reduce cost and increase reliability and transp@jeiayQeting
at theseissuegnakessmart gridan allyof both the earth and the community fact, as Fuselli et
al. stated in their paper, smart grid aligns the interestlettric utilities, consumers and
environmentalis®Qll at once[3]. Furthermore, wh the help of smart grid, electricity supply
industry has been able to make a lot of improvements. Fonagstthe philosophy of operation
changed fronmQo supply all the required demand whenever o€tar€he system will be most
efficient if fluctuations in demand is kept as small as posSjhl.

The new philosophgan be fully addressed when smart grids reach their 100% potential
for they will be able to intelligently address all the custo@engrgy needs without pressuring
the grid andcausedamage. The realization of this goal will then reinforce the relialofitthe
electricity system since a perfect balance between the supply and the load requests is what makes

a system reliablfl0]. The improved energy efficiency can alseea lot of energy. After all, Oa



Joule saved is worth significantly more than a Joule earbed@ysét takes much more than 1J
of energy to generate 1J of powWé}. Moreover, the flexibility of smart grid also makes it quite
favorable becausié can be adapted to a largariety of grid environments that varies from micro
scenarios (i.e. individual houses) to large scale systemse(iergy generation and distribution
plants) [3]. With suchreliability, scalability, manageabilifyextensibility, and otherbeneficial
characteristics of smart grid(&g. 1.1 the confronting challenges the world faces, i.e. the

decrease of fossil fuels, increasing prices, and pollution, will slowly fade [@d/py

Reliability
Interoperable
Cost E! ective

Manageability

Fig. 1.1 Smart Grid Characteristi¢g]

Scalability

Having said that, it is not easy meaintain a perfect balance of supply and load request.
The possible rapid changes of batipply and load request levels are influential factors to the
balance, no matter if they are caused by various outages or sudden load [I@ngecording

to the literature, demand side response, whichsis lahown as demand responsethe cheaper



resource that not only capable of operating the system, but also in accorddnt¢keewiew

philosophy[10].
1.3 Demand Response and Issues

Demand responsprogramsare defined similarly by variousesearchersyet they all
slightly differ from one andter. For instance, Vuppala definetbmand respongarograms as
Qvarious voluntary schemes offered by energy utility and distribution companies to their
customers for curtailing their energy usage, particularly during periods oflquesdix[12].
Albadi@ definition fordemand response Qhe changes in ettric usage by endse customers
from their normal consumption patterns in response to changes in the price of electricity over
timeO[10]. In this dissertationthe defition of demand responsstes the one provided by the
U.S. Department of EnergyDoE), which describe demand responsas G tariff or program
established to motivatehanges in electricity usage by euse customers from their normal
consumption patternsn response to changes in the price of electricity over the time, or to
incentive payments designed to induce lower electricity usage at times of high wholesale market
prices or when system reliability is jeopardized Unlike Vuppald3 definition which
emphasize®n voluntary participation from customers, the definition givenrAliyadi focuses
more on the prpose ofdemand respons&hich is toencourageand motivate the customers to
alter their consumption patterim response to the change of pricBhe DoE definition
summarizeshese two important features @émand responsand on top of thatalso outines
the common method to motivate customers, which is through monetary inceRinaty, it
evaluatesiemand responses a method that saves customers a lot of dollaratathé same time

ensures the reliability of the energy generating sys@asedon what is included inDoE®



definition, it appears to be a very well roundeonmaryof all the important features demand
response

Demand respondeas many advantages thahbét both energy suppliers acdstomers.
The diverse benefits offered lmWemand responsmclude monetary savings, power efficiency
improvements, flexibility, and relialty improvements[10], [12]. A detiled illustration of
various demand responseenefits can be found in ChapterUiterature Review(Fig. 2.15)
Regardless of the convenience and improvenasitsand respong®s to offerresearcherbave
found the adoption rate demand responggograns has been unexpectedly slf&]. Vuppala
et al@ papef12] shined some light into the leadinguses. One of the reasas that customers
become hesitant when they find out about penalties related to contract breach. In addition, the
unpredictable nature of peak load duration is not@sjly encouraging as wellirially, the fact
that even if cudmers participate idemand responggogramshey still have to pay high prices
for mustrun services, such as lightirduring peak hoursnakes the advantages démand
responsgrograms less impressive.

Demand responsgrograms, as discussed, have hpgéentials that may bring current
smart grid to the next level and benefit the worlcdaole. However, the interactive nature of
demand responsesquires much more input than the effort jakt researcherslt is the
involvement of endise customers #h can eventually pusdemand responsirward. Their
participation will generate data that are crucial for the advancement and debugdemanfd
responserograms and even smart griVithout them,DemandResponserograms will have
nothing to respondot let alone make the grid smarter or make the world greener. Theitfore,
becomes rgent fordemand responsprograms to become attractive enoughattract more

participants.



Demand respons@rograms can be categorized into two groups: incentive based
programs (IBP) and price based programs (PBB). In IBP, participants receive credits or
monetary rebatesfor their participation indemand respons@rograns, whereas inPBP
participants do not receive any rebate but are able to shift the load management to smart meters
that have the automation functionality, @ren become a power supplier by selling theiraext
load back to the power grid.

PBP can be further divided mffive categories: Time of Udericing (TOUP) Ciritical
Peak PricingCPP) Extreme Day Critical Peak Pricing, Extreme Day Pricing, and Real Time
Pricing (RTP)[10]. ThesePBP programs all aim at flatten the demand curve by offering a higher
price during peak hours and lower price atpgak hourg10], yet they offer differenper unit
conuimption prices at different time blocks of the dayUP rates is the most commonly
implemented PBP program. It offego time blocks in the simplest model, which are peak and
off-peak rates. The most efficient PBP program, even the most effdegnandresponse
program is RTP programas a large number @conomistdelieve[13]. Not only will RTP be
reducing expenditures for end users, but &sal to economic and environmental advantages
[14].

As implied by its name, RTBrograns charge custoers hourly fluctuating prices that
Oreflect the real cost of electricity in the whole sale mafkdéiOUsually the programs inform
customers about the prices on a CatesadO or OheatneadO basiThis characteristic of RTP
leads economists to the conclusion that RTP programs fit for competitive electricity markets and
should be paid more attention pglicymakers[15]. In fact, Zhang et al16] found that RTP,

and otherdemand respongm@ograms, did encouragand enable customers to take a much more



active role in scheduling their own energy consumptions to save energy, redycandost

return benefit the power grid operation.

1.4 Energy Consumption Scheduling and Fair Delay

After the publication of Albadiand EtSaadan{@ paper, smart grid has had more
developments and advancemeasa result ofhe vigorousstudes done byesearchersThanks
to current available RTRBlike schemes, each and every customer within the smart grid now has
the opportunity to yhamically schedule its loads at each tinvost of the scheduling at
customersO end is performed by é#mergy consumption schedulirgystem. The energy
consumption schedulingystem can be as simple as a single smart mekech is programmed
to start,suspend, resunmend stop one or many smart applianjdég. On top of controllingand
monitoring the smart devices, thenergy consumption schedulisgstem also coordinates the
communication betwen appliances and the power suppl&rgraph illustration of theenergy
consumption schedulingystemis presented in the Introduction section of Chaptdt & also
important to realize that the available schemes are all performing fragments of RTPOs
functionality after all. Therefore, RTP is still in need in order to largely improve the efficiency of
smart grid. But the challenge of RTP, that is the fact the customers might not be able to know the
future power price, remains.

In this dissertation,algorithm aiming atminimizing energy cost forcustomersis
proposed.The algorithmadops energy consumption schedulirand optimal stopping rule
respectivelyto try and solve the cost minimization problefle energy consumption scheduling
algorithm isdisaussed in aneighborhood area netwotkvel. In addition,the approachwith

optimal stopping rul@lso consides the comfortable level of delay as a variation.



Fairness is another subpic ofdemand responéks that has been vigorously researched in
past yars. Vuppala et al.Os papH5] looked into the definition of fairness. Faemand
responseoarticipants, the lack of fairness features mad@wand responggograms much less
attractive.In fact, having understood the importance of having as many participants as possible
to get involved withdemand responssthe key to future advancementippala et al. explored
the definitionand criteriaof a fair demand respons@hey proposed a fairnegscorporated
pricing model and compared it agsi flat rate schemes and pricesed schemes. Their
simulation results supported their expectation that their model achieved better fairness than the
other models for it not only flaahed the demand curvieut also wasable to create a wiwin
situation for both customers and power provider.

The pricebased foundation of Vuppdascheme puts it under the category of fair bill.
However, fair bill is not the only way to achieve fairness. In this dissertagangdélayis
explored and discussed as another option to offer fairness to the custbineekey idea is to
avoid unfair delays during peak houasd keep delays fairly distributed among consunigrs
dissertationproposes an energy consumption schecibased algorithm to realize the abeve
mentioned goal.

The rest of this dissertatias organized as followsChapter Il reviews a collection of
current literatures that are related to the topics discussed in this dieseaiati highlight the
opportunties to contribute to the area. Reahe demand responsia smart grid distribution
using energy consumption schedulimgethodologyis explored and thoroughly discussed in
Chapter Il In Chapter 1V, fairness in the form of fair deleystudied to furthe engage the
customerswith demand responsnd smart gridFollowing that, Chapter $tudies angbrovides

the solution to customer cost minimization problem usemgrgy consumption schedulimgth



optimal stopping rules in RT&emand respong@ogram. Fnally, this dissertatioconclude in
Chapter VY, with a summary ofthis dissertationand an outline for possible future work

directions.
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2 LITERATURE REVIEW

2.1 Power Grid Overview

Power grid has changed quitéo&in the last couple of decadbscaise of technological
advancementis both industries and academ|d$]. Although power grids are getting OsmarterO,
the basic function of grids never changed. Their main function is still gengee&tricity and
supporting energy consumption. Understanding the way a traditional power grid functions is still
quite impotant forresearchersvho are dedicatedtaccelerate the evolvement of power grids
andmake them OsmarterO

An electrical grid sstem has four main elements. They are electricity generation plants,
transmission substations, distribution substations, and end kiger2.1 is a graphic overview of
an electrical grid systerf15]. As shownin the figure as it moves downward, more elements
start to appear, which represents the service structure of a power plant vesineaghe plant

supports the energy consumption of a large number of customersO.
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An important part of power grid Supervisory Control And Data AcquisitidiSCADA).
SCADA systems are known for their diger functionalities that include re@ine monitoring,
logging/archiving, report generation, and automation for smart [§ddl Because of their
function set, SCADA systems are widely used to monitor and control industrial processes. In the
U.S., SCADA systems were developed among power delivery systems, and have already been in
use for five decaded o date many such advanced systems and their applications have been
developed worldwide.

In the past 10 years, an interest in improving the national power grids to make them
OsmartO and productive has croppedThjs means, closed, isolated, and single -bseed
architectures will be changed into interlinked, standardized systems that support new

functionalities, and they are also user friendly and cost efficient. SCADA being an important
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feature of powegrid will be required to become more robust and sefturdhe sake of the smart
grid. Gao et al. studied the SCADA communication and security issues in their 201#20aper

Gao et al.[20] started their paper with a detailed overview of the functionalities of
SCADAOSs. As mentioned, SCADAOs main functigeminclude monitoring, logging/archiving,
report generation, and automation. In addition to these functions, SCADA is also features access
control, multimedia interface, trending, and alarm handling. These functions are explained below
and shown graphidlg in Fig. 2.2

Access control: users are allocated among groups that have defined read/write access
privileges to the process parameters in the system and often to specific product funcficfjality

Multimedia interface: multimedia interface supports multiple screehghwcan display
combinations of synoptic diagrams and &:4].

Trending: most of the SCADA products provide trending facilities, and one can use it to
summarize the esomon capabilities in a chart or a figUfe3].

Alarm handling: alarm handling is based upon limit and status checking, and it is
performed centrally in the data serv§t8]. In other words, the information only exists ane
place, all users see the same status (e.g., the acknowledgement), and multiple alarm priority
levels (in general many more than three levels) are supported. It is usually possible to group
alarms and to handle these as aggregatienalls can be gemated, and predefined actions can
be executed automatically in response to alarm conditions.

Logging/archiving: logging can be described as the medarm storage of data on a
disk, and archiving can be described as the-tengm storage of data eithen@ disk or on
another permanent storage medi{fi]. Logging is typically performed on a cyclic basis. In

other words, once a certain file size, period, or number of points is reached, the data are
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overwritten[19]. Logging of data can be performed at a set frequency, or it can be initiated only
if the value changes or if a specific predefined eventirgcd.ogged data can be transferred to an
archive once the log is full. The logged data is time stamped and can be filtered when viewed by
a user. The logging of user actions is, in general, performed together with either a user ID or
station ID.

Report geeration: one can send reports by using Structured Query Language (SQL) type
queries to the archive, retaine database, or lo¢$9].

Automation: many of the products allow actions to be triggered automatically by events

[19].

Users have
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Access
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@g SQL
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\ / N /
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common
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chart or figure

Fig. 2.2 SCADA Functionality]20]
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SCADA systems have been evolving since they were dea@be papej21] summarized
that distributedarchitecture and multimedia are two dominate techniques that would influence
the SCADA systems. The papHmM] reviewed that SCADA wa adopting Web Technology,
ActiveX, and Java in the products and alsopdith object linking and embéidhg for process
control as a means of communication between cliedtsgrver modules. The pag2g] argued
that the future SCADA is not a staatbne system, but rather, it is incorporated with a deep level
implementation of information flows within the substation system featuring the advanced
communication technologse

Recent SCADA systems have shown a feature that many new technologies have applied
into systems to make them more fBale, productive, robust, and secure. For example, those
new technologies include advanced systems suBICADA systems based on Imet[23]-[25],
Intranetbased SCADA26], webbased SCADA?27], industrial Ethernebased SCADA?28],
web-based SBDA display sysem via Internef29], and so forth.

In order to have a better understanding of the power grid, or even smarthgrid,
researchers analyzed the structure of the SCADA system as well.

The traditional SCADA system is ogposed of a central host computer and a number of
remoteterminal units(RTUs), the operator terminals, and/or programmable logic controllers
(PLCs)[30]. Some key components are as folld8a):

SCADA meter: used for gathering data from a plant (acquiring) and sending commands
(control) to a plant.

RTU: used for connecting to sensors in the plants, converting sensor signals to digital

data, and sending digl data to the supervisory system.



PLCs: used as field devices because they are more economical, flexible, and configurable
than specialpurpose RTU.

Communication infrastructure: used for connecting the supervisory system to the RTUs
and/or PLCs.

A proper understanding of SCADA is necessary to analyze the various security threats
that need to be addressed. A SCADA system is a centrally controlled master system that
commands terminal RTUs, and these RTUs include relay devices, actuators and sensibrs, circ
power breakers, voltage regulators, and so forth. Master terminal units (MTUSs) areléngher
units, including supporting applications, human machine interfaces (HMIs), data storage, and
acquisition systems. PLCs are used as control sensory dewnide®REJs. Programmable
automation controllers are used as the basic controlling unit.

There are three generations of SCADA system architectures. The first generation uses the
WAN for communication between MTUs, which execute decismaking, and RTUs, which
serve the end users. The second generation uses local area networks (LANsS) to communicate
between MTUs and RTUs. The third generation wsee area networkWAN) and Internet
protocol (IP).

The components of the SCADA architecture include the follow{)gon-field devices,
for example, RTUs, PLCs, intelligent electronic devices (IEDs), and Process Automation
Controllers (PACs); (ii) monitoring and controlling equipment, for example, HMI, historian,
controller for SCADA, and redlme data processor; ar(di) communications, for example,
Inter-Control Center Communications Protocol (ICCP), Odyssey Commutation Processor (OCP),
Ethernet, wireless networks, serial network connections, and Modbus and DNP3 protocols. The

terminal controller unit is responséfor communicating, analyzing the data, and displaying the
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occurring events to the users as well as the service providers. The devices are generally
controlling and controlled devices, which run on embedded operating systems to communicate
data using vaaus controlling protocols, such as Modbus and DNP3.

To ensure that SCADA systems are well maintained, security measures should be given
special importancg31]. Attacks on the SCADA system can cause threat to peopleOs safety, a
loss of productivity, and even some envirental damag¢31l]. Some basic network systems
(e.g., ports, hubs, switches, routers, firewalls, and the Simple Network Management Protocol
(SNMP)) are also general, electrical power grid components that are at risk of being attacked.

The interconnection of microprocessaised in SCADA has been an increasing trend i
recent times, and this intamnection makes the SCADA system less sef3t¢ PLCs and
DCSs used as process controllers have been replacktDBy which are generally applied to
control power meters, to control powertgias, and to trace hef81l] Power meters, wireless
LANSs, IEDs, relay networks, and Master Control Centers (MCCs) are interconnected in SCADA
when setting up power grid81]. With all these devices being interconnected, the odwf a
SCADA system is becoimg less isolated and, thubecoming prone to attadkl .

¥  Hardware architecture

One is able to distinguish between two basic layers in a SCADA system: the client layer,
which caters to the humBmachine interaction and the data server layer, which handles most of
the process data control adties. The data servers communicate with devices in the field
through process controllers. Process controllers (e.g., PLCs) are connected to the data serv
either directly or via netorks or fieldbuses that are proprietary (e.g., Siemens H1) or

nonpropretary (e.g., Profibus)19]. Data servers are coeeted to each other and to client
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stations by means of an Ethernet LAN. The data servers and client stations are NT platforms, but
for many products, the client stations may also be Win95 machines.

¥  Software architecture

The products are multiteig and @& based upon a reine database that is located in
one or more servers. Servers are responsible for data acquisition and handling (e.g., polling
controllers, alarm checking, calculations, logging, and archiving) on a set of parameters, which
are typicaly those to which they are connec{éd].

¥  Communcation infrastructure

A typical SCADA communication system generally consists of a master station and many
other distributed RTUE0]. The RTUs are interconnected to the master station through a variety
of communication channels, such as radio links, ledised, fiber optics, and othef80].
However, one of the greatest communication challemy#isat the channel limits the speed of
data acquisitionrad control that can be performed. Furthermore, random noise on the channel is
another challenge thaék hindered SCADA communicati§80].

These security threats that SCADA faces alerts smart grid rasearabout potential
security issues that smart grid might face. Upon understanding the system, structure, and even
potential threats that the traditional grid deals wiitiis appropriate to move on to smart grid for

more discussion related with this shstation now.

2.2 Current Infrastructures and Future Direction of Smart Grid

2.2.1 Smart Grid
One main objectives of the update from traditional grid to smart grid is to become more

energyefficient [32]. To realize this goal, smart grid takes advantages of latest technologies,
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including intelligent and autonomous controllers, advanced software for data management, and
two-way communications between power utilities and consumers. Before the discussion of smart
grid goes further, it is necessary to clarify what smart grid is.

In Chager I, the dénition of smart grid has beegxplored Here in Chapter Il, more in

depth discussion can be carried out with the help of current literature.

w Appli that create electrical
system /societal value

mart Gri
Application

Computl_ng ! Information for timely decision
Information > making
S Technology
°¢
S
@ Communication Enabli icati
Infrastructure naviing communication
to entire energy supply chain
Energy | Physical infrastructure

Infrastructure that distributes energy

Fig. 2.3 Definition of Smart Grid1]

The US. DoE has an official definition of smart grid, which is presented in the format of
a pyramid grapliFig. 2.3 [11]. As the graph shows, essential components of a smart gnd fr
bottom up are energy infrastructure, communication infregire, computing omformation
technology, and smart grid applicati The bottom layer is physical energy infrastructure that
distributes energy. Communication infrastructure is defined ernvéhny top of the physical
energy infrastructure to entire supply chain. Computing/information technology is above the
communication infastructure for timely decisiemaking. Smargrid applications aren the top
to create electrical system/societal wasuSecurity is in another dimension and covers all layers,

so that he impatance of security can leghlighted.
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Generally, Smartiid is a data communications network integrated with the electrical
grid that collects and analyzes data captured in-mesktime about power transmission,
distribution, and consumptiof33]. Based on these data, smaridgechnology then provides
predictive information and recommendations to utilities, their suppliers, and their customers on
how best to manage powg33]. From another perspective, smaritdgs a complex system of
systems, and therefoiational Institute of Standards and Technol¢§yST) has developed a
conceptal architecture for the entire smanticdy[2]. This conceptual architectural reference
model provides a means to analyze use cases, to identify interfaces for which interoperability
standards are neededddn facilitate the development of a cyber security straf2y

Though itemerged fronthe recent power grid system, smaitidias moreequirements
to meet and new characteristics to attain. The syn#uksequirements of the desired smaid g
are as follows:

(1) Advanced Metering Infrastructuf@MI): It is designed to help customers know the
reattime prices of power andptimize power usage according]®] [34]. Also, consumers
become informed patrticipants, and they can choose different purchasingsphétsea on their
needs and theriglOs demand, which can ensure the reliability of the electric power §g5iem

(2) Wide area Situational Awareness: It is intended to monitor and manage all the
components of the electric power system. For example, their behaviors and performance can be
modified and predicted to avoid or to address potential emerg¢akies

(3) IT Network Integration: The smartid scopes (generation, transmission, distribytion
consumption, and control cem [7] and subscopes will use a variety of communication

networks which are integrated from IT networks.
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(4) Interoperability: The smartrign will have the capability of two or more networks,
systems, devices, applications, or components to exchange and readily use information securely,
effectively, and with little or no inconvenience to the y2¢rThe smart gd will be a system of
interoperable systems. That is, different systems will be able to exchange meaningful, actionable
information. The systems will shaeecommon meaning of the exchanged information, and this
information will elicit agreeelupon types of responses. The reliability, fidelity, and secofity
information exchanges among smaitiggystems must achieve requisite performance |¢2Els

(5) Demand Response and Consuraé#iciency: Utilities and cu®mers will cut their
usageduring peak times of power oheand. Mechanias will also be made for consumers to
smartly use their power devices to lower their ¢Bpt

Hence, we can conclude that singrid, by definitions and requirements, will have the
characteristics of being more efficient, reliable, intelligent, etc. There are many ghall@mnd
issues involved in the smantid communication fields. Essentially, there is an effort to make the
power generation and consumption more flexible, to allow dynamic pricing, the collection of
energy from small, reusable energy producers and so on. To implement this, the electric grid
needs to be upgraded with communication and computation devices. Momgitlientegrating
information networks into the current power grid system will come many security and privacy
issues, which must be addressed. Obvious vulnerabilities are introduced by IT networks. For
example, hackers can steal customersO power withptitace being left their metering devices.

The NISTtherefore has released a guideline for addressing cyber security and privacy issues in
the Smart Grid36].

To achieve the characteristics of thesided Smart Grid addressed in the previous

subsection,National Energy Technology LaboratofNETL) described five key technology
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areasthat are integrated communication (IC), sensing and measurement, advanced components,
advanced control methods, and iioned interfaces and decision supf8d], [35] as shown in

Fig.2.4.

Sensing and
Measurement

IC

Advanced
Control
IC Methods

Improved / TC\A

Interfaces & Advanced
Decision Components
Support

Fig. 2.4 Five Key Technology Areas in Smart Gf&#], [35]

These key technologies will later be added onto the smart grid architecture to make it
functional like muscles on boneé.n overview of smart grid architecture able to assist the
understanding of smart grid in return.

There are three major sources of smart grathisecture proposals:

(1) Government & Organizations: Provisionegduirements and blueprints of smanitig

(2) Industrial: Proposals of communication infrastructure implementations.

(3) Academia: Greater focus on defining communication architecture requirements and
solutions.

The architectures proposed above are focused on parts sintré gridsystem, which
are intended to address specific requirements that must be met. However, several conceptual
architectures of themart gridhave now been proposed by national organinatand companies,

such as the DoF], the State of West Virginig4], NIST [2], etc.
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The DEOs Smart Grid System Ref@ftproposed that amart gridDs archécture should
include the following scopes: Market Operators, Reliability Coordisa®en/Load Wholesalers,
Transnission Providers, Balancing Authorities, Energy Service Retailers, Distribution Providers,
and End Users (Industrial, Commercial, and Rexidh.

West VirginiaOs white papgB4] proposed thatsmart grid architecture should be
composed of the following four elements: Sensing and Measurement, Advanced Control
Methods Improved Interfaces & Decision Support, and Advanced Components.

NIST proposed in the NIST Framework and Roadmap for Smart Grid Interoperability
Standardq2] that smart gridarchitecture should include the following: Customers, Markets,
Service Providers, Operations, Bulk Generation, Transmission, and Distribution. This is one the
most fully described architectures proposedeicentsmart gridliterature. As depict ifrig. 2.5,
Customers area can be further categorized into three types: Home Area Networks (HANS),
Building Area Networks BANs), and Industrial Area Nebrks (IANs). They can be either
wired or wireless networks no customer premises (home, building and industry areas
respectively) that support messaging among appliances, smart meters, electronics, energy
management devices, applications, and consumers. Applications and communications in these
networks may be driveby Home Energy Management Systems (HEMS), Building Automation

and Control Networks (BACnet), or other energy management syg3émns
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Fig. 2.5 Smart Grid Architecturg38]

After reviewing the existing organizatiggroposedsmart gridarchitecture$2], [7], [34],
[35], [39], I conclude that amart gridarchitecture must address the following critical issags
also shown inFig. 2.6 [33]: (1) transmitting data over multiple media; (2) collecting and
analyzing massive amounts of data rapidly; (3) changing and growing with the indd¥try; (
connecting large numbers of devices; (5) maintaining reliability; (6) connecting multiple types of

systems; (7) ensuring security; and (8) maximizing return on investment.
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Fig. 2.6 Critical Issues in Smafrid [33]
NIST further broke down smart grishto seven domainsiccording to collections of
interconnected network¥he deta# of seven domains are shown graphicallthe figure below

Fig. 2.7[2].
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Fig. 2.7 Seven Domains of Smart GHid]



As these networks are interconnected, the way they communicate with each other is much
more complicated and intertwined than the traditional Ogenetadimsmissiordistribution
customerO wayig. 2.8 is an illustration of the ongoing communications between these seven
domains.The compact structure of the graph represents the frequent communications between
these domainw/ith operation at the center of communication netwét@wever, it is important
to realize that although several domains are communicating with more than one other domain,
not all domains are communicating with same number of other domains. The domain of service
provider only communicates with and connects markets, operations, and ensgiooiuding
residential, commercial, and industriafcause of the rolé plays in a smart gridnly requires
communication with these three other domaitjs[32]. An example from the other side of the
scale is operations. It is in constant connections with all other six dobexiassdéts managerial
role in dectricity movemenmeans it need to get the latest updates about what is going on in the

grid and whaheeds to be done all the time
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2.2.2 Microgrid

Microgrid is avariationof smart gridOs among maityis acombinationof customermnd
operationdomainbecause of itfunction set. Microgrids usually operate in disparate locations
and nay not be connected with the national gf#D]. It is &omposed of a set of distributed
energy resources and is considered as an alternative energy providing system to the current
centralized energy generatioffl]. In other words, microgrids coordinate distributed energy
resources, energy stwe devices and electric loads in a decentralized mdB&2grPossible
electricity generating sources of microgridOs include renewable energies, such as wind power,
solar energy, biomass, tidal energy etcetera, among tradigtetricity generatingnethods.
Microgrid is an examp of the customer domain because of its capability of generatimiggsto
and managing energy.h& resemblance shared between microgrid and operation is the
management of energy movemefihe operation cycle of microgridOs is shown graphically

belowin Fig. 2.9
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Mohamed and Kovio proposed an online management genetic algorithm of microgrid for
residential application[42]. They adopted a power management strategy proposed by
Ramanathan and Gupta, whittirned out need to be completed online. Mohamed and Kovio
included not only operation and maintenance cdsis, also emission costs into theiost
function. They modified the algorithm presented in their previous work by shifted the focus to
cost optimeation. They also considered the possibility of selling electricity back to the main grid
when microgrid has extra energy stored.

Naraharisetti et al. studied the scheduling problem in micrdg@ They proposed a
mathematical model known as OMixed Integer Linear ProgrammingO, which aimed at advancing
the scheduling operations for microgrid that are connected with the natimhal gr
2.2.3 Smart Homes

Smart homes is another trendy topiat refers to residential buildings equipped with

smart grid technology, which can be as basic as a smart meter with communication capability
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that aims at benefitinthe end userpll], [43], [44] To be specific, the benefits of smart homes
include simplify the life of its inhabitants, reduce energy usage, and provide comfort and security
[44]. In 2012, srart homes were already qup®pularthanks to their ability to lower energy
bills, allow flexibility on energy consumption, anbenefit the environmentHowever,
considering the difficulty of incorporating OdumbO appliances into smart homes, smart home
technologies were generally limited to demonstration projects.

In Sun and HuangOs paper, they reviewed a large range of en@rgyatipn methods
for smart home appliance&.smart home usually has a set of devices that include Hsesein
following Fig. 2.1Q Also in a smart home, all smart devices are Otypically linked to a home

network to which they report their states omfravhich they receive instructiong€].

Refrigerator
Washing
Machine

Fig. 2.10 Smart Home Devicegl5]

User
Interfaces

The major energy optimization methods under analysis in SdrHarangOs paper are

fuzzy logic, neural networks, heuristic methods, and evolutionary algoriffinsspaper covered
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a number of previous researches and experiments that adoptednadati@ened method(gh

hope for the realization ehe goal ofoptimizing the power scheduling in smart homes.

Neural
Networks
Hybrid Intelligent Control
System

Fig. 2.11 Major Energy Optimization Methods

Evolutionary
Computation

The above reviewed information about smart grid, microgrid, and smart homes makes it
clear that smart grid is indeed a wienful system with a lot of potential. With different
variations, such as microgrid and smart homes, smart grid will be able to change the world to the
better in a lot of ways. However it is restricted in various aspects because of technological
incompetene and lack o€ustomerparticipation among other reasons. The following subsection
will discuss DSM andlemand respons¢éhe improvement of which will make smart gricdbra

attractive to the customers.

2.3 Demand Side Management & Demand Response

A concep that is quite important in smart grid is called Demand Side Management
(DSM). DSM is a concept that includes all activities that aim at altering the customersO energy
consumption file, no matter it is the time and/or shape, in order to match the supldy w

incorporating renewable energies efficier®2]. In addition, DSM also works wonders in the
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integration of distributed generation and reduces costs in both energy generation and
transmission.

A lot of researcherdelieve DSM is an umbrella term for the collection of energy
efficiency, conservation program adémand respongerogram[12], while other researchers
and practitioners see DSM an@mand responsas interchangeable equd/], [48]. In this
dissertationthey ardreated as synonyms

The paper written by Albadi and -Slaadany gave a very wedunded overview of
demand responsi electricity marketd10]. Their paper started by offering descriptions of
demand responserhey highlighted three ways in which customers talte action. These
actions are reducing only pelbur eletricity usage, shifting load demand from peak hours to
off-peak hours, and using onsite generation, which is also knowfiestomer owned
Distributed Generatidh The paper went on by looking into the different groupsieiand
responseprograms.Howeverbecause of thetancetheir paper wasvritten from, they mainly
looked atdemand respong@ograms based on offered motivations. In anotdeenand response
survey presented by Vardakas et[a2], they also mentionedemand responggograms based
on control mechanism ardemand reponseorograms based on decision variables. A graphical

presentation of these programs can be found hd¥igir2.12
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Another difference betweeNlbadi and EiSaadanyOs survaydavVardaka® survey is that
they grouped demand respormegrams based on offered motivations differently. A graphical
illustration of how Vardakas groupetemand responsgrograms can be found below fng.

2.13[32].
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The differences between the two groupings are mainly found inncentivebased
demand responserograms. Instead of calling the nicentivebased programs Opribased
programsO, Vardakas named them &ttimsed programs@. both groups, there are tiroé-use
pricing scheme, RTP, and critical peak pricing schdma/ardakasO paper, pdakd pricing
scheme divided day into a number of periods and different electricity veds applied to each
period. RRak day rebates scherakows customers to make their own decision on whether or not
they wantto respond to a critical eventickrey-Clarke Groves scheme was based on customersO
voluntary participation on providing their power demand information to tiatemed mechanism
for price calculation. On the other ham Albadi and ElSaadanyOs survey, extreme day pricing
schemehas a higher price for electricity, which is in effect for the whole 24 hours of the extreme
day that will be known one day ahefid]. Finally, extreme day dtical peak pricing is the
scheme that critical peak pricing is adopted for peak angeak periods during extreme days

whereas a flat rate issed for other day3.he differences between the definitions highlighted the
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differences between the foasof the two groups, which in return explained why they were

grouped in such ways.

Reduce total needed
power generation

Reduce total power
consumption

Reduce or even
elimination of overloads
in the distribution
system

Change the demand in
order to follow the
available supply

Fig. 2.14 Main Objectives ofDemand Responga2]

The variousdemand respongerograms, regardless of their different designs, all aim at
achieving one or many of main objeess. Fig. 2.14 illustrates theobjectives ofdemand
responseschemeg¢32]. In fact, variousdemand respong@ograms \ere createdbased on these
objectives Usually, abovementioneddemand responggograms aim at fulfilling more than one
objective with their algorithm to increase its implementation rder instance, the primary
objective of pricebased programs is to reduce or even elimination of aaésl or to change the
demand in order to follow the available supply depends on the consumption profiles of the
customers. On top of that, there is also a secondary objective that these programs are aiming to
achieve, which can be both to reduce the tptater consumption and to redutgal needed
power generation, since these two objectives are somehow interconnected.

Albadi and EiSaadany[10] also evaluated the bensfiandcosts ofdemand response

programs, which aralsoshown graphically ifrig. 2.15and 2.16respectively
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On top of merits and costs evaluation, this paper also highlighted the most common
indices used fodemand responsevaluation, whichare the awial peak demand reducti@nd
the variations of this factor. The indices decision was made based on the ultimatedgoahiod
responsehat is to reduce the peak demand for smart @odnake the indices more suitable for
making comparisons between fdilent demand responsprograms, the actual peak demand
reduction factor was also normalized into percentage. Because of the different characteristics and
functionality of variouslemand responggograms, demand price elasticity, which was found by

calcubting the ratio of the percent change in demand to the percent change in pAGEXEF

Apart from measuring the achievements madedbgnand responsprograms in a numeric
manner, the authors also noted that customer acceptance and enrolment wer@atsmtim

factors that make considerable impactsiemand responggograms.
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Fuselli et al.[3] experimented with home energy resource scheduling with the method of
action dependent heuristic dynamic paogming (ADHDP). Fuselli and his team used ADHDP
as an optimization technique to realize cost saving and energy waste minimization. ADHDP was
consisted of two parts that were Action and Critic Network, and the program was able to
minimize a given utility faction over a certain time horizon. Thesearchersised both a
historical set of solar irradiation and the main grid in their simulation. The results confirmed their

expectation that the proposed method was able to reduce the overall energy cost.

2.4 Energy Consumption Scheduling and Optimization

2.4.1 Energy Consumption Scheduling
As previously mentioned, energy consumption schedulingperforms as the
communication coordinator between smart appliances and the power provickpsito assure
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the smart pplianceswill function when the power price is ideal for the customers and as a result
minimizes power bills. Because of the important rhergy consumption schedulipgrforms
in smart grid and bill minimizatiorresearcherbave conducted various r@sehes to exploias
much potential as possible from theergy consumption scheduling

Targeting aimprovingdemand responsaficiency in residential power usage, Chen et al.
[45] proposed &TP-based algorithnthatadopteda Stackelbrg game modéh their model, the
leader level gamwas played by the power provider for it sets the-tiea price of éectricity,
and the follower level game was playeddrnergy consumption schedulifgy it schedules the
power consumption of smart appliances at the customersQOnstahd of working on the
minimization of customersO biltae algorithm proposed was nediocused otthe benefits of the
power providerOs. According to their simulation result, the algorithm was able to balance the
difference betweerustomersO actual demand and planned supply, as well as reduce the peak
load[45].

Lee et al. [49] proposed program that can be embedded inetiergy consumption
schedulingwith a focus orpeak load reduction in homesdabuildings.Their design works best
in the senario where appliances are no more than 10, the power load profile is practithé and
search space size reasoable. Although thdimitations can pose a question regarding the
practicality of this propa=d scheme, they are a reflection of the complex nature oérleegy
consumption scheduling

From the above reviews, it is clear thalaege numbewf projects done on thenergy
consumption schedulingre actually aiming at optimization as their goAl.revision of

optimizationrelatedworkscan be found below.
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2.4.2 Optimization

Optimization is an important part of smart grid atemand respondeecause it is the
process that makes smart grid aseimand responsas perfect, effective, and functional as
possible. The objectives demand respondgasedoptimization models usually fall into one of
five categories that are fininimization of electricity cost, 2naximization of social welfare, 3.
minimization of aggregated power consumption,mdnimization of both electricity cost and
aggregated power consumption, antédih the maximization of social welfare and minimization
of aggregated power consumpti@2].

In Samadi et al.(350] paper, the authors looked into a rtiale energy consumption
scheduling algorithm with load uncertainty that aims at bill minimization for indixabl
residential customers. The leadheduling problem was formulatesl @n optimization problem.

The researchers adopted an approximate dynamic programming approach to make the computing
simpler. They also studied the difference between smumstappliance (such as lighting) and
controllable appliances that are much more flexible. Instead of assumidgrtiend response
algorithm understands customersO energy needs perfectly, the algorithm proposed in this papel
survives on only some estimates of futurendad. Their algorithm combined RTP with inclining

block rates to balance residential load in otdeachieve a lowpeak average rati?®’AR) [50].

Chen et al]18] evaluated redlime pricebaseddemand responsirough applications
installed inenergy consumption schedulimgth a focus on Stochastic Optimization and Robust
Optimization. Their research was strictly conducted with residential appliances, which is the
same with Samadi et al.Os study. On top of congidbiinminimization as their main goal,
Chen et al. also took energy efficiency into consideration when designing their model. In order to

achieve their goal, the proposddmand respongarogram would automatically determine Othe
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optimal operation in th@ext 5minute time interval while considering future electricity price
uncertainties@18]. In addition, theresearcheralso employed the risk aversion formulation to
control the financial risks that comes with réale price uncertainties.

The success of optimizatiowill highlight the benefits ofdemand responsand as a
result makeslemand respongsmore attractive to the customers and pushes up the participation
rate. The increasing participation rate will then become the motivation of further technological
advancements in smart grid. Eventually, smart grid will find the optimal balance point between
human electricity consumption and environmental costs. All tlesrdeed train reaction happens

with the urge of striving for a better future.
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2.5 RTP and Fairness

2.5.1 RTP

Albadi and ElSaadan{® paper10] also discused customer®experience with various
demand respongarograms. According to their findings, RTprograms relied on opportunities
for bell savings as their major customer motivation. However, because of poor marketing and
limited technical assistance that was available to the participants, some RTP p@bgrams
penetration level was quite low. In adadit, the fact that some participants were not very

responsive to different prices also contributed to the unsuccessful result of some of the RTP
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programs. The findings presented in Albadi anésEhdan(d paper offer valuable insights for
future researchem terms of available room left for improvements. Having said this, it is
important to remember their research was conducted in 2007. A lot more achievements and
advancements have been made in the &gde then

MohseniarRad and LeoiGarcia conductedesearch on the topic of optimal residential
load control with price prediction in RTR4]. The resarchers identified a couple of barriers
that were blocking RTP from getting fullytilized based on literature. The barriers wetethe
lack of knowledge among customers about how to respond to thednyiag prices and 2. the
lack of effective buildig automation systems that can provide assistance to the customers. The
solutions thatresearchercame up with were an optimal and automatic residential energy
consumption scheduling framework which targeted at achieving a desireebtranstween
minimizing the electricity payment and minimizing the waiting time for each appliance in the
resident subject to customers special n¢bdls

Their proposed solutions were embedded in a scenario that includes a smart meter for
every householdvhich connects to a smart meter, angaargy consumption schedulidgvice
in every smart meter. Also they adoptegreace predictor unit which was an addition to the
energy consumption schedulimgnd estimated futuregrice by applying a weighted averaging
filter to past pricd14]. By taking advantage of the actual hotblysed rates adopted by lllinois
Power Company from January 2007 to December 200 weighted average price prediction
filter, the researcherdound the optimal coefficients for different days of the week. The
simulation results confirmed the merits of combinergergy consumption scheduliagd price

predictor, especially in terms of reducing energy bills for end users.
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An interesting note about smaneter is that in VardakasO paj&3] he confirms the
advantage of smart meter installation for it allows the implementation of more dynamic pricing
schemes that can trigger pedémand reduction, while on the other hand he mentignetk
consumer groups may have different reaicAccording to[51], the lowerlevel of price
elasticity of lowincome consumer group makes it quite difficult émstomers in that group to
respond to the changing electricity rat€kis is just one implication among many when various
pricing schemes applied to a wide range of customers.

2.5.2 Fairness

Vuppala et af8 papemlsodiscussed the issue of fairnesglemand responggograms,
with an emphasis on fairness principles that customers regard higfl@]ofTo decide what
kind of demand respongeogram is OfairQ, they considered the criteria listed as following. For
musBrun appliances, such as lighting, power price will be fii}e&t]. On the other hand, power
consumed by nemustrun appliances wilbe charged at multlimensional price$12]. User
category, income level, and appliance category will be taken into consideration when
determining the exact power pri§¥2]. A graphical illustration othe criteria can be found as

Fig. 2.17

Fixed Charges
User
for Must-run -
Appliances Sa=dely
Income Multi-Dimensional Appliance
Level Dil erential Pricing Category

Fig. 2.17 Criteria for Fairnesfl?2]

42



If a deal meets all the described criteria, it was then labeled adHtaiever, after
comparison, none ofhe available program#as able tomeet all criteria. Even RTP was
considered OunfairO because the differences between appliances and income levels were nc
important variables of RTPOhey then establishedhe lack offairness principles imlemand
responsg@rogramgor current programs only address part of the criteria.

The fair demand responsscheme they proposed promised to address all the above
criteria[12]. They nade sure that the price of mush services was time irrelevant, and that
price varies accordingp different user types, appliances and income levels. The simulation
results supported their expectatiamd, as a result, achieved a higher level of customer
satisfaction. The resudtiso showed bss of economic efficiencgs a side effect

Zhang et kb looked at fair cosin smart homes with microgridl]. Sometimes a number
of smart homes share one microgrid, and this sharing feature would eventually lead to
competition between homes, especiallyen local distributed energy resources cannot respond
to all load requests.

In this paper, fairnessasachieved through fair cost and it waéeafined differently from
Vuppala et al.Os. Instead of coming up with their own definition, the authors citeds\ithi
GuderganOs definition, which described fairness as Othe reasonable, acceptable or jost judgme
of an outcome which the process used to arrfg8D Zhang et alproposed and experimented
with a mathematical programming formulation thahs at maintaining the fair codtiring such
competition between smart homes that share the same microbgay.utilized lexicographic
minimax metlod with a focus on mixed integer linear programming approach to minimize one
day forecasted energy cost for each smart hdrhey studied two groups of 10 and 50 smart

homes with their distributed energy resource operation and output examined. The @mulati
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result showed a 30% and 24% cost saving for the two groups respectively and a fair cost
distribution among smart homes in their scenario.

Fan[53] proposed a distributedemand respongarogram and user adaptation in smart
grid. The proposed program and adaptation was establishec watterence to the congestion
pricing in IP networksin Kelly et al.O§4] work on proportionally faipricing scheme, it wa
concluded thatadditive increase and multiplicativelecrease rate control can achieve
proportional fairness. Theriterion for fairness waa willingness to pay parameter, which held
the belief that customers who are willing to pay more should get more. FanOs work was
established on top of Kelly et al.Osrkvand the simulation showed pricing could indeed help
with shifting the load leveling burden from power supplier to the customers while maintaining
proportional fairnesgs3].

Baharlouei et al. also introduced their criteria for fairnebich was defined as Othe
variational distance Ih@een normalized billing vector for billing mechanism and normalized
billing vector for billing mechanism{®5]. Based on this fairness indeBaharlouei et al.
proposed a billing model that aims at not only improve the optimal general system performance,

but alsoimprove tte fairness of the billing systefs5].

2.6 Related Work Conclusion

This sectionreviewed thébroad context wherthis dissertatioms working in by zooming
in from the big picture to more specific areas. First, it introducedttheture and functionality
of traditional gid anddetails of SCADA, which is an important part of traditional power grid.
Upon understanding what smart grid is built on, the discussion proceeded into the next section.

The revision moved onto curresituationof smart grid, system structure, ahe seven domains
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of smart grid.As the part with most potentialemand responsgasthenreviewed in terms of
various current availabl@lemand responserogramsand the difference between various
grouping principles energy consumption schedulirend opimization problems were also
discussed as the introduction to the next secfloseries RTP and fairness related works were
also reviewed and commented to gain insights on the specific areas that this dissertation will
build on.

From tis review of relagd work it is quite obious that although a lot of researichs
been donan smart grid, especialljn terms ofdemand responsand RTP, according to our
research none of them dealt with real tidemand responseith fair delayas a constraint,
which ishow wecontribute to the field with thidissertation.

The next chaptdooks at the first problem this dissertation studi@isow to achieve real

time demand responsesingenergy consumption scheduling



3 SCHEDULABLE ENERGY £HEDULING ALGORITHM IN SMART GRID
DISTRIBUTION

3.1 Introduction

In recent years, there has been a rapid development of technologies in smart grid. One the
most popular and promising area withinsitthe field of demand responge.this research area
hides the potentidtey to the next stage of a more efficient smart grid. It also offers possibilities
for the customers to receive a smaller and more reasonable bill, which in return will further
encourage current and potential customers to utilize their gmertompatibé appliances.

After several years of vigorous research and experimentations, the mustatp
demand responsén smart grid has d&d the capability of lowering the peak time load
consumption and reducing the utility and customerOsAdosig with the évelopment of smart
meter and twavay communication schemese also developed methods foear reattime
eneggy consumption scheduling

Regardless of the mentioned achievements, there are still problems and challeniges rema
yet to be solved, such as ke demand responseautomation withenergy consumption
scheduling and fairnessssues Among them the main problem that requires a timely solution in
demand response the realtime demand responsssue.

Demand responsissue has a couple of chaligsto it, with the first being customersO
participation[32]. According to the definition given by tH2oE, demand responsefers to Oa
tariff or program established to motivate changes in electricity usage hysermistomers from

their normal consumption patterns in responsehnges in the price of electricity over the time,
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or to incentive payments designed to induce lower electusage at times of high wholesale
market prices or when sgsn reliability is jeopardizedf]. This definition makes it clear that
enduse customersO power usage preferences have the possibility of benefiting the power grid on
top of benefiting thenedves[32]. In other wordsijt is the customers who are at the center of
successfutlemand responsé&herefore, it is vital to design retine demand responsechemes

in a way that customers can easily perceive the benefits dethand responggogram, so that

the customersO atiparticipation will ensure the normal functionality of the power grid.

The improvements on retime demand responsén return, concern the customers as
well. With the introduction of the Pluign Hybrid Electric Vehicle (PHEV) into smart grid, a
regula customer can now be both a power consumer and/or a power supplier. That is to say,
when realtime market power price is lower than the expectation of the customer, it has the
opportunity to download the power load and store it locally as a consumer. tiéhezaltime
power price is greater than the expectation, the customer has the choice of either consume the
power that had been downloaded earlier, or sell the extra amount of load back to the grid as a
power supplier. Thus, to make the transition betwtbe two roles a much smoother experience
for the customer, redime demand response much needed for it offers the consumer much
more choices and flexibility on its own power consumption.

The second challengs the demand respongssue is RTPThanlks to current available
RTP-alike schemes, each and every customer within the smart grid now has the opportunity to
dynamically schedule its loads at each time. That say schemes, such as TOWBhemeCPP
schemeandDay-Ahead Pricing]DAP) schemethat performs part/parts of RTPOs function have
enabledthe customers to lower their power costs and have more flexibility with their power

usage It is also important to realize that regardless of how these available schemes have their
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own advantages, theye all performing fragments of RTPOs functionality after all. For instance,
DAP schemeestimates the power price one dayadh which creates unnecessaryiakons

from the real priceAs a result, customers might actually be paying more for their power
consumption.The merits of the mentioned schemes only make their lacking of systematic
wholeness more obvious. Therefore, RTP is still in need in order to largely improve the
efficiency of the smart grid. But the challenge of RTP, that is the fact thenoers might not be

able to know the future power price, remailrsthis paper, this challenge referred to as the
Odelay challengeO.

In reattime demand responssystem, price prediction challenges are preventing the
system from minimizing customersd@shising the RTP schenfig2)].

In a scenario where the customer can manage its smart appliances energy consumption
using smart home console while tdlemand responsgrogram is transparent to it, instead of
having the customer worry about how to optimize the load management te récudill
payment, thedemand responserogram will provide the automatic energy scheduling
functionality to it. In this scenario, at time t1, the customer wants to do laundry and tells the
washer to wash using retitne demand respong@ogram. Then thevasher communicates with
the smart home automation console with a desired task schedule based on the customerO:

predefined settings on the washer and the smart home console
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Fig. 3.1 RealTime Demand Respong&rchitecture(Partially From) [56]

As seen in Fig.3.1, all the appliances are controlled by tbeergy consumption
schedulingconsole system. This is the system that assists the customers with their scheduling for
energy consumption. A good schedule of energy consumption will not only save the customer a
lot of dollars, but also reduce possible pressure that the power grideedering peak hours.

Here we assume that only the schedulable energy is considetkid ichapter This
scenario assumes tkaergy consumption schedulisgstem has thebdity to pause or resume.

Here is a description of the setup of #mergy consmption schedulingonsole.

¥The smart meter shows the current #t@ake power price and displays on tbaergy
consumption schedulingoasole.

¥energy consumption schedulimgnsole shows the load request status: how much has
been consumed, and how mugtiould the consumer pay, etc

¥Price Threshold that allows consumption will also be displayed.

¥energy consumption schedulimgitomatically schedules all the loads for all the smart

appliances.
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In order to reduce the cost for power providers while dedudtiegcustomersO bills,
energy consumption schedulingsearchers attempts to provide a new way to the realization of
this goal. This chapterproposes a redime demand responssystem and its matching
distribution energy consumption schedulirgigorithms that aim at solvingthe total cost
minimization problemForthcoming discussion about tpeoblemandits solutionsarehosted in
the abovementionedenergy consumption schedulisgstem setup. A simulatiaa conductedo
find the experimentabptimal resilts based on different parameter setdjpge simulationresults
are analyzed toshine some light to the energy consumption scheduydnoplem from a new
angle The paperQgoal is to focus on the customersO cost minimizalibe costis not only
composedf the money that each customer pays for the bill, butalgoe cost thaincurs when
customerdoes not get to consume the energy in time. Alsdike focusing on the energy
consunption scheduling of appliances within a customerOs HAN Ithislchaper focuses on
the energy consumption schedulwgh eachcustomerconsideredas an entity aneighborhood
area networlevel.

In the upcoming passagdhjs chapterdiscusesa number of related works that have
been dae previously in the field of energgheduling Then,it proceeds into section 3System
Model and section 3.4in which section the problems under discussiomdefined in detail.
After this, proposed solutions to the problems, taal cost minimization strategiesre
presented in gion 3.5 Simulation Setup and analysis is found in sectionFhélly, section

3.5concluds this chapter

5C



3.2 Related Works

Traditionaldemand responge achieved througlSCADA infrastructure, but it is not as
reattime as in smart grid environmemeattime demand respongequires the power provider
to update retail power price at each tistet level for all the customerst also obliges each and
every customer to report load consumptioth®power provider at each tisiet.

In most researcke the methods of achievingemand responsehrough energy
consumption schedulingan be grouped into two categories: task scheduling and energy based
scheduling32]. The task scheduling is focused on scheduling the fixed load reduestghout
the timeline while the energy basesthedulingfocuses on scheduling flexible load requests
throughout the timeling82]. The flexible load requestaeans that load requests can be partially
consumed and rescheduled throughout the timdligidves more flexibility to the customers on
the energy consumption scheduliiitpe folowing work is an example

The paper[57] proposed an autonomou3SM framework to solve the optimization
problem of reducing the utilityOs operational ,castng the energy consumption scheduling
algorithm Theauthor assumesdhtheenergy consumption schedulidgvices that arassumed
built in smart meters would facilitate the twm@y communications in the smart grid
infrastructure, and find the optimal energy consumption schedule for each customer. Their aim
was to reduce thtotal energy cost and tH®AR at the same timéor the utility. They also
provided a pricing mechanism to reduce customerOs bill payment using game theory as the
incentive to encourage the usageenérgy consumption schedulidgvices. But the framework
faces several challenges. Firstly, their paper assumed that customers use other customersO loz
information to optimize a game. But in reality sometimes customers do not fully trust each other,

especially those within the same network, duedigmtial pivacy leaking issuefl]. Moreover,
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it is important to realize that in their study, incentives were offevettheé participantas the
proposed pricing scheme encourage the use of teeergy consumption schedulimigvices.
However, this pricing scheme is linearly proportional to the load that each customer uses, but in
reality the power price is not always pwostional to the customers load consumption, especially
during the peakime of the utility. In addition,the work in [1] focusedon the energy
consumption schedulingf the appliances within a househdltsteadof that of the whole
neighborhood area network.

Caron and Kesidi§l5] also introduced aenergy consumption schedulirfigpmework,
with optimal solutions in their paper. They proposed an algorithm that can reduce the total cost
and PAR of the system when all the customers share their complete load profile. On the other
hand, they also took theistomersO concern about privacy into consideration and came up with
distributed stochastic strategies that will extrpattially enough information to improve the
overall load profile.The strategies offerefl5] are considering how to minimize the power
providerOs cost and PAR without trying to motivate the custoifiees. schemes majiave
someinsights into modeling of customers anbmousenergy consumption schedulingthin
neighborhood areaetwork distribution networkand optimal goal of minimizing the utilityOs
operational costBut if one considers how the customers, instead of the power grid, are playing
the center role fosuccessfuldemand responsehe challengesvould bethe lack ofmethods
focusing orreducingcustomersO cost

The following sections loakinto the details of the problenf reducing customersO cost

in terms of the model of the system and the outline of the problems.
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3.3 System Model
3.3.1 Customer Model

Assume thatthere areN customers, denoted dg,....i,..N . Assume that time is
divided into timslots, and therefore let tiralt ] denote the time period! t,(j +1)! t), where
j=12,...,and!t is a unit time per timeslot.

Assume that all the load demands from customers are schedulable powemidddsy
are known at the beginning of each timeskor customei , its demand of poweload at
timeslot | is defined ad,(j), where j=1.2,... and 0! L(j)<I™(j), and let/"™(j) denote the
maximum loactapacitythat the customer can handle, which is normally a constant defined by
each customerOs setup of its own power system.

At each timesilot, all the customers send their load demand request to the power provider.
Then they wait for the power providerOs response of the current power phiedR Ti® scheme,
each customer has theportunities to dynamically schedule its load at each timeslot. Assume
the energy consumption scheduliredgorithm exists and it uses load demdg) and RTP
power price as inputs and how much load it consumes as output.

Let o (j) denote theactual energy consuption of customeri at timeslot j, and itOs
defined as

0! a(j)! 1,(J)
or (3.1a)

o(>L()
(3.1b)
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If customeri consumes the energy within thead demandof j timeslot/.(;), then B.1a)
satisfies. On the other hand, if customeactually consumes not only all thead cemandof j
timeslotl.(j), but also the delayed load demand from previous timeslots,3lid) §atisfies.

Let b(j) denote theinstantaneous bill paymerfior customeri at timeslot j , and it is

calculated as follows.

b(i)=0a()!p(). (32)

Let B(j) denote theaccumulatve bill payment of customeri during time period

[0,jAr) and it is calculated as follows,
J
B.(j)=Y,0,(k)- p(k). (33)
k=1

3.3.2 Power Provider Model

Assume there is only one power provider within the power distribution syBnihe

power provider, it receives thwad requess |,(j),1,(j),....Iy(j) from all the customers at

timeslot | .

Letthe a(j) denoteinstantaneous aggregate loafithe power provider and defined as

a(j)=1 a(j). (34)

i=1
Let A(j) denotethe accumulativeaggegated power loadf the power provider at

timeslot j and it is defined as

AG) =Y a(k)
-t (3.5)



Above is the actually consumed aggregated 860 , but the aggregated original load
demand also needs to be defined. &d) denote thenstantaneous aggregated load demahd
the power provider requested by all the custorf&®,....i,..N} at timeslotj. It can be

calculated as
e()=240) . (36)

Let E(j) denote theaccumulative aggregated load demafaof the duration from

timeslot 1 to timeslog . It can be calculated as

E(j)=! ek

(3.7)

....... s
Let ! (j) denotethe PeakAverage load Ratio (PARf the power provider at timesldt,

and is defined as follows,

. 2 {a(k
=z g 09
j

(3.8)

,,,,,

A
[0,j!t) andS,ﬁ is theaverage loadduringthe samdime period Note that[14] also defined

this ratio, but the definition of this ratio is neixactly the same due to different load
representation.

The paper[17] defined a twestep conservation rate model for caddilg the
accumulativecost functionfor the utility of a 6hour time duration, which was adopted by the

BC Hydro company17]. The time variable ipaper[58] is a continuous variable instead of a
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discrete variable inthe model in[58]. Also the paper[15] providesan energy consumption
schedulingproblem with a fixed time duratiom = 6 hours,while our scheduling prdbm isa
reattime demand responsgroblemin this chapter However, the reagime demand response
system is nofa fix-time system. Therefore, we use the same concept, and apply its global
threshold cost model into the instantaneous cost model in discrete tintestotke it more
realistic

Let ! (j) denote thenstantaneous cosif the power provider. Based d¢ine pagr [15],

I (j) can be calculateds

()= {Kl a(j)+ey. if a(j)<i"; 9)

K, -a’(j)+o,, if a(j)=1"".

where| *=¢

Is the instantaneous peak lodldreshold of a specific power provider, whishthe
constant known to the power providds,, K,, ¢,, and!, are the power provideDspreset
constant parameterby based on its own situation measured in $/KkW, and $, $.This

equation shows that thastantaneousperational cost (j) for the power providewill be a

linear function ofthe instantaneous aggregdtad a(j), if a(j) is lower than thepeak load

threshold! ", and! (j) will be an increasingjuadraticfunction of thea(}), if a(j) is higher

than thepeak loacthreshold! "=,
Then kt! (j) denote theaccumulative cosbf power provider at timgdot j and is
defined asn [15]

g () HEG)NIf=2,3,
! (J)_@(j),!!m!!!!!!!!mir!j:1. : (3.10)
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3.4. Total Cost Minimization Problem in RTP Demand Response Program Using Energy

Consumption Scheduling

3.4.1 Problem Statement
In ademand responsg/stem, the power provider always se&kfwer its load demand
during peak time stage. In terms of measurement, the power provider seeks to miniRie its

I'(j) in (3.8). To achieve that, the power provider tries to persuade its customeesrease

their load consumption from the peak timeshift the load to noipeak time. But to incentivize

the customers to lower the load consumption during peak time, the power provider employs the
RTP scheme sthat every customer uses the providerOsinealpower price to adjust the load
consumption aawrdingly.

Assume that all thdoad demand.,(j) for each customer at timeslotj may be
schedulable. Assume that at timesjqtthe customei has the ability to automatically assign

certain tasks to its householdOs appliances. Then all the appliancetowmtically schedel
the appliancesO lobdsed on the tasks that customer has assigned them to accomplish. Then the

smart home console will have a load demang) known before the beginning of timeslptfor
each customer.

In order for the power provideotmeasure the performance @fhergy consumption
schedulingalgorithm in terms of reducing the bill of the customers, we introduce the following
metric to measure the performance. Bgt, (j) denote the average bill of N customers oyer

timesbts. t is calculags as

N

I B()

Bag(]) :|=1N—J (3.11)
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Since B

Avg

(j) is the accumulative value of the average bill of N customers pver

timeslots, the above nmalization makes more sense thast an accumulative bill ovey
timeslots.

We assume that thenergy consumption scheduliafgorithmexists andthatit can help
the customers to make decisionshanv to consume the energy requatséach timeslot. Assume
that at each timeslot, thenergy consumption schedulimgakes decision on.(j). If the load

demandl.(j) is partially consumed ag(j), therewill be an instantaneous load remainder

1.(j)! o(j) delayed for the lar consumption schedulingtA" timeslot, customer may have
multiple previouslyaccumulateddelayed remainderand they are all waiting for consumption
scheduling. Let;(j) be the accumulateddelayed remainders for customerat j™ timeslot.

Thenr,(j) can be calculated as

n(-D+[L(G)-a (),
it 0(j)<l,(i). =23...

L()=1{rG-D-TaG)-L(), (3.12)
it 0(i)>1,(i), | =2.3...

L()-0()), if j=1.

Based on this accumulative load remainder, there is a case that the customers want to
avoid. That is, some of their load requests are kept irethainder for such relatively long time
that they donOt get used. Besides, for the power proifidiee, customers puibo much load
requests in the load remaindatr makesit difficult for the power provider taalculate and
announce the redgime powe price. Therefore, the unused part of load request stored in the load

remainders means some cost for the customersc (jgtdenote the remainder load cost at

timeslot j for customeri , and it can be calculated as

(1) =", (313
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where! is a function ofr.(j) in terms of$/kWh. It means the price function for unused load

requests. Let,

w(]) denote the average remainder cost of N customers jotiareslots, and it

is calculated as

I c(i)

CAvg(j) = I=ZIL\I7"J (314)

In order to measure the performance of using ehergy consumption scheduling

algorithm to schedule the power consumption, a weighted performance is needeg( het

denote the accumulative total cost for custoimat j" timeslot. t can be calculated as

Crot(1) =1 "Bg(1) + (1#! ) "Crg(i) - (3.19
Therefore, it can be assumed that all the customers may respbedR®R price scheme
with load shifting operation when thdind out the price is higher thahow muchthey are

willing to pay.

Customer’s Total Cost Minimization Problem:

Objective:

Minc,(j) (3.26)

3.4.2 Real-time Pricing (RTP) Scheme
Let p(j) denote theaetail power priceat timeslotj . According tothe papeif15], p(j)

is defined by the power provider, either based on the wholesale power markdtlg}icer
based on the aggregated I§a&8]. In practice,the papefl4] adopted the power priggediction

methods for the customers to make decisions on scheduling energy consumption. On the other
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hand, instead of using price predictitine papefl7] pointed out that for power prediction, no
matter it isoff-peakor peakhour, estimation accuracy ery poor, especially for the effeak
with its accurate ratéower than 30% in most month¥herefore, a nopredidion-dependent
RTP scheme is required for the customers indbeand responggogram. Based on theaper

[18], a practical and polynomial retine power pricep(j) can ke calculated as a function of
theinstantaneous aggregated load dem&§tfl,

p(i) =/ "e(j)’ (317)
where! and! are the parameters that defined by the power provider. In gehersla
constant and " 1, &(]) is theinstantaneous aggregated load demand3.6). To enable the

power provider to persuade customers to use less power during the peak d¢amebe

calculated as

1, if ej)<IPek

18D it gy s e (318)

|peak’

Now that the power price is calculated by thevpoprovider based or8(7), and then
RTP price information is broadcasted to all the customers at the beginning of each .timeslot
Based on the price information, customerOs energy consumption dex{glocan be
determined based on optimal strategies toimmize the bill paymenb ().

Then the prolem can be further broken down into customer side and the power provider

side. Subsection C will illustrate the two parts respectively.
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3.4.3 Distributed Energy Consumption Scheduling on Bill Minimization

On the cummer side,energy consumption scheduling responsible for making the
decision of its own energy ceamption at each timesloth& decision result will impact itsill
paymentindividually. Thus all the customerOs decisions at each timeslot will inhgaathble
distribution systemOs performance.

Solving the problem of minimizing customerOs bill is afm@ptprocess of decisien
making on choosingo (j) over thej timeslots for customer. Meanwhile, flattening the
systemOs overall load demand is a byprazfubis optimal process.

For each timeslot, the decision of choosmg) is made by the customerbased on the
reattime power price and a power price threshdlde threshold is dynamically calculated at
each timeslot based on the RTP, so that it will liedpcustomer to minimize its bill payment. In
a reaftime demand response power system, each customer optimally consumes or schedules its
load demand® (j) based on the power price of each timeslot usingetrergy consumption
scheduling Each customer miniixes itshill paymentcalculated in §.2).

In order to let the customer@eergy consumption schedulitgmake decisions that will
benefit the customersO bill minimization, we introducetireer price threshold as thg.19) to

assist the customers taake decisions ow (j).

P () = p™()) (3.19
¥ p"4(j) is the threshold of power price that the custon@eenergy consumption
schedulingwill use to manage all their appliances.

¥ p™(j) is the average power price that customéas been observed over the

timeslots, and itd a customized parameter for customer
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Remark | Here we assume that every customer use the same time window to observe the
average power pric@™?(j), which means that each customer starts to observe RTP price from
timeslot 1 until timesloy .

We developa strategy based on the thresh defined in 8.19). The idea behind the
strategy is, if the RTP price is not expensive, each customer seeks to schedule more energy for
consumption, and if the RTP price is expensive, each customer tends to scheduledgdorene

consumption. Thus the strategy is each customer uses a stationaryypticecide how much

remainder to consume if thg(j)> p"=""

(j)- Each customer uses a stationary pokctio

threshold

decide how much remainder to consume if fi¢)> p; (j). Therefore, the decision of

actudly consumed energy at” timesloto.(j) can be calculated as

HECj), 1T 1 p( ithfeiho'd i):
o(j)=2!h) i p(”>mm.d ()

. o . (3.20)
eh()+ylr ()Niflp(j)" B (J)-

whereQ! x<landO! y! 1.

From @3.20), the solution to problem ir8(16) is now to find the optimal stationary policy

(x,y) in (3.20) that will give the customethe minimized total cost in3(16). Here we use

simulation to find out the optimal policies for all the customers.
3.4.4 Simulation
3.4.4.1 Simulation Design

Assume that at every timesleich customer generatadoad request, but the request
could be zeroAssume every timeslot there isaat request, but the request could be zero. Also
assume that the amount of each customerOs load demand follows the same normal datribution

seen in Table 3.1.

62



Table3.1 Stream Table

Stream Purpose

1 load requests time is constant a

requests at each timeslot

2 load request of a customer follow t

above normal distribution

Note that all the time in the simulation is integer, marked as timeslots such as 1,2,3, E.
Here time of 1 means that itOs tfdimeslot. Initially, every customer schedules its first load
request at the beginning of th& timeslot and sends the request to the power providgesume
the communication overhead and delmtween all the customers and the power provider are
ignored.Then the power provider updates the #t@ak power price for the current timeslot after

receiving the load requestinally, each customer makes its own energy consumption decision

on how much load to consume and how much load to delay at ciifreimesbt.

FUNCTION
loadRequest

Each customer uses Normal distribution
function to generate the amount of the load
reques at the bednping of each timedot

Fig. 3.2 Flow Chart of Load Request Function
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As seen in Fig. 3.2, the flow chart of load request function is at the beginning of each
timeslot, each customer uses normal distribution function to gerieeatertan amount of load

request. Thearmal distribution functionOs definitiagiven next subsection.

FUNCTION
updatePrice

Power provider updates aggregated load request at
timeslot j
v
Power provider updates RTP price by using
(3.17)

Fig. 3.3 Flow Chart of Updated Price Function

As seen in Fig. 3.3, after the load requests areated by all the customers, the power
provider aggregates all load requests at current timeslot, and then use-timeerg@aice function
(3.17) to calculate the power price for the current timeslot and let all the customers know the

price.
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FUNCTION
updateAVGPrice

If the current timeslot j is the first timesjobhen the
average price is the RTP price
else update the average price using RTP prices frg
timeslotlto j

Fig. 3.4 Flow Chart of Updated AVGPrice Function

As seen in Fig3.4, after the customer receives the +@ake power price for the current
timeslot, it will make the decision on whether the current power price snekgenoughto
delay the consumption or cheap enough to consume the load request. Therefore, this update
average price function is called by each customer at each timeslot to determine whether the

current power price is cheap or not by comparing it tighaverage power price.

FUNCTION
scheduleEnerg

Update the actual energy consumption and energy
reminder using (3.20)(3.12)

Fig. 3.5 Flow Chart of Schedule Energy Function




As seen in Fig. 3.5, since each customer has the power price of current timeslot and the
updated average power price, it makes thastan of consuming or delaying load request based
on equation3.20) and update the energy remainder based on equati@®).{The output of the
simulation is thdotal costof all the customerg3.15) at each timeslot, which is the performance

metric ofenergy consumption scheduliafgorithm.

3.4.4.2 Simulation Input Design

As seen in Fig3.6, let u denote the peak load defined by power provider. Let the normal
distribution N(u,! ?) beN(u/N,(u/3N)?), and this will guarantee the values of 99.7% of
observations fall in thenterval[0,21/N], as seen in Fig8.6 [59]. Even though the possibility

of generating negative number is small, this design still eliminates them by regenerating another
normal distribution number when it happemé.is the number of customers within the

distribution network. As seen in Fi®.6, the meanof normal distribution s ¢/N and the

standard deviations 11/ 3N .
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Fig. 3.6 Load Requests Following Normal Distributidw(z/ N, (1/ 3N)?) by Each Customer
3.4.4.3 Non-peak Input Setup
The above subsection shows a simulation setup with stable inputiafelgaests which
produces a convergent average bill.
However, in this simulation setup, to make the aggregated input load request less intense,
we setup a dynamic way of generating normal distribution load request for each customer at each

timeslot. If setting up input as letting each customer follow a normal distribution of

N
N(u/N,(ul3N)?), it will make thee(j)=1 1.(j) in (3.6) stable as high as. But in order for

i=1
the g(j) to fluctuate withifO,u], we let the aggregate load requests follow the normal

distribution of N[/ 2,(u/(2* 3))*] . In this way,a random aggregated load requests is generated
at current timeslof, which is denoted ae;a“d. Then, the aggregate load requests follow the

normal distribution means thal™™ | N[u/2,(u/(2* 3))*].

Then let each customer generate the load requests based on this random adgegjated

request. We still use the normal distribution to let each customer generates its load request at
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each timeslot. But the normal distributidfi(,/ *) follows N(€*/N,(e*/3N)?). Since
ejrand is a random value of the rari@eu], each customer follows a varying normal distribution

to generate its own load request at different timeslot. In this way, both the aggregated load
request and the individual load request follow the normal distribution to generate load request at

each timeslot, as seen in Fig. 3.7.

FUNCTION
loadRequest,

Each timedot generate an aggregated load
request following normal distribution
[

l

Each customer uses Normal distribution
function to generate the amount of the load
request at the beginning of each timedot
using the above aggregated load

Fig. 3.7 Intermittent Setug-low Chart of Load Request Function

As seen in Fig. 3.8, from™timeslot 1 to 1000 timeslot, the aggregated load requests

fluctuate approximately from above 0 to load peak range.
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Fig. 3.8 Fluctuate Setupnput Sample of Aggregated Load Request
Based on this input, the following experiment is subcategorized two setups, based on the
! value in equation3(15), which is the weight value to determine the totat éar the customer,
with / =0.5and! =0.1. Also, we assume that[r.(j)] =10"r.(j) in equation 8.13), which is

linear.

3.4.4.3.1 Simulation Setup One--/ =0.5

Table3.2 Simulation Parameters

Experiment Values
Parameters

Load Peak 100&kWh

N 100

Sim_time 1000

! 0.5

! 1E-2

H 500kWh
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Using the set of parameters in Table 3.2, as seen il3Bignd Fig.3.10, they show that

the total cost based on different x values, the lowest total cost is when x=0 or x=0.1 and y is

approximately 8[0.8, 1.0] area.

—4#—x=09
x=038
x=0.7H
—H8—x=06

——x =05

Total Cost
E3
L

E 3
E 3
+

1]
i}
1]
1]

i1}
0
0

11 1 1 1 1 1 1 1 1 1
0 01 02 03 04 05 06 07 08 09 1

Fig. 3.9 Total Cost for fixed x=0.5, x=0.6,E x=0.9.

—4#—x=04

x=03
—+—x=02H
—H—x=01

—*—x=00

Total Cost

Fig. 3.10 Total Cost for fixed x=0, x=0.1,E x=0.4.
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Total Cost

Fig. 3.11 Total Cost for fixed y=0.5, y=0.9, E, and y=1.

20

—4—y=04
y=03
y=02H

—B—y=01

—*—y=0.0

18+

16

14+

10—

Total Cost

Fig. 3.12 Total Cost for fixed y=0.0, y=0.1,E ,and y=0.4.
Fig. 3.11 and Fig. 3.12 show that the total cost based on different y \atdethe lowest

total cost is when y is approximately at [0.5,1.0] area, and the x=0.0. Also in Fig. 3.12, when y =

0.0, the total cost has the largest values. This means if the load requests are delayed, they will
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never be used even when the {tale prie is cheap. Therefore, the remainder load cost keeps

growing.

Total Cost

Fig. 3.13 Total Cost

As seen in Fig. 3.13, it is seen that the total cost has the largest value when x =0 andy =
0, this is because that theseno load requests consumed that the large cost incurred by the
customers waiting has dominate the total cost. For the smallest value of the total cost is when x =
0 and y = 1This means the best policy for customers is not to consume at all wheakhmee

price is expensive and delay them to the next timeslot as a load remainder, then try to consume

more of the remainder in the next possible cheap timeslot.

3.4.4.3.2 Simulation Setup Two--!/ =0.1

Using the set of parameters in Table 3.3 and adoptiegrevious setup, Fig. 3.14 and

Fig. 3.15 show the total cost based on different x values, the lowest total cost is when x=0 or
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x=0.1 and y is approximately at [0.8, 1.0] area, but with a lower minimal total cost comparing to

the previous setup.

Table3.3 Simulation Parameters

Experiment Values
Parameters

Load Peak 1000kWh

N 100

Sim_time 1000

! 0.1

! 1E-2

M 500kWh

—4+—x=09
x=038
x=07]|

—E—x=06

——x=05

Total Cost

Fig. 3.14 Total Cost for fixed x=0.5, %0.6,E x=0.9.
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Total Cost

Fig. 3.15 Total Cost for fixed x=0, x=0.1,E x=0.4.
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Fig. 3.16 Total Cost for fixed y=0.5, y=0.9, and y=1.
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Total Cost

Fig. 3.17 Total Cost for fixed y=0.0, y=0.1,E ,and y=0.4

Adopting the previous setugkig. 3.16 and Fig. 3.18how that the total cost based on
different x values, the lowest total cost is when x=0.1 and y is approximately at [0.8, 1.0] area,

but with a lower minimal total cost comparing to the previous setup.

....

Total Cost

Fig. 3.18 Total Cost

As seen Fig. 3.180s 3D plot, the results 80.1 are similar to the last setip=0.5. The

largest value of total cos$s still when x= 0 and y =0and that iswhen the customers donOt

75



consume energy at all. But the smallest value are quite similar, which is when x=0.1 and y =1.
Therefore, the best policy for the customers for the smallest total cost at this setopves tiné
consumption of load requests generated at the current timeslot as 10%h&/headtime price is
expensive and delay them to the next timeslot as a load remainder, then try to consume more of
the remainder in the next possible cheap timeslot.

To summarizeéboth the setup in Table 3.2 and Table 3.3, for the aggregated load requestOs
averagee()) is fluctuate within [O,u], the best policy is not to consume or lower the
consumption to approximately as low as 0.1 when thetireal price is expensive argklay
them to the next timeslot as a load remainder, then try to consume more of the remainder in the
next possible cheap timeslot.

Next subsection condusthe simulation experiment of large load request input as a setup.

3.4.4.4 Large Load Request Input

Since thee(j) definedin last subsectioasthe aggregated load fluctuate withi, 1], a
large peak load request input is introduced in this subsection, which mag&g h&table at the
u level, and let theu= Load Peak, as seen in Fig. 3.19.
3.4.4.4.1 Large Load Request and ! =0.1
Let every customer generate a load request following the normal distribution
N(u/N,(u/3N)?) at each timeslot, where is equal to Load Peak. Load Peak is the parameter

set by the power provider. Because the timeslot here is considered to besmakkmynit time, it
is assumed that the Load PeakKl@0&Wh by the power provider. Also assume that the total
simulation running time is 1000 timeslots. Assume that there are 100 customers within the power

providerOs distribution networkh@ rest of th@xperiment parameters are shoinrTable 3.4.
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Table3.4 Simulation Parameters

Experiment Values
Parameters

Load Peak 1000kWh

N 100

Sim_time 1000

! 0.1

! 1E-2

M 1000kWh

As illustratedin Fig. 3.19, fron 1% timeslot 1 to 1000 timeslot, the aggregated load

requestse(j) maintains closely with of the Load Peak of the power provitlels means that

the aggregated load requests are quite stable at the peak load level for the power provider

throughout all tmeslots.
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——Aggregated Load Requests

800+
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400 T P
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\// 1
200+
0 L L L L
0 200 400 600 800 1000
Timeslots

Fig. 3.19 Large Load Request Setdmgregated Load Requests
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As seen in Fig. 3.20 and Fig21, they show that the total cost performance based on the
large peak load requests wher=0.1 Based ordifferent x values the lowest total cost is when

x=0.

26

—+—x=09

x=08Y
—t—x=07
—HE—x=06

_"_X=0A5_

Total Cost

Hhe
it

o [

b o i
o [T

o [ HF

< 2L
o
f=)

Total Cost

Fig. 3.21 Total Cost for fixed x=0, x=0.1,E x=0.4.
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Fig. 3.22 and Fig. 3.28howthe total cost based on different y valuasdwhen vy is

approximately at the area [0.5,0.9], the total cost has the lowest values.
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Fig. 3.22 Total Cost for fixed y=0.5, y=0.%nd y=1.
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Fig. 3.23 Total Cost for fixed y=0.0, y=0.1,E ,and y=0.4.
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Total Cost

Fig. 3.24 Total Cost

Based on Fig. 3.20 to Fig. 3.23 and the Fig. 3.240s 3D plot, iteaeén that the largest
value of the total cost is still when x =0 and y=0. But for the smallest total cost is when x is from
0 and y isapproximately at the area [0.5,0.%hat is to say, when policy is within the (X,y) area,
the smallest total cost cée found.

But for each customer, it runs its own energy consumption scheduling algorithm based on
RTP power price. Given this relatively large and intense aggregated load requests, the power
provider will impose high RP power price. Consequently, thecpotf consuming load

remainder when redime price is cheap, which is the y value, moves from previous setup of 1 to

[0.5,0.9].

3.4.4.4.2 Simulation Setup Three—Large Load Requests and o =0.5

The experimental parameters are shown in Table 3.5 withlzageequests antl =0.5.
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As seen in Fig. 3.25 and Fig. 3.26, the total cost based on different x values is
demonstrated. When x=0, it has the lowest total cost.

Table3.5 Simulation Parameters

Experiment Values
Parameters

Load Peak 1000kWh

N 100

Sim_time 1000

! 0.5

n 1E-2

M 1000kWh
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Fig. 3.25 Total Cost for fixed x=0.5, x=0.6,E x=0.9.
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Fig. 3.26 Total Cost fa fixed x=0, x=0.1,E x=0.4

As seen in Fig. 3.27 and Fig. 3.28, the total cost based on different y iglllllestrated
But in these two Figures, the lines with different y values are so closely laid out that it is hard to
tell which y is the lowest. & as seen Fig. 3.2@hen y is at the area [0.3,0.6] and x=0, the total

cost has the lowest value.
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Fig. 3.27 Total Cost for fixed y=0.5, y=0.9, and y=1.
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Fig. 3.28 Total Cost for fixed y=0.0, y=0.1,E ,and y=0.4
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Fig. 3.29 Total Cost

In Fig. 3.29, it can be seen that the largest value of the total cost is when x =0.9 and y =0,
which mean every customer consur@@8o of the load request at current timeslot when the real
time power price is expensive and donOt consume the load remainder at all even itithe real
power price is cheap.

For the smallest total cost, it is within the area of x=0, y ranges [0.3,l06¢ans that
each customer donOt consumes load request at current timeslot if-theergalwer price is

expensive and wait to consume them at next cheap timeslot with a remainder using y belongs to

[0.3, 0.6].

3.4.4.4.3 Simulation Setup Three—Large Load Requests and /! =0.9

The simulation experimental parameters are shown in Table 3.6, aher9. For this

! value, the weighted total cost iB.15) is more preferable to the load consumption bill.
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Fig. 3.30 and Fig. 3.3%8how the total cost based orffelient y values. It is when x=0
total cost has the lowest value and when x =0.9 total cost has the largest value. This means that
when the customers want to lower the total cost, they need to focus on lower the consumption of
power when the redlme prie is expensive.

Table3.6 Simulation Parameters

Experiment Values
Parameters

Load Peak 1000kWh

N 100

Sim_time 1000

! 0.9

! 1E-2

M 1000kWh
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Fig. 3.30 Total Cost for fixed x=0.5, x=0.6,E x=0.9.
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Fig. 3.31 Total Cost for fixed x=0, x=0.1,E x=0.4

Fig. 3.32 and Fig 3.33how the total cost based on different y values. When y=0, the
total cost has the lowestle. This means that even if the r@ale power price is cheap, the
customers still just consume the load requests generated the current timeslot, and ignore the load

remainder consumption, in order to lower the total cost.
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Fig. 3.32 Total Cost for fixed y=0.5, y=0.9, and y=1.
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Fig. 3.33 Total Cost for fixed y=0.0, y=0.1,E ,and y=0.4.
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Total Cost

Fig. 3.34 Total Cost

It can be seein Fig. 3.34that the largest total cost is when x =0.9 gnranges within
[0.1,1]. The smallest total cost is when x =0 and y =0, which means that each customer doesnOt
consume energy at all. It is practically unreadse for the customerdso not consumdoad
requests at allThe reason to that is wheén=0.9, it makes the bill costvhich is part of the
weighted total cost3(15), so dominating that the cost incurred by the delay of energy
consumption is neglected.

Remark It All the above snulation result is based on N=100 customers. But in reality,

the customersO number is dynamic instead of a fixed number.

3.5 Conclusion & Future Work

This chaptehas proposed a problem of how to minimize the total cost for customers who
participate in theperation of smart grid by using demand response andimezapricing scheme.
Mathematical formation of the system and the problem statement is provided. To solve the
problem, a new redlme price scheme is proposed, and based on which, the algorittmal to

total cost minimization is proposed. But in order to find the minimal total cost, the method is to
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use discrete event simulation to conduct experiments basedferenlifsets of parametersh@
simulation experiments are divided into two major catessg: 1. Average Load Requests Input,
which means that the aggregated load requests fluctuate within [0, peak load] following Gaussian
distribution with a mean value of half of the peak load; 2. Large Load Requests Input, which
means that the aggregatexdd requests maintains stable at the peak level. In the 1st category,
since the load requests are not very large, &gt policy for the customers is tse as low of
load request as possible when the-teaé price is expensive. When the réale powerprice is
cheap, based on different weighted parameétein (3.15), customers may adjust the
corresponding y value based on the simulation results, in order to get the lowest total cost. In the
2" category, the load requests are very large. Whes lowe than 0.5, which means bill cost
is less or equally important as load remainder cost, the customers can adjust thénpalicy
similar wayasin the T' category. However, when the is ashigh as 0.9 or larger, the billing
cost dominates the ta cost,which meanghe customer will have to try not to consume load
request to lower the total cost.

The solution and the sets of discrete simulation experimental results may potentially lead
to a new angle of energy consumption scheduling prolfgrowing thatcurrent literature does
not offer much insight in solving the total cost minimization problem usgadtime pricing
scheme, this chaptdras filled another blank space on the big canvas that is smart grid.
Hopefully it will encourage more research todaeried on based on the work presentethis
chapter

Apart from focusing the benefit party as the customers, it would also be an interesting

journey for future work to consider how to enable the power providers to make the best out of
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smart grid, thatis to say how to maximize its profit while the customers total cost is also

minimized.
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4 TOTAL COST MINIMIZATION PROBLEMWITH FAIR DELAY IN SMART GRID
DISTRIBUTION

4.1 Introduction

In the last decade, human population increased rapidly. Accorditig tonited States
Census Bureau, world population increased from nearly 6.5 billion in 2005 to almost 7.3 billion
in 2015 [66]. Along with the growth of world population is the growth of world energy
consumption. The combined consumption of oil and coahgld from below 7500 million
tones oil equivalent in 2008 to more than 7500 million tones oil equivalent in 2010 with the
consumption of coal continues to gr¢®). The large growth of energy consumption during a
decade can be easily mapped out based on the growth of thyg&wperiod.

Knowing the norrenewable nature of worldOs primary energy resources, i.e. oil and coal,
two choics are available to maintain the sustainability of the world. These choices are the
development in renewable energy resources and energy conservation. Renewable energies only
counted towards 3% of the worldOs primary energy consumption in 2009, and tbat num
decreased to 1.8% in 2013], [6]. The shortcomings of the renewable energies, sucivias,
lack of wind, or low efficiency3], make it difficult for them to challenge the primary position of
traditional energy resources. On the other hand, energy conservation can be implemented
through improvig energyefficiency, and smart gris proven to be a promising research field.

A smart grid is Oan intelligent electricity network that integrates the actions of all uses
connected to it and makes use of advanced information, control, and communication

technologies to save energy, reduce cost and increase reliability and transpgnth® key
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functionality of a smart grid lies in communication because it is a network between the
customers and the power provider. This key funmcis knavn asdemand responséccording

to the Department of Energy (DoEJemand responsis @ tariff or program established to
motivate changes in electricity usage by euse customers from their normal consumption
patterns in response to changes in the wiagectricity over the time, or to incentive payments
designed to induce lower electricity usage at times of high wholesale market prices or when
system reliability is jeopardizedd].

Successfuldemand responsean benefit both energy suppliers and customers. The
diverse benefits offered bgemand responsenclude monetary savings, power efficiency
improvemats, flexibility, and reliability improvementfLO], [12]. However, researchetsave
found the adoption rate afemand responsprograms has been unexpectedly slfi?].
According to the paper[12], possiblepenalties related t@ontract breachand the limited
flexibility of current demand responsprograms together with other factors make customers
hesitant to adopdemand respongarograms. This can be a huge barrier to succedsfuland
response

The interactive nature afemand responsand demand respongerograms determines
the vital role of customer participatiqB2]. Without customer participatiomlemand response
would not be able to gather enough data to further their developnueEntsnd response
programs wouldhave nothing to respond to, andastrgrid would not be able to improve energy
efficiency to conserve the resources. Therefore, to attract more customers to participate becomes
a necessary condition fdemand responggograms.

Currentdemand responsprograms have two major concepts afstomer attraction.

They are reatime and fairnes$32]. The program that incorporates the +tae concept is
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known as the Redlime Pricing (RTP) Scheme. This pricing scheme charges customers hourly
fluctuating prices that Oreflect the real cost of electricity in the wholensalet10]. In fact,
Zhang et al[41] found that RTP did encourage and enable customers to take a much more active
role in scheduling their own energy consumptions to save energy, reduce cost, and in return
benefit he power grid operation. In terms of the fairness concept, current literature suggests
different definitions, whictarediscussed in detaih section 4.2Relate Workq12], [41], [52]
Researches done in faissehave mainly been done in the area of Ofair[hRO[60]. Fair bill
scheme aims at making the bill fare for different customers according to different grouping
criteria. One shortcoming of the fair bill schemes is that customers might have forveaiong
time for their energy request to be answered. However, this waiting time might be too long to
tolerate for some customers who need timely respond to their load request. Therefore, instead of
fair bill, this chaptepropose an algorithm basedn the concept of fair delay.

This concept of faidelayfor energy consumption schedulihgsyet to be discussed in
the literature. Its aim is to maintain the delays among customers are fair with other within a
neighborhood area networdkstribution netvork in smart grid. As a result, all customers can
have their energy requests met in a same timely manner, while having their total cost minimized
at the same time. This algorithm is based on switching betweenf-bound control strategy
and inbound o minimization strategy. fie simulation has confirmed that the algorithm
proposed irthis chaptewas able to respond promptly while lower the customerOs total cost.

The rest ofthe chapteiis organized as below. Section?24discusss the relatedworks.
Section 4.3describs the system model in whicthhe problem discussion @nducted Section

4.4 discusss total costminimization problem with fairdelay boundary. The solutioim the
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problem ispresented in section 4.%imulation design and results &sas can be found in

section 4.6

4.2 Related Work

Using energy consumption schedulingethod to study thdemand responss/stem has
been in trend for some time now for the RA&Mmand respongaroblem|[45], [46], [18], [15],
and[61]. The method provides many RTP solutions to benefit both the customers and the power
provider interms of reducing cost and/or lowering the peak demand load, which in turn makes
the power grid more efficient.

The study ofdemand response smart grid also started paying more attention to fairness
in recent decaded ?], [60], [62], [63], and[41]. Vuppala et af3 paperdiscussed the issue of
fairness indemand responsgrograms, with an emphasis on fairness principles that customers
regard highly of[12]. To decide what kind ofdemand responsprogram is OfairQ, they
considered the criteria listed as following. For rAush appiances, such as lighting, power price
will be fixed [12]. On the other hand, power consumed by-mustrun appliances will be
charged at mukdimensional price$12]. User category, income level, and appliance category
will be taken into consideration when determining the exact power [fié¢e

After almost two decades, fairness now has had its share of in depth discussion among
the researcher3he discussion of fairness also developed into different branches with the main
one being fair bill.

Zhang et al. looked at fair cost in smart homes with micrdgfifi Sometimes a number
of smart homes share one microgrid, and this sharing feature would eventually lead to
competition between homesspecially when local distributed energy resources cannot respond

to all load requests. Ithis chapterfairness was achieved through fair cost and it was defined
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differently from Vuppala et al.Os. Instead of coming up with their own definition, the sauthor
cited Mathies and GuderganOs definition, which described fairness as Othe reasonable, acceptab
or just judgment of an outcome which the process used to affi2edhe paper [41proposed

and experimented with a mathematical programming formulation that aims at maintaining the
fair costduring such competition between smart homes that share the same midrognper

[41] utilized lexicographic minimax method with a focus on mixed integer linear programming
approach to minimize ongay forecasted enegrgcost for each smart home. Theppa [41]

studied two groups of 10 and 50 smart homes with their distributed energy resource operation
and output examined. The simulation resulthe paper [41$howed a 30% and 24% cost saving

for the two groups respectively and a fair cost distribugimong smart homes in their scenario

Baharlouei et al. also introduced their criteria for fairness which was defined as Othe
variational distance between normalized billing vector for billing mechanism and normalized
billing vector for billing mechanism{®5]. Based on thidairness index, Baharlouei et al.
proposed a billing model that aims at not only improve the optimal general system performance,
but also improve the fairness of the billing sys{ési.

Fan[53] proposed a distributedemand responggogram and user adaptation in smart
grid. The proposed program and addiph was established with a reference to the congestion
pricing in IP networks. In Kelly et &g54] work on proportionally fair pricing scheme, it was
concluded that additiveincrease and multiplicative decrease rate control can achieve
proportional fairness. The criterion for fairness was a willingness to pay parameter, which held
the belief that customers who are willing to pay more should get more. FanOs work was

establishedn top of Kelly et al.Os work and the simulation showed pricing could indeed help



with shifting the load leveling burden from power supplier to the customers while maintaining
proportional fairnesgs3].

In terms of fairness performanckin[64] proposed a matrix that determines if users of a
system is having a fare share of the resourdcethis chapterwe apply the same methdo
measure the fairness in terms of the delay of load requests among all the customers.

From the above review on current literature, it is established that most of the researches
have been done in the fair bill area, where as none has been done faistelay. Bearing the
different approaches to achieve fairness in existing literathi® chapterattemps to achieve

fairness through fair delay.

4.3 Cost Minimization Problem With Fair Delay in RTP Demand Response Program Using
Energy Consumption Scheduling
4.3.1 Delay

One challenge for the utility to deploy the R@i@mand responssy/stem is to attract the
customers to participate in tltlemand respongerogram. Beside the retime need from the
customers, fairness is another important factor teesehit[32]. Fairness studyfdhe demand
responsesystem has incorporate a fairness index into degnand respons@rograms
emphasizing on fair bill between custom§tr8]. To the best of our knowledge, little attention
has been paid to fairness delay for the RIEmand responsystems.

Let d.(]) denote theaccumulativedelay for custaneri from timeslot 1 to timeslof .
For every timeslot, we can calculatél () at the beginning of each timeslasing following

iterative procedure,
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anda (j) is calculated by custom@éOsnergy consumption schedulidgcision.

However, since inthe realtime demand responssystem, customers are not only
concerned about minimizing thelling paymentsbut also thelelay of timehat will come with
scheduling of their energy consumption. Within a power system, each of the customer will
demand itsown desired amount of energy, if the power system can handle the load without step
into the peak stage, then the power system will let every customer to schedule the energy
consumption to fulfill the load demand immediately. But if the power systemteamdle a large
amount the energy load demand from all the customers, the power provider will need customers
to delay some energy for later consumption. Therefore, in order for the customers to feel fair, the
individual delays among all the customers arppssed to be bounded at a predefined level.
Thus, it isimportant to deal with the fadelay boundary.

For ! li,,i,!" {1,2,...,N} , wherei, andi, are any two customers, theitccumulative

4 (i q (i
delays d, (j) and d (j) can be calculated from (4.1Let '1j(J) and 'Zj(J) denote the

normalized delayfor the two customers dtmeslot j. Thus the fairdelay boundary can be

defined as follows,
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d,(j), d,(j)
i
forl1$ 1i,,i,1941,2,...,N}

n #O

(4.2)

where! , is a parameter set by the power providederhand responsystem and , " 0. In the

extreme case of, =0, this indicates that every customer has eyasdime level of the delay

during the system. But usually, in practi¢g,>0.
4.3.2 Problem Definition
Customer’s Total Cost Minimization with Fair delay Problem
Objective:
minCyy(j)

subject to

4.0), 4,0)

e
j j °

(4.3)

(4.30)

Remark |: Here we assume that each customeoiigdt about its load demahdj) at each

timeslot j. This problem is the same bill minimizatipnoblem as in4.1) with a fairdelay in

(4.2). The challege here is to satisfy the falelay condition. In order to satisfy the Ofair delayO,

two conceptareintroduced in the following subsection: tineerage normalized delamong all

the customers and each customer@malized delaydeviation from the average normalized

delayof at each timeslof .
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4.4 Solution

4.4.1 Average Normalized Delay and Delay Deviation
Let / (j) denotes thaverage normalized delaytimeslot j, and it is defined as
N
"d ()
I(j)=12t— 4.4).
(D=5 7 (4.9
The power provider at each timeslpotan calculate thiaverage normalized delay
Let ! .(j) denote thexormalized delayleviationbetween customerOs normalizedelay

and theaverage normalized delattimeslot j . In addition,’ () is defined as follows,

!i(j)=@" #(j) 4.5

Lemma i

d (j), d.0)f. , . : .
T! T #, in (4.2 of the problen{4.4) is the same as the following,

RONNOEIN (4.6

where!, (j) and!’; (j) are the deviations for any two customegrs, at imesilot j.

Proof:
NORMRG) =‘[dilT(j)" #())1" [@ #(J')]‘
I w w|
j j
Thus w! @‘ " #, is equal to (4.B). !

Therefore the problerf#.3) can also be equally expressed as follows,

Objective:
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minCy, (})

subject to

1G)" () # G or$ i, %(1.2,...,N}
Lemma2: (4.7b) will be satisied if both conditions are both met,

oy ]
max %,/ (j) #D+

/
min, ! (5)" #(J')$§

Proof:

|1, 1 )| # maxtty ! () min, ! ()
!

4.4.2 Delay Deviation Awareness Operations

Given the above twoonditions (4.8) and (4)9it is possible to bound the fair delay by

(4.7a)

(4.7b)

(4.9

4.9

~ I !
making sure that each custom&s deviatiois bounded as, (j)" [#(j)$%,#(j)+%]. But to

achieve this, each customer needs to knowatlerage normalized delagach time from the

power providerbefore scheduling the consumption of its own eneiidys means that every

customer need to be aware of whole OdelayO site&tibaneighborhood area netwogkid as

well as its own delay.

Then taking advantage of this awaess, the&nergy consumption schedulingn apply a

OfairdelayO strategy to make decisionsodi)) and reschedulé&(j) if necessary if it is not

fully consumedt each timeslot.
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BACK-OFF MNIMIZE MNIMIZE CARRY-ON

T T

-’(J’)#E0 £(J) /(j)+%°

Fig. 4.1 BackOff and CarryOn Operations for Fair Delay Bounding

As seen in Fig4.1, each customer is aware of the average normalized delay and its own

delay deviation of the normalizeckldy. If the delay deviatio®, (j) <7T(j)—%, it means the

customeri is leading within the N customers on the normalized delay, then in order to achieve

the OfaidelayO, the customer performBA&CK-OFF operation atimeslot j. On the other hand,
/ ~
if the deviation! (j) > "(j)+§, it means that the custome®s consumption is falling behind

among all N customers in terms of the normalized delay, then the customer perfOARRY -

ON operation. However, if the deviation satisfigg)" [#(1)$ () +- O] then customer

performs regular bill payment mininagon through thenergy consumption scheduling
BACK-OFF: if the customer chooses to baa#, it means that customeérmakes the
decision
0(j)=0, (4.108)
and reschedule itis(j) by adding it to the;(j) at tis timeslot, whichr,(j) is defined as follows,
() =r( D) (4.10)

d (i
This means that customerdjusts its leadinghormalized delay# more back to the

I H+1
average normalized delay#
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CARRY-ON: if the customer chooses to caow, it means thatustomer makes the
decision to consume the load demand of this timeslot and some of the remainder load of the

previous timeslot. Let r.(j) denote the consumed remainder load by the @mrgperation,

then
(D)= D" (), (4.11a)
o (j) =)+ r(), (4.11b)
where! 1.(j) is the solutio of
Ll =) (@.11)

()
This operation will reduce theormalized delapf customeri from ! (j)+".(]) to ! (j).
4.4.3 Balanced RTP Price Threshold

For each timeslot, the decision of choosfj) is made by the customérbased on a

threshold
i

power price thresholdLet (j) be the powerprice threshold. In a redime demand

response power system, each customer optimally consumes or schedodesdsmand ()

based on the power price of each timeslot using the energy consumption scheduling. Each
customer minimizes its cosalculated in3.15.

In order to let the customer@eergy consumption schedulitgmake decisions that will
both minimize the bill payménand bound the normalized failelay of the customers, we
introduced the power pricergshold in a weighted way in (3)1# assist the customers to make

decisions oo (j).

P (1) = PP+ R () (4.12
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threshold
¥ p

(j) is the threshold of power price that the custon@senergy consumption
schedulingwill use to manage all their appliances.
¥ p™(j) is the average power price that customéas been observed over the

timeslots, and it is a customized parameter for customer

4 pi feedbad

(j) is the power providerOs feedback parameter from the power provider that

indicates the delay deviation strategy depending oméighborhood area network
situation.

! is a predefined parartex by each customer, arid' [0,1] and it balances the impact
between each customerOs need of minimizing its bill payment and the powieerOs
coordination of faidelay.

4.4.4 Power Provider Feedbacks

Each timeslotj, j=2,3,..., the power provider wants to encouradlethe customers to

help the power provider to flatten its peak. This is exaxtinty the RTP power price in (4)12

But they can also adopt delay strategy to help customers to bound their delays to be fair.
~ / /
Now that when the customerOs delay devidtiop) < " (j)#? or!.(j)>" (j)+§ , the

energy consumption schedulipgogram will perform BaclOff or Carry-On operations to force

restrict the delays of the customers whose delay is out of fair bound tg teday deviation
! !
level. But at timeslot for the customers whose delay thon /,(j)" [#(j)$%,#(j)+%],

we introduce the Differentiated Delay Feedback for each customer based on their own delay
deviation status using“"“*(j).

Differentiated Delay Feedback (DDF)
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The idea let the power provider compare each customerQOs delay deviation with the

normalized aveage delay of all the customers at each timeglolf the delay deviation is
!.(j)=0, that means that at timeslpt customer Os delay is as fair as the average level of all

N customers. Then the power provider doesnOt give any feedback to impact the customerO:s

energy consumption schedulidgcision. If/ (j)" [#(J)$ ,0), then the power provider gives

old

a feedbackp™®**(j) to make the customerOs price thresipdlei(j) higher than it normally

uses to dissuade customer to contribute more delay @&nirgly consumption schedulitapd

/
consumgpon. If /. (j)" (O,#(j)+§] , then the power provider should give the opposite feedback

of p™®*%(j). Therefore, we propose to design the deldferentiated feedback as follows,
P () = (”$p(n (4.13
#( )

Remark I: In (4.18 if the !.(j)=0, the p™"“(j)=p**(j), this means that the

customer only takes the thredthoas the normal cost minimization problem. If

#(1)

NOR [#(J)$ #(j)), then thep™=(j)=p avg(1>+’[$()

%(j)], this makes the price

threshold threshold

threshold p, (1)>p™(j). The largerp, (j) makes theenergy consumption scheduling

/
possibly to schedule more energy for consumption at timgslét/  (j)" [#(j),#(j)+§] , then

the situation is the opposite.
4.4.5 Distributed Energy Consumption Scheduling Algorithm
The idea of theenergy consumption scheduling to set theenergy consumption

schedulingdecision making into 2 stages:
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Stage 1: Fairdelay Bounding Stage

For each customar, let theenergy consuption schedulingoprogram check the delay
situation based on the current normalized delay and the average delay of all the customers given
by the power provider. If ituns out of the boundary in (4.8) or (4.¢heenergy consumption
schedulingperforms Bak-Off or Carry-On operation.

Stak 2: Cost Minimization and Fadtelay Optimization Stage

For each customar, the energy consumption schedulimogram uses a stationary

policy y to decide how much remainder to consume if pgg)! p™=""“(j). Each customer

uses a stonary policy x to decide how much remainder to consume if pigg) > p™"=""(j).

Therefore, the decision of actually consumed energytimeslot 0 (j) can be calculated as

L (), 1 () > piee(jy:
Ol = - - - - - h@old . (4.1®
D)= )yt Gy i p() " pr=es ().

where0! x<landO! y! 1.

Energy Consumption Scheduling Algorithm:

Executed by Each Customer

/I busywaiting

1: wait for!(j) from the power provider unti
receiving it;

/I This means that this customehas delayed muc

less than the average

!
2 i 1,(1) <" ()# 2
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w

performBack-Off operation in (4.1

/
4. if-’i(i)>"(i)+§;

a

performCarry-On operation in (4.1}

o

if1,31)" ()82, (1) + 2]

threshold

using p. (j) calculated in (4.1pto find the

N

optimal policy (x,y) defined in (4.1%

4.5 Simulation

4.5.1 Simulation Design

Assume every timeslot there is a load request, but the request could be zero. Also assume
that the amount of each customeo@d Hdemand follows the same normal distribution.

Note that the time in the simulation is integer, marked as timeslots such as 1,2,3, E. Here
time of 1 means that itOs ti&tilneslot. Initially, every customer schedules its first load request
at the begining of the i timeslot and sends the request to the power provisksume the
communication overhead and delagtween all the customers and the power provider are
ignored.Then the power provider updates the #t@ak power price for the current timesafter

receiving the load requests. Finally, each customer makes its own energy consumption decision
on how much load to consume and how much load to delay at cifre¢imeslot using the

energy consumption scheduling algorithm in last section.

Table4.1 Stream Table

Stream Purpose

1 load requests time |
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constant and requests

each timeslot

2 load request of
customer follow the
above norma

distribution

For the measurement of delay fairness, wedvothe concept of fairness index proposed
by Jain[64] as,
N .
(" d()
Tdy(3),d, (i), dy (D] = —Fg—, (4.19
N# d(j)*
i=1

whered,(]) is the delay focustomeri defined in (4.}, and! denotes the fairness index of a set
of N customersO delays. lé&sult ranges froml}T and 1, which are the worst case and best case

respectively.
4.5.2 Simulation Setup

Let every customer generate a load request follpwthe normal distribution
N(u/N,(u/3N)?) at each timeslot, wherg is equal to Load Peak. Load Peak is the parameter
set by the power provider. Because the timeslot here is considered to be a very small unit time, it
is assumed that the Load Peakl®&kWh by the power provider. Also assume that the total
simulation running time is 1000 timeslots. Assume that there are 100 customers within the power

providerOs distribution network. This means the aggregated load seg{jipshaintains stable

at the peak load level.



4.52.1 ! =0.1and !/, =0.1

Table4.2 Simulation Parameters

Experiment Values
Parameters

Load Peak 1000kWh

N 100

Sim_time 1000

! 0.1

! 1

s 0.1

H 1000kWh

The simulation set of parameters are given as shown in Table 4.2, and the weighted
parameter is set to 0.1, to emphasize the importance of the load remainderOs delay cost in

(3.15). Also, the fair delay boundary is set'as0.1.

As seen in Fig. 4.2 and Fig.3, they show the total cost plot lines based on different x
values. When x=0, the total cost has the lowest value, and the other lines plotted by the rest of x
values are quite close with each other. But as seen in Fig. 4.4 and Fig. 4.5, when xt0td|, the

cost is slightly lower than the rest of x values.
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Fig. 4.2 Total Cost for fixed x=0.5, x=0.6,E x=0.9.
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Fig. 4.3 Total Cost for fixed x=0, x=0.1,E x=0.4.

As seen in Fig44 and Fig.4.5, they show the total cost plot linesdea on different y
values. e results show that all the lines with different y values are overlapping with each other.
This means that when the y value varies from 0 to 1, thedosaldoes not change much. This

result can also be verified in the F2 and Fig4.3.
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Fig. 4.5 Total Cost for fixed y=0.0, y=0.1, E ,and y=0.4.
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Total Cost

Fig. 4.6 Total Cost 3D

As seen in Fig. 4.6, it shows that the performance of the total cost in 3D plot, and when
x=0.0, the total cost has the lowest value sTihieans that the best policy for the customer to do
IS not to consume any load requests when thetiraalpower price is expensive h€ varying y
value does not have much impact on the total cost, this means if tHeneegdower price is
cheap, the bestolicy for the customer is consume all the load requests generated at the current
timeslot and load remainder is consumption is not relevant in terms of lowering the total cost.
But all the above result is not considering the fairness boundary in delayhgeefore, the fair
delay results are analyzed below.

As seen in Fig4.7 and Fig.4.8, they show the fair delay performance as several lines
based on different x values. It is quite obvious that when x=0, the fair delay index is lower than
0.8, whichis much lower than the rest of x values, which are higher than 0.99. This means even
when x=0, the policy makes the customers have lower total cost, but in terms of the fair delay
index, the performance is bad. Therefore, even the total cost is the Wavegsk=0, the policy is

not acceptable due to its bad fair delay boundary violation.
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Fig. 4.7 Fairness Index for fixed x=0.5, x=0.6, E x=0.9.
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Fig. 4.8 Fairnes Index for fixed x=0, x=0.1, E x=0.4.

As seen in Fig4.9 and Fig.4.10, they show the fair delay performance as several lines

based on different y values.h& results show that the varying y values all have the same good
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performance on fairness delaydex, which are over 0.99, except for the case when x =0. This

means that the y valuenst importanfor making the policy in order to have a high fair delay.

Fairness Index

02 03 04 05 0.6 0.7 0.8 09
X

Fig. 4.9 Fairness Index for fixed y=0.5, y=0.€, and y=1.
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Fig. 4.10 Fairness Index for fixed y=0.0, y=0.1,E ,and y=0.4.
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Fairness Index

Fig. 4.11 Fairness Index 3D

As seen Fig. 4.11, it shows that most of the fairdetsy performance is as good as 0.99,
which means that 99% of the customersO delays are maintained at the same level. But when the
x=0, it show the fairness index is somehbelow 0.8. i is because even when the reale
price is greater than the thredth price, the policy still makes customers to choose to delay all
the load requests consumption for cheaper price, which break the fair delay boundary. Therefore,
to best policy for the customers to choose to have the lowest total cost while mainteerfiaig t
delay boundary is x=0.1 with all the possible y values.

45221 =0.1and !/, =0.5

This set of simulation parameters is given as shown in Tal8eln this setting, the
weighted parameter is still set to 0.1, to emphasize the importance of thd reaainderOs

delay cost in the total cost. Also, the fair delay boundary is sef=8s5, which has a larger

space for all the customers to bound their delay comparing to the previous simulation setup.
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Table4.3 Simulation Parameters

Experiment Values
Parameters

Load Peak 1000kWh

N 100

Sim_time 1000

! 0.1

! 1

s 0.5

H 1000kWh

Total Cost
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Fig. 4.12 Total Cost for fixed x=0.5, x=0.6,E x=0.9.
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Fig. 4.13 Total Cost for fixed x=0, x=0.1,E x=0.4.

As seen in Fig. 4.14 and Fig. 4.15, they show the total cost plot lines based on different y
values. Wien y=1.0, this total cost has the lowest value throughout-thésx This meas that
when the reatime power price is lower than the threshold price, the best policy for the

customers is to consume the load requests gmtkat the current timeslot, as welltlhs 100%

of the normalized load remainder.
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Fig. 4.14 Total Cost for fixed y=0.5, y=0.9, E, and y=1.
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Fig. 4.15 Total Cost for fixed y=0.0, y=0.1, E ,and y=0.4.

As seen in Fig. 4.16, when x=0.9 and x=0 it has 2 lines with theslototal cost. x=0.9
means that the best policy for the customers is to consume 90% percent of the load requests
generated at the current timeslot if the 1tg@ale power price idigher than the threshold price.
Whereas when=0, it is best for customets choose to delay all the load requests generated at
the current timeslaf the realtime power price is higher than the threshold price
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Total Cost

Fig.4.16 Total Cost 3D

As seen in Fig. 4.17 and Fig. 4.18, tlslpow the fair delay performance as several lines
based on different x values. It is quite clear that when x=0, the fair delay index is lower than 0.85,
which is obviously lower than the rest of x values. When x=0.1, the fair delay index is at

[0.9,0.95]. The x is greater than and equal to 0.2, the fair delay index is higher than 0.95.
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Fig. 4.18 Fairnesdndex for fixed x=0, x=0.1, E x=0.4.

Fig. 4.19 and Fig. 4.2@how the fair delay performance as several lines based on
different y values. It is shown that when x is greater than or equal to 0.2, the y value does not

impact the fair delay index much.



Fairness Index

Fairness Index

Fig. 4.20 Fairness Index for fixed y=0.0, y=0.1,E ,and y=0.4.
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Fairness Index

Fig. 4.21 Fairness Index 3D

As seen in Fig. 4.21it shows that the performance tdir delay, and it shows that the
fairness delay index is as good as Gr9ost cases. This mea85% of the customersO delays
are maintained at the same lev@nhly when the x=0, it shosthe fairness idex is somehow
below 0.85. Tiereason behind this result is tleaten when the redgime price is smaller than the
threshold price, the customer still chooses to delay for the next timeslot to consume the load
requestsTherefore, théest policy for the customets choosdrom isto have the lowest total

cost while maintaining the fair delay bwary atx=0.9 and y=1.

4.5.2.3 Fairness Index Comparison With Non-Fair Delay Energy Consumption Scheduling

In orderto show the effectiveness of the fair delay control algorithm, we compare fair
delay performance of the algorithm this chapterwith the energy consumption scheduling
algorithm without fair delay control with the same set of simulation parametersihsiable

4.2.
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From Fig.4.22 it can be seen that the fair delay control algorithrthis chaptethas
effectively improved the fairness of the delay among all the customers with all the x values
comparingto the energy consumption scheduling algorithm wauththe fair delay control. The
algorithm with fair delay control has the fair delay index mostly at the level of 0.99 while the

algorithm without fair delay control is mostly below 0.8.

1 + + + 4 + + + +

/ —+— ECS with Fair-delay Control

09 / —+H&— ECS without Fair-delay Control [
I

Fairness Index
=

0sf | ]
04t | JAERN
03}/ 4

02 ?v' i

0‘1 1 1 1 1 1 ‘E}-______l 1
0 01 02 03 04 05 06 07 08 09

Fig. 4.22 Fairnesshidex Comparison Between Energy Scheduliggrithms with and without

Fairdelay control

From Fig. 4.23 it can be seen that the fair delay control algoriththisnchaptethas
effectively improved the fairness of the delay among all the customers Witheay values
comparingto the energy consumption scheduling algorithm without the fair delay control. The
algorithm with fair delay control has the fair delay index mostly at the level of 0.99 while the

algorithm without fair delay control is mostly bal®.4.
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Fig. 4.23 Fairness Index Comparison Between Energy Scheduagitams with and without

Fairdelay control

4.6 Conclusion

This chapterhas studied the total cost minimization problem with faiagelonstraint
using energy consumption scheduling method in smart grid distribution. In order to bound all the
customersO delay within a fairness range, an algorithm is proposed withffbaekry-on and
optimize procedures. In order to find the bestigyofor using this algorithm, discrete event
simulation is used to find the best policy in order to lower all the customersO total cost while
bounding the customersO delays within a fairness range. In order to let the system reflect the
delay impact, theoad requests are setup as high as load peak level. Then the simulation is
categorized with two setups: 1. Fair delay boundan0.1; 2. Fair delay boundam;=0.5. In
the ' simulation setup, the best policy for the customers is to choose is x=0.1 wilte all
possible y values, in order to have the lowest total cost while mairgdherfair delay boundary.
The best policy of the"2simulation setup for the customers is to choose to have the lowest total

cost while maintaining the fair delay boundaryx#.9 and y=1. From the above two simulation
12¢



setups, it is shown that if the fair delay boundary is too tight, the customers will have to consume
less energy while maintaining the fair delay boundary. Therefore, it is vitally important for the
power provier to pick up a proper fair delay boundary to let the customers consumes energy at a
lower total cost and maintaining the fair delay at the same time.

At last the fair delay index is compared between the algorithm with and without fair
delay control fungon. The results showed that the algorithm without fair delay control has a fair
delay index lower than 0.4, while the algorithm with thig delay control in this chaptéras a
much better fair delay index performance, which is higher than 0.99.

However,the limitation on the length of the chaptenly allowed a certain amount of
discussion to be conducted. Future work can look further into fairness problem from fair bill, fair

delay, or otherwise.
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5 SCHEDULABLE ENERGY £HEDULING ALGORITHM USING OPTIMAL
STOPPING RULE IN SMART GRID DISTRIBUTION

5.1 Introduction

The relationship between people and energy has been changing rapidly in the past several
decades. The simple consumption of energy is becoming a more complicated issue because of
the growing poplation and revealing shortage of natural resources. Instead of pure consumption,
energy is now being scheduled, conserved, and even sold back to the power grid by consumers as
a method to contribute to a more environmentally friendly society.

The emergete of smart grid is a huge step forward for people to use energy in a more
efficient manner. A smart grid is known as Oan intelligent electricity network that integrates the
actions of all uses connected to it and makes use of advanced information,, camdrol
communication technologies to save energy, reduce cost and increase reliability and transparency!
[9]. Smart grid is altering the cfdishioned energy consumption pattern slowly. Because of its
smart feature, such as flexibility andstaninimization, consumers are now much more educated
about their own energy consumption pattern. To ensure the world continues to develop in a
sustainable manner, it is essential for smart grid to be further studied and optimized from various
angles.

Among all the researchable topics of smart gddmand response one of the most
promising one$l]. In factit has been shown through literature thaimand responss capable
of delivering significant benefits to not only the customers but also the whole si@ietjhe

definition of demand responseas cited from the Department of Energy,(s tariff or program
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established to motivatehanges in electricity usage by euse customers from their normal
consumption patterns in response to changes in the price of electricity over the time, or to
incentive payments designed to induce lower at@ttrusage at times of high wholesale market
prices or when system reliability is jeopardiz¢tfOWhat males it easier fodemand response
to accomplish abovmentioned purposes &ergy consumption scheduling

energy consumption schedulimg a trendy topic among the researchérsing energy
consumption schedulingiethod offers the opportunity to conquke trealtime and automation
challengeg14]. In other wordsenergy consumption schedulihglps withmotivating customers
to change their consumption pattern. In terms of-tiead, here are various types of methods
that target at situations when rd¢imhe price is not known before thenergy consumption
schedulingdecision is made. One of them is to ma&XTP price predictiond4]. Customers then
makeenergy consumption schedulidgcisions based on thpeediction. Another method is to
make believable assumptions of #mergy consumption schedulidgcisions, which are based
on other customersO load demands andeheigy consumption schedulidgcisiong57] or the
power providerOost[15]. Regardless of the various programs that adepésgy consumption
schedulingnethod, there is room left f@nergy consumption schedulitmadvance further.

Optimal stopping ruless an optimization model that minimizes or maximizes solution if
conditions are satisfiel5]. The papefl17] applied it to the Home Energy Management (HEM)
using it to optimally schedulall the appliances. It has the advantage to schedule each appliance
individually, which allows flexibiity when peak arrives. It will automatically run some or all the
household appliances. Another advantagemifmal stopping rules that apart from being a

model, it also offers mathematical solutions to the model based on it.
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In this chapteroptimal sbpping ruleis combined withenergy consumption schedulita
achieve cost minimization. Unlikethe paper[17] focusing on scheduling all the appliances
within the HAN in the smart grid distributionthis chapteris focusing on the customersO
scheduling behavior withinhe neighborhood area networkMoreover, this chapteralso
consides comfortable level as a constraint for the cost minimization problem and gsek
solution.

The rest of this chaptés be organized into five sectisnRelated work is in section 5.2
The system model built uparptimal stopping rulean be found in section 5.8ections.4is the
solution to the problems. Simulation is theonducted in ection 5.5. Finally, the chapter

concludein section 5.6

5.2 Related Work

Using energy consumptioachedulingmethod to study thdemand responss/stem has
been in trend for some time now femergy consumption schedulings been widely used in the
exploration of RTPdemand responsprograms[15], [18], [45], [46], and [61]. The method
provides many RTP solutions to benefit both the customers and the power provider in terms of
reducing cost and/or lowering the peak demand load, which in return makes the power grid more
efficient. Most residentialdemand responsstudes are mainly focused on the appliance
scheduling during the RTP environment. This focus has brought many useful desgesgyf
consumption schedulingchniques into the RTékmand responsmlution set.

In the paper[50], the authors looked into a redahe energy consumption scheduling
algorithm wih load uncertainty that aims at bill minimization for individual residential
customers. The loascheduling problem was formulated @an optimization problem. he

researchers adopted an approximate dynamic programming approach to make the computing
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simpla. They also studied the difference between mustappliances (such as lighting) and
controllable appliances that are much more flexible. Instead of assumidgrtiend response
algorithm understands customersO energy needs perfectly, the algorithsegbinfsas chapter
survives on only some estimates of future demand. Their algorithm combined RTP with inclining
block rates to balance residential load in otdeachieve a low PARS0].

Demand respongarograms designed in a distributed network have also been discussed.
The paper[9] proposed a distributed framework fdemand responsand user adaptation in
smart grid networks. The authiorthe papef9] utilized his knowledge in Internet traffic control
and transferred the concept of congestion pricing detmand respong@oblem ancattempted
to shift the burden of load leveling from energy provider to the customers through pricing. Based
on the assumption that customers will definitely adapt to the price signals to maximize their own
benefits, Fan modeled user preference as a giléas to pay parameter, which was treated as
same as an indicator of differential quality of service. Although the analysis and simulation in the
paper both demonstrated the convergence of the proposed algorithm, as Fan himself writes in the
paper, the maal used irthis chapters highly abstract that makes it impractical. In other words,
regardless of the success of analysis and simulation, FanOs framework is not practical enough tc
be adapted into industrial application. But the idea of soldemand rsponseissues with
concept originated from the Internet is quite enlightening and will hopefully come in handy for
future exploration.

The papef17] proposedan opportunistic scheduling scheme basedmimal stopping
rule as a reatime distributed scheduling algorithfor smart appliances® automation control.
They assumed that a smart appliance has the ability to automatically schedule its operation based

on RTP, andhat the operation of every appliance in the customerOs home is indepEmeient.
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scheduling scheme fased on educing customerOs bill while consideting waiting time that
the customer has to put up wiffhus Yiet al.[17] assumes thdhe power price using statistic
method following uniform or Gaussian distributidrhe single load cost minimization problem
defined in[17] is very smilar to the house selling model [[B8]. Then Yiet al.[17] extends the
minimization problem on the single applianceOs cost minimization to muétjpliances
scheduling with and without maximum load allowaateach timeslot.

The following sectiorexplores the problem discussed this chapteland establisésthe
system model.

5.3 Single Load Demand Cost Minimization Using Optimal Stopping Rule
5.3.1 System Model

Assume that there amé customerql,2,...,N} within the power distribution system.
Assume that time is divided intimeslos, and therefore let timeslgtdenote the time period
[j't,(j+D!t), wherej=1,2,...,and! t is a unit time per timeslot.

For each timesloj =1,2,..., the customei may have a load demand, and 1¢})
denote the customéiOs load demand generated at timgslothen at timeslof the load
demand may be consumed at the very timeglot may also be kept waiting and consumed at a
later timeslot of a lowerrce.

Let P(2),P(2),..P(j),... denote a sequence of price random variables; thus, let
pD), p(2),...,p(j),... denote the observations of the sequence of random variables
P(1),P(2),..P(j),... Thus, p(j) means the realme power price at timeslat.

Let j denote the current timeslot. But how to find the exaw¢sld for the load demand

l.(j) to be consumed in order to minimize customer's cost is the problem. Noted that if the

12¢



customer waits for a future timeslot for that load consumption, it may have a lower power price
later, but then it will pay for the cost of delagithat load demand during the waiting period.

LetOs assume there is a scheduling algorithm for each load defijamdn by each
customer, based on the input of load demand and RTP price from serverdéebte one
scheduled timeslot for load demah(j), wheren! j.

Then thel.(j)! p(n) denotes thecheduled bilfor load demand. (j) if it is consume at
timeslotn, and(n! j)"c denote thedelayed cosfor load demand.(j). For an arbitrary load
demandl.(j) generated at timeslgt for customeri, we consider two tradeff costs: the
scheduled bill payment and the delay cost. Thustdited costof the load demand is expressed as
L(j)!'p(n)+(n" j)!c, wherec is the delay cost per times|awhich is defined by all customers.
Now the problem of minimizing the cost means minimizing the above total cost féwaithe
demand! (j).

Let vy, ;(n) denote theeward functionfor the load demand(j) if it is scheduledn® to
timeslot. t be can defined as,

v, (=18 x,(n)+(n! j)"cg, (5.1)
wheren=j,j+1j+2,... Therefore, this reward is the negation oftital costof load demand
l.(j) ifitis scheduled an™ timeslot

To summarizein order to solve the above single load demand cost minimizing problem,
finding the optimal timeslot for the single load demand to minimize the total cost is the key
procedure. Fortunatelpptimal stopping rul¢58], [65] provides a mathematical model that can
find the optimal timeslot. The follomg content introducsehow to model this problem in the

optimal stopping rulenodel and how to solve it.
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Let X ;(n) denote the random variable @hal bill paymentOs negatidh the load

demandl,(j) is scheduled ah™ timeslot It can be defined as
X; (M) =11(j)"P(n). (5.2)

X, ;(n) is a function of the random variabR(n), and for eacn, I;(j) is a known
constant value. Lex ;(n) denote the observation o€ ;(n). LetY, (n) denote the random
variable of the rewards.

Consequently, the equation (1) can be expressed as,

Y () =1[X;(n)+(n! j)"c] (5.3)

Then we can gey; ; () =Y ;(N) Ix  =x, -

The optimal stopping rulenodel of the cost minimization problem for the single load
demandl;(j) can be defined as followsety, (j), y;;(j+1), E, y,;(! ) denote a sequence of
real valued reward functions. Given a sequence of random varixpl@s), X (j+1),

X (j+2), E, assume that their joindistribution is known. Therefore, tlagtimal stopping rule
problem is finding the optimal timeslot for the load demand to stop in order to get the maximum
rewards. Here the load demah(jj) continue observing the bill payment and delaying its
consumptionand here stopping means that the load denh&nl stops delaying and starts to

consume. For example, this model can be described as arselliagtproblem. If there is a

housedecided to be sold in the market at timeglpthen the owner can observe ak tprice
offers since timeslof. Then the owner has two options to choose at each timeslot. Option | is
that the owner can accept the price observation at timesdoid sell the house. Similar for the

load demand, the customer can observe the bill payiXe(f) = x ;(j) that is needed to pay if
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the load demand is scheduled at timegloOption Il is that the owner can delay the selling at
timeslot j and observe the future sequence of house prices but with advertising cost of each

timeslot. Similar to the delay cost tfe load demand, the customer can observe future bill

paymentsX, (j+1)=x (j+1), X ;(j+2)=x;(j +2), E for as long as the customer wish to
continuing delay. In general, for each j,j+1j+2,..., after observingX(j)=x(]) .
X, (J+D)=x,(J+D), E, X; ;(n)=x;(n), the customer may stop and receive the rewards.

Let / [%,;(i),%,;(J +1),....x,;(n)] denote theprobability of stoppingat each of the
following observations are observed from timesjoto timeslotn, which depends on
observations ok ;(j) =x ;(J), X;(j+D=x;(j +1), E, X; ;(n)=x ;(n). Then astopping rule
is defined as a probaliks vector as followfs8],

! (i’j’n):{”j[.xi,j(j)].!”j+1[xi,j(j)1xi,j(j+1)]” (5.4)
ML 06 (0% 5 (D), ()]}
wheren! j.
Let n(j) denoe the n(j)" timeslot that yield the maximum rewards)d at which
timeslot thatstopping occursand j! n(j)! " , wheren(j)="! if stopping never occurs

which means that the load demand is never sdbddfor consumptionMoreover, it is
determined by both the observatiods (j)=x ;(j), X;(j+1)=x,(j+1), E, X;(n)=x (n)
and the stopping rule(i, j,n).

Let! [X;(]),---,X;(n)] denote the randomariable of the stopping occurs given a

sequence of random variabl&s, (j),...,X ;(n) . Therefore given observationsx ;(j), E, and

x;(n), let!  denote the probabilitgf n(j)=n, and it is defined as
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Pl (0% (G + D)% ()]

=P[n(i)= nIX;;(1)=x, (), (55)

for n=j,j+1,..., and hereP. stands for probability function.

Based on the Chapter 1[68], ! , can be calculates usirlg as follows,

Foalx ()% (D)0 ()]
=15 @ AL, G400, 0] (56)
HINBATX (1), (J + 1), (N)]
Then optimal stopping rule is the rule that achietreg maximum reward value. Let
I "(i,j,n) denote the optimal stopping rule, and \§t "(i, j,n)] denote theOptimal stopping

rule reward valueby choosing the optimal stopping rul€ (i, j,n), and the reward cabe

calculated af58],

V! (L. = ELY, (n ()]
(5.7)

n=j
for n=j,j+1,..., hereE standdor the mean expectation of the random variable.
5.3.2 Single Load Request Of A User Cost Minimization Problem Using Optimal Stopping
Rule
Therefore, based on58) the maximum reward of the single load request cost

minimization problem can be defined as

MaxeLy; (]

n=j,j+1,..

=maxe{! [X,,(m+(n! j)cl}

n=j,j+1,..

(5.8)
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Noted that whem=n(j), the maximum reward is achievedaBed on§.1), it equals as

follows,

maxEeLy; ; ()]

n=j,j+1,..

= MIiNEPM!;(j)+(n" j)!c]

n=j,j+1,..

(5.9)

We can derive the following theorem based on the Theorem in Chagftbodk[58].

Theorem 1if {P(n)} is an i.i.d. process, then the optimal stopping rule which solves the
singletimeslot cost minimization problem i6.8), exists, and is calculated as
n()=min{n! j:pn)" z'} (5.10)

where Z is the unique solution of

Elz! p(j)’ =% (511)

where E[]" stands fothe value is larger than zero.

The proof of Theorem 1 is given by the theory of optimal stopping rule in the Chapter 4
of book[58], by transforming %.2) into their Theorem of Optimal Solution to Housing Selling
problem (without recall).

Note that by using this optimal method, the problem5d)(is transformed inta price
threshold problem. ¥ stopping hee it means when the refane pricing is lower than a
thresholdpricevalue, the load demand will be consumed at the timeslot.

Even though the power price is not a -grdwn but mathematically, the statistic
distribution of the power price should be fr@wn, in order to solve tht@reshold in $.11).

If P(n) is uniformly distributed o p,, p,], then the solution of can be calculated by

plug intothe solution i17] as
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. BT e ‘1
NG P (12)

Remark 1 If the reaitime power price of eactimeslotis following other distributions, such as
Gaussian distribution, it can also usirigl(l) to calculate the threshold to make the stopping

decision.

5.4 Customer Cost Minimization Problem Using Optimal Stopping Rule Within

Comfortable Level

Sincethe optimal stopping rulenodel gives a solution to find the optimal timeslot for
scheduling each single load demand to minimize its total cost, it can also be designed to solve the
problem of multiple load demands throughout a day or several days. Bveathis, we can put
multiple load demands into the delaying status, and check the price threshold for each load
demand at each timeslot. Assume that there is no instantaneous load cap for each customer. If the
RTP price is lower than the price threshotdsseveral load demands, then these load demands
can stop delaying and start to consume.

However, the problem is that theoretically it is possible that some of the load demands
will be kept delaying for a long time so that the customer will not be satisfith optimal
stopping rulescheduling results. But in practice the customer cannot let the load demands delay
unlimitedly to later timeslots. Therefore, in order for customt&r have a comfortable level of
power consumptionf needs to satisfy an accepted energy consumption level for the customer to
be tolerant about the energy consumption delay.

Let ! O denote the predefined acceptable comfort level of energy consumption of

customeri for a day. This is the minimum total load demand that custornaan betolerant

with the delay of load consumption. Assume that each customer is honest about its load demands.
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Let K be number ofineslots for a day. Then the current timeslatan be expressed as

j=Kv+u, (5.13a)
where
u=01..K'1
v=0L.. (5.13b)

Let 0(]) denote the actually consumed power load fetameri during the timeslof .

Cost Minimization Problem within Comfortable Level

Then the problem can be formulated as,

Objective:
. [K (v+1)+u]#1 .
mingl $ ¥, (5.14a)
subject to:
Y (=X (n)+(n! j)c] (5.14b)
X ;(m=1(j)P(n) (5.14c)
. HOLMEI () =0
!i(J)_&!,n!ifmi(j)" 0. (5.14d)
[K(v+1)+u]#1
o" $ ali). (5.14€)

j=Kv+u
Assume that each two load demands during the day are independent to each other. That is,

for! j,)," {},]+L....i+K#L , I.(J,) andl.(],) are independent to each other. Since last

subsection we introduced how to solve single load cost minimization problem agsgingal

stopping rulemodel. Therefore, for all load demand that is geeeray the customer during the

day, they are put into the delay status and usin@phienal stopping rulenodel to calculate its
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price thresholds. If the reéime price is higher than their price thresholds, they are kept delaying
for the lower price taninimize the total cost until they are(j,)" andn (j,)" timeslot.
Let S(]) denote the set of all the load demands that are scheduled to the timeslot

can be epressed as,

S ={0IkHL.1" (5.15)

Let 0(]) denotethe actually consumed power lofat customeri during the timeslof.

Here we assume that there is no maximum constcdithe instantaneous load consumption at

eachtimeslot that is, if multiple load demands are scheduled to consume at current timeslot

then the customer will consume all of them. Thgy§j) can be calculad as,

%Z" | (k) in () #

a()=% " oY
&1 (k) +1L () NFIN() = |
&k!S(j)

Another challenge of this problem is that if the customer keeps delaying its load
consumption, it may miss the acceptable comfortable level of energy consumption constraint.
Therefore, the need for customer to deare of the how far it is away from missing the

acceptable comfortable level of energy consumption.

Let ¢ ; denote thecomfortable cost per timesldiefore the! O is consumed for every

individual load demand, () after it is generated and it can be defined as

0" # ok

KT EKV ik (5.17)




In order to improve the chance of guaranteeing the comfort level of consumption of the
load demands while theptimal stopping ruleschedulingkeeps delaying the load demands to
minimize the total cost. The solution is to integrate tHif) unit comfortable cost into the
optimal stopping rules model, it means if the customer chooses to delay load dejjafut
one timeslot, it not only pays the fixed delay cost each timeslot, but also pays a corresponding
comfortable cost for the load demand per timeslot. It means that if the customer keeps delay that
load demand, then there are two costs that emchwould pay for.

By using the model from last subsection. Xgi(n) =1,(j)P(n), and Ietc,‘f’j‘a' denote the

total cost per timeslot that the customer pays for the load deh{ahaach timeslot. Then itan

be defined as,

¢ =c+g,. (5.18)

Then we can derive to Theorem 2.

Theorem 2if {P(n)} is an i.i.d. process, then the optimal stopping rule which solves the

single timeslot bill payment minimization problem {5.9), exists, and is calculated as
n(j)=min{nt j:p(j)" 2} (5.19)

where Z is the unique solution of

E[z! p(j)r:% (5.20)

If P(n) is uniformly distributed o p,, p,] , then the solution of can be calculated as

Z*:\/Z(pb! P)(C*C) (521)
1;(j)
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Remark Il: each customer can apply this modified optimal stopping rule model with
comfortable delay cost con using soluti@®2() as the thresha for each load demand. If the
RTP power price is lower than the threshold %21), the customer decision to run the load

consumption for demanki(j) . This method is expected to minimize the cost for customer with

an acceptable el comfort constraint.

Energy Consumption Scheduling Algorithm
Using Optimal Stopping Rule: Executed by Eacl

Customeri

/I busywaiting for the reatime price p(j)
1: wait for p(j) from the power provider uiht

receiving it;

2 10" # o(K)$0

k=Kv+u

w

update the threshold usiriga1)

4: make the decision 06.06) based on5(21)

j
5. if 10" # o(k)<0

k=Kv+u

o

update the threshold usirg12)

\]

: make the decision 05(16) based o(5.12)




5.5 Simulation

5.5.1 Simulation Design
Assume that at every timesleich customer generatadoad request, but the request
could be zeroAssume every timeslot there is a load request, but the request could be zero. Also

assume that the amouriteach customer®s load demand follows the same normal distribution.

Table5.1 Stream Table

Stream Purpose

1 load requests time |
constant and requests

each timeslot

2 load request of
customer follow the
above norma

distribution

3 Power price follows the¢
uniform distribution

over timeslots

Note that all the time in the simulation is integer, marked as timeslots such as 1,2,3, E.
Here time of 1 means that itOs tfdimeslot. Initially, every custmer schedules its first load
request at the beginning of th& timeslot and sends the request to the power providesume

the communication overhead and delmtween all the customers and the power provider are
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ignored.Then the power provider updatthe reatime power price for the current timeslot after

receiving the load requests. Finally, each customer makes its own energy consumption decision

on how much load to consume and how much load to delay at cyfreimeslot.

Table5.2 Simulation Parametsr

Experiment Values
Parameters

Load Peak 1000kWh

N 100

K 1000

Pa 0

o8 0.1

o 50% of Load Peak

u 1000kWh

c 0.2

Assume all the customers have the same level of comfortable requirements, which means

that! O is all equal where=1,2,...,N. Let every customer generate a load reqlés}

following the normal distributiorN(u/ N,(u/3N)?) at each timeslot, wherg is equal to Load

Peak as seen in Table 5.1. Load Peak is the predefined gridOs load handling status, which is
constant seby the power provider. Because the timeslot here is considered to be a very small

unit time, it is safe assumed that the Load PedR@kWh by the power provider. Also assume

141



that the total simulation running time of a day is K=1000 timeslots. Asshatdhtere are 100

customers within the power providerOs distribution network. Price random v&{gpléollows
the uniform distributionP(j)! U(p,,p,). The full set of simulation parameters are shown in
Table 5.1.

With the above simulation design and set of parametergyrder to compare the
performance of two algorithms, we introduce a normalized metric.ct®¢j) denote the

normalized total cost for customerat timeslotj . It is calculated as

#  [0(0pk)+c(k! m)

CoRl () = Kb s ; , (5.22)

where §(k)is defined in $.15).
5.5.2 Total Cost Comparison with Greedy Algorithm

For the greedy algorithmntuitively, it consumes the load requests whenever the real
time power price is lower than the average RTP power price.

From Fig.5.1, it is seen that the total cost using the Optimal Stop Rules is much lower

thanof the Greedy algorithm after the fdfmesiot.
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5.5.3 Performance Comparison Based on Different Waiting Costs
The simulationOs setup is seen in T&t8e The reatime power price still follows the

uniform distributionP(j)! U(p,,p,). The comfortable level is 70% of the Load Peak level.

Load requestOs normal distributjpr70%*Load Peak. Therefore, the goal of thisusiation

setup is analyze the performance of total c22) by varying the parameter of waiting cost per

timeslotc.
From Fig. 5.2, it can be seen that the total cost of energy scheduling doesnOt vary much

with the increasing of waiting cost changingpem using the optimal stopping rules algorithm.
Especially when the waiting costt 0.7, the total cost of the optimal stopping rules algorithm is

almost convergent to 0.5. However, the total cost of energy scheduling increases \uitharly

the growing of the waiting cost when using greedy algorithm.
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Table5.3 Simulation Parameters

Experiment Values
Parameters
Load Peak 1000kWh
N 100
K 1000
Pa 0
P, 0.1
o 70% of Load Peak*jN
U 1000kWh
3
. Hl
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Fig. 5.2 Total Cost Of Optimal Stopping Rule Algorithm And Greedy Energy Consumption

Scheduling Algorithm With Different Waiting Cost
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5.5.4 Performance Comparison Based on Different Load Requests

The simuationOs setup is seen in Tabke. The reatime power price still follows the
uniform distributionP(j)! U(p,, p,) . The comfortable level is 70% of the Load Peak level. Let
the waiting cost per timeslat=0.2. Therefore, the goal of this simulation setup is analhee t
performance of total cos6@2) by varying the parameter of Load requestOs normal distribution
u.

Table5.4 Simulation Parameters

Experiment Values
Parameters

Load Peak 1000kWh

N 100

K 1000

Pa 0

Py 0.1

o 70% of Load Peak*jN

c 0.2

As seen in Fig5.3, the total cost of energy scheduling increases linearly with the

growing of the load requestOs paramgtevhen using greedy algorithm. But the total cost of
using optimal stopping ralis growing noflinearly. Ater the u! 0.9*Peak Load, the total cost

of using the optimal stop rules algorithm is even slightly smaller thap th@.8*Peak Load.
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5.5.5 Performance Comparison Based on Different Comfortable Levels

Table5.5 Simulation Parameters

Experiment Values
Parameters

Load Peak 1000kWh

N 100

K 1000

Pa 0

P, 0.1

c 0.2

u 1000kWh
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The simulationOs setup is seen in Table 5.5. The¢imeapower price still follows the
uniform distributiorP(j)! U(p,, P,) . Let the waiting cost per timeslot0.2. Let the parameter
of Load requestOs norndégtribution  =Peak Load. Therefore, the goal of this simulation setup

is analyze the performance of total cost (5.22) by varying the comfortable level.

g - — ]
=y = = (=

0
0
i
0

—#— OSR Algorithm
—H&— Greedy Algorithm

08r B

Total Cost

06 B

04} .

—F
_,—+—'—_'_'__'_*—77_'_'__*_'_
02r "

ew_~+f

0 1 1 1 1 1 1 1
01 0.2 0.3 04 05 0.6 0.7 08 0.9

80

Fig. 5.4 Total Cost Of The Optimal Stopping Rule Atghm And Greedy Energy Consumption

Scheduling Algorithm With Different Comfortable Level

As seen in Figb.4, the total cost of greedy energy scheduling algorithm does not vary
with the growing of the comfortable levelO, . But the total cost of using optal stopping rule
has a no#inear growth from 10% of Load Peakl/to 90% of Load Peak*M . Therefore, in
terms of the total cost, the optimal stopping rules energy scheduling has much better
performance comparing to the greedy algorithm.

However, it is wtal to point out that the optimal stopping rule algorithm has a limitation,

which is it not always satisfy the comfortable level constraint wh@nis too large. As



'O =70%* Load Peak*jN, the actual total consumed energy for a customer at the end of the

K

day !l 1.(j) is 71%* Load Peak*jN, which meet the comfortable level constraint. But when
j=1

1 O, =80%* Load Peak*jN and! O =90%* Load Peak*N, the actual total consumed
energy loads for a customer for a day are 76.1%&d Peak*jN and 78.8%*_oad Peak*jN.

Whereas, the greedy algorithstill meets the comfortable level, whérO, =80%* Load

Peak*j/N and! O =90%"* Load Peak*jN .

5.6 Conclusion

This paper studies the cost minimization problem for all customers within a
neighborhood area network. First, it models the single load request cost minimizatenyp
with the Optimal Stopping Rule method. Thus, a mathematical solution of the optimal result is
given by optimal stopping rulgeduction Second, we define the cost minimization problem with
a comfortable level constraint. An optimal stopping ruleedasnergy consumption scheduling
algorithm is proposed. Finally, the simulation results show that the proposed algorithm has much
better performance in terms of the total cost comparing with a greedy based energy scheduling
algorithm.

Because of the lengttestriction of this paper, some future work could not be included.
For example, two other possible comparison could be as follovdmgtegy I: use greedy
strategy to satisfy the O, since the beginning of the time until and then using regular optimal
stgpping rule in §.12) to schedule the load demaBttategy Il: use greedy strategy to satisfy the

'O soon after the day starts until th&, constraint is satisfied, the rest of the time use regular

optimal stopping rule in5(12) to schedule the load demand.
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6 CONCLUSION & FUTURE WORK

How to consume energy in a more efficient manner m@&ger been studied more
vigorously by theresearcherdn smart grid, suaessful demand response has a large impact on
the success of smart grid. As a result, the impoeanf customer participation hasdn raised to
a whole new level. No one would question the fact that customers would always respond to a
smaller energy billTherefore, if a program can minimize the energy cost for customersit then
will ultimately bendit the whole smart grid and every user that is connected to it.

This dissertation studiethree problems: reatime demand responsen smart grid
distribution usingenergy consumption schedulirfgir delay inenergy consumption scheduling
demand respomlsproblemin relation to cost minimizatignand customer cost minimization
problem usingenergy consumption schedulingth Optimal Stopping Rules in RT&emand
responseprogram. All of these problems are yet to be studied in the acadéhiapter 3
propo®sa reaitime demand responsystem with itsenergy consumption scheduliaggorithm
that intendsto solve RTPOs total cost minimization problem. This problem has yet to be
discussed especially in a neighborhood area network [Ekel.simulation resultsonfirm that
the solution offered achieved total cost minimmatwhile considering the customers as an
entity in theneighborhood area networkh Chapter 4, fairness idiscussed and explored in
terms of fair delay, instead of the existing fair bilpegach.The algorithm proposed focuses
how to make the waiting time fair so that all customers can have their energy load requests met
in a relatively reasonable time framdiile minimizing the casfor their energy consumption.

Chapter 5aims at solvirg the cost minimization problem through tbptimal stopping rule
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approach. The discussitekkesinto consideration of the characternaighborhood area netwgrk
which is one energy provider to multiple custome®mulation resultsdemonstratethe
advanages of the proposemhergy consumption scheduliatporithm withoptimal stopping rule

The algorithm solutions praged can effectively solve the discuspeablems as shown
through the successf computer simulations ihaptes 3, 4 and 5. The proposedolutions,
when applied to the industry, will bring in more customers to participateenmand response
programs and smart grid. The flourish of smart grid participation will for sure push smart grid
forward and bring forth more technological advanceminisake the grid more effective.

It is also important to be aware of the fact the proposed solutions were successful
when tested by simulations because they were constrained by a number of assumptions. However
in the everyday production at the powdant, constrains must be overcome for it to become
compatible with the current systentsor example, both ChapteB and 4model the energy
consumption schedulingroblem with a mathentiaal approach, and then adganulation as a
method to reach theptimal result. Inpracticeapplication, different sets of parametshould be
implemented to reach the best results. Similarly, in Chapteptimal stopping ruldrings its
own limitation to the dissertatiorfor it assumes that RTP price is followingns® statistical
distribution, otherwise the mathematical solution wouldb®solvable in deduction. Regardless
of the mentioned limitations, the solutions provided in this dissertation still have their own
advantageand benefits.

In addition while we \alue the customerthe benefits of power providerOs should not be
neglected as wellor it is also an important participant of smart grid alemand response
Futurework could look at thegossible programs that aiat maximizing the power providerOs

profit or minimizing the operational cost while using the samergy consumption scheduling
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model and simulation study. Both of th®ovementioned problems maiake fair delay into
considerationas wd. Moreover; it is plausible to use theptimal stoppingule model as another

approach to offer a mathematical solution.
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