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ABSTRACT

Outbursts from gamma-ray quasars provide insights on the relativistic jets of active galactic nuclei and constraints
on the diffuse radiation fields that fill the universe. The detection of significant emission above 100 GeV from a
distant quasar would show that some of the radiated gamma-rays escape pair-production interactions with low-
energy photons, be it the extragalactic background light (EBL), or the radiation near the supermassive black hole
lying at the jet’s base. VERITAS detected gamma-ray emission up to ∼200 GeV from PKS 1441+25 (z= 0.939)
during 2015 April, a period of high activity across all wavelengths. This observation of PKS1441+25 suggests
that the emission region is located thousands of Schwarzschild radii away from the black hole. The gamma-ray
detection also sets a stringent upper limit on the near-ultraviolet to near-infrared EBL intensity, suggesting that
galaxy surveys have resolved most, if not all, of the sources of the EBL at these wavelengths.

Key words: cosmology: observations – diffuse radiation – gamma rays: galaxies – quasars: individual
(PKS 1441+25=VER J1443+250) – radiation mechanisms: non-thermal

1. A NEW VERY HIGH ENERGY QUASAR

The extragalactic gamma-ray sky is dominated by the
emission of blazars, active galactic nuclei whose jets are pointed
within a few degrees of Earth. About sixty blazars have been
detected at very high energy (VHE; E> 100 GeV),45 with only
four belonging to the class of flat-spectrum radio quasars
(FSRQs): 3C279 (z= 0.536, MAGIC Collaboration
et al. 2008), PKS1510–089 (z= 0.361, H.E.S.S. Collaboration
et al. 2013a), PKS1222+216 (z= 0.432, Aleksić et al. 2011),
and S30218+35 (z= 0.944, Sitarek et al. 2015).

FSRQs are believed to host radiatively efficient disks that
enrich the environment of the supermassive black hole with
ultraviolet-to-optical photons. This photon field, the repro-
cessed emission from the clouds of the broad line region
(BLR), and the infrared radiation from the “dusty torus” can all
interact with gamma-rays through pair production, preventing
the escape of VHE radiation from the base of the jet (Donea &
Protheroe 2003).

VHE gamma-rays that do escape will face pair production on
the extragalactic background light (EBL), which encompasses
the ultraviolet-to-infrared emission of all stars and galaxies
since the epoch of reionization (z10).46 Direct measure-
ments of the EBL are prone to contamination from the bright
local environment, while strict lower limits are derived from
galaxy surveys, measuring the light emitted by known
populations of sources (Madau & Pozzetti 2000).

VHE detections of high-redshift FSRQs constrain both the
EBL and the gamma-ray emission regions in blazars. This letter
reports the detection of VHE gamma-rays from the FSRQ
PKS1441+25 (z= 0.939, Shaw et al. 2012) by VERITAS.
This source was observed in 2015 April and May following the
VHE discovery by MAGIC (Mirzoyan 2015), triggered by
multiwavelength activity (Pacciani 2015) and a spectral
hardening at high energies (HE, 100 MeV< E< 100 GeV;
D. Thompson 2015, private communication on behalf of the
Fermi-LAT team).

2. OBSERVATIONS OF PKS1441+25

PKS1441+25 was detected from 2015 April 21
(MJD 57133) to April 28 (MJD 57140) with VERITAS, an
array of four imaging atmospheric Cherenkov telescopes
located in southern Arizona (Holder 2011). VERITAS imaged
gamma-ray induced showers from the source above 80 GeV,
enabling the detection of PKS1441+25 (VER J1443+250) at
a position consistent with its radio location and at a significance
of 7.7standarddeviations (σ) during the 15.0 hr exposure
(2710 ON-source events, 13780 OFF-source events, OFF
normalization of 1/6). Using a standard analysis with cuts
optimized for low-energy showers (Archambault et al. 2014,
and references therein), we measure an average flux of
Φ(>80 GeV)=(5.0± 0.7)×10−11 cm−2 s−1 with a photon
index ΓVHE=5.3±0.5 up to 200 GeV,47 corresponding to an
intrinsic index of 3.4±0.5 after correction for the EBL
(Gilmore et al. 2012, “fixed”). The day-by-day lightcurve is
compatible with constant emission in that period (χ2/
ndf= 7.4/6), and fractional variability Fvar<110% at the
95% confidence level (Vaughan et al. 2003).48 Subsequent
observations in May (MJD57155–57166, 3.8 hr exposure)
showed no significant excess (660 ON-source events, 3770
OFF-source events, OFF normalization of 1/6), resulting in an
upper limit of Φ(>80 GeV)<4.3×10−11 cm−2 s−1 at the
99% confidence level. These results have been cross checked
with an independent calibration and analysis. Monte-Carlo
simulations indicate systematic uncertainties on the VHE
energy scale and photon index of 20% and 0.2, respectively.
The systematic uncertainty on the flux of this source is
estimated to be 60%, including the energy-scale uncertainty
discussed in Archambault et al. (2014).
The LAT pair-conversion telescope onboard the Fermi

satellite has surveyed the whole sky in the HE band since 2008
August (Atwood et al. 2009). We analyzed the LAT data using
the public science tools v10r0p5 (Pass-8) leaving free the
parameters of sources from the 3FGL (Acero et al. 2015)

44 Hubble, Carnegie-Princeton Fellow.
45 http://tevcat.uchicago.edu/
46 We adopt the concordance ΛCDM model (h0 = 0.7, ΩM = 0.3, ΩΛ = 0.7).

47 The last spectral points at 140 and 180 GeV are significant at the 2.4 and
3.0 σ level, respectively.
48 All flux estimates are used for variability constraints but we also show 99%-
confidence-level upper limits for points below 3σ in Figure 1.

2

The Astrophysical Journal Letters, 815:L22 (7pp), 2015 December 20 Abeysekara et al.

http://tevcat.uchicago.edu/


within a region of interest of 10° radius and fixing them for
sources 10°–20° away. We reconstruct the spectrum of
PKS1441+25 between 100MeV and 100 GeV in four-week

(MJD 54705–57169, top panel in Figure 1) and two-week
(MJD 57001–57169, middle panel) bins assuming a power-law
model with a free normalization and photon index (purple
points), as well as in one-day bins (pink points) fixing
the photon index to its best-fit average value in MJD
57001–57169, ΓHE=1.97±0.02, slightly harder than in the
3FGL, 2.13±0.07. The source was in a high state during
MJD57001–57169, with an integrated 100MeV–100 GeV flux
that is one to two orders of magnitude above the 3FGL value,
(1.3± 0.1)×10−8 cm−2 s−1. During the period contempora-
neous with the VERITAS detection (MJD 57133–57140), the
source shows a flux of (34± 4)×10−8 cm−2 s−1 and a hard
index of 1.75±0.08. Although a power-law model is used for
robustness in the lightcurve determination, the spectrum shows a
hint of curvature, with a log parabola preferred over a power law
by 3.2σ (see Figure 2). The curvature is resilient to changes in
the analysis and the temporal window, and fits in smaller energy
ranges confirm the hint.
X-ray observations with NuSTAR and Swift were triggered

following the VHE detection. NuSTAR, a hard-X-ray instru-
ment sensitive to 3–79 keV photons (Harrison et al. 2013),
observed the source on MJD57137 for an exposure of
38.2 ks. The data were reduced using the NuSTARDAS
software v1.3.1. Swift-XRT (Gehrels et al. 2004) observed
PKS1441+25 between 0.3 and 10 keV in 2010 June
(MJD 55359), in 2015 January (MJD 57028 and 57050),
in 2015 April (MJD 57127–57138), and in 2015 May
(MJD 57155 and 57160). Data taken in photon-counting mode
were calibrated and cleaned with xrtpipeline using
CALDB 20140120 v.014. ON-source and background events
were selected within regions of 20-pixel (∼46 arcsec) and 40-
pixel radius, respectively. The XRT and NuSTAR spectral
analyses were performed with XPSEC v12.8.2, requiring at
least 20 counts per bin. The NuSTAR spectrum is matched by a
power law with a photon index of 2.30±0.10 and an integrated
3–30 keV flux of (1.25± 0.09)×10−12 erg cm−2 s−1. No intra-
night variability is detected. Swift-XRT did not significantly
detect the source in 2010 June, but the 2015 observations reveal
a power-law spectrum with no detectable spectral variability and
an average 0.3–10 keV photon index of 2.35±0.24, using an
absorbed model with a hydrogen column density of
3.19×1020 cm−2 (Kalberla et al. 2005). Significant flux
variations are detected in the period contemporaneous with
VERITAS observations (χ2/ndf= 25.9/3, Fvar= 22.6± 0.9%),
with a flux-halving time of 13.9±1.4 days based on an
exponential fit to the data in MJD57127–57155 (χ2/
ndf= 8.6/6).
Simultaneously with the XRT observations, Swift-UVOT

(Roming et al. 2005) took photometric snapshots of PKS1441
+25 in six optical-to-ultraviolet filters. Flux densities were
extracted using uvotmaghist and circular ON-source and
background regions of 5 and 15 arcsec radius, respectively.
PKS1441+25 has been observed in the V-band since 2012
January within the All-Sky Automated Survey for Supernovae
(ASAS-SN; Shappee et al. 2014), using the quadruple 14-cm
“Brutus” telescope in Hawaii. The fluxes from both experi-
ments in Figure 2 are dereddenned using E(B− V)=0.043,
consistent with the column density used for the XRT analysis
(Jenkins & Savage 1974). The 0.68-m Catalina Schmidt
Telescope (AZ) has also performed long-term unfiltered optical
observations of PKS 1441+25 since 2005 within the Catalina
Real-time Transient Survey (CRTS, Drake et al. 2009).

Figure 1. Top: observations of PKS1441+25 from 2008 to 2015. Middle:
observations from 2014 December to 2015 May. Bottom: observations in April
and May. The gray dashed lines mark the period considered for the analyses in
Sections 3 and 4.
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Observed magnitudes were converted into the V-band using the
empirical method described in Drake et al. (2013). The SPOL
spectropolarimeter (Schmidt et al. 1992) has monitored the
linear optical polarization of PKS1441+25 in 5000–7000Å,
with observations at the 1.54-m Kuiper Telescope, at the 6.5-m
MMT, and at the Steward Observatory
2.3-m Bok Telescope (AZ). The source shows a high degree
of polarization, with values ranging from 37.7±0.1% to
36.2±0.1% between MJD57133 and MJD57140.
The OVRO 40-m telescope (Richards et al. 2011) has

monitored PKS1441+25 at 15 GHz since late 2009. A 15 GHz
VLBA image obtained by the MOJAVE program (Lister
et al. 2009) on 2014 March 30 (MJD 56381) shows a compact
core and a bright, linearly polarized jet feature located 1.2 mas
downstream, at position angle −68°. Both features have
relatively high fractional polarization (∼10%), and electric
vectors aligned with the jet direction, at an angle of 102°
similar to that measured by SPOL, indicating a well-ordered
transverse magnetic field. The fractional polarization level of
the core feature is among the highest seen in the MOJAVE
program (Lister et al. 2011).

The 2008–2015 observations of PKS1441+25 shown in
Figure 1 reveal a brightening of the source in the radio, optical,
and HE bands starting around MJD56900. A simple Pearson
test (see caveats in Max-Moerbeck et al. 2014a) applied to the
radio and HE long-term lightcurves shows a correlation
coefficient r=0.75±0.02, differing from zero by 5.4σ based
on the r-distribution of shuffled lightcurve points. Similarly,
the analysis of the optical and HE lightcurves yields
r=0.89±0.02, differing from zero by 4.8σ. The discrete
correlation functions display broad, zero-centered peaks with
widths of ∼100 days, indicating no significant time lags
beyond this time scale. During the period marked by gray
dashed lines in Figure 1, observations on daily timescales from
optical wavelengths to X-rays reveal fractional flux variations
smaller than 25%, compatible with the upper limits set by
Fermi-LAT and VERITAS (30% and 110% at the 95%
confidence level, respectively). Such flux variations are small

with respect to the four orders of magnitude spanned in νFν,
enabling the construction of a quasi-contemporaneous spectral
energy distribution in Section 3.

3. EMISSION SCENARIO

The spectral energy distribution, with the X-ray-to-VHE
data averaged over the active phase in 2015 April
(MJD 57133–57140), is shown in Figure 2. The optical-to-X-
ray spectrum is well described by a power law with photon
index Γ=2.29±0.01 from 2 to 30 keV, including a 10%
intrinsic scatter in the fit procedure that accounts for the
small-amplitude optical-to-UV variability. This spectrum
suggests a single synchrotron component peaking below
2 eV∼5×1014 Hz, created by an electron population of
index p=2Γ−1 ∼ 3.58±0.02. As expected in FSRQs
(Fossati et al. 1998), the emission of PKS1441+25 is
dominated by the gamma-ray component, well-described by a
single component peaking at 3.3 GeV.1.1

1.8
-
+

The detection of gamma-rays up to 200 GeV, about 400 GeV
in the galaxy’s frame, suggests that the emitting region is
located beyond the BLR, or else pair production would
suppress any VHE flux even for a flat BLR geometry
(Tavecchio & Ghisellini 2012). The elevated radio state,
correlated with the optical and HE brightening, also suggests
synchrotron emission outside of the BLR where synchrotron
self-absorption is smaller. The hypothesis of large-scale
emission is strengthened by the week-long duration of the
optical-to-gamma-ray flare. This behavior contrasts with other
observations of bright FSRQs, displaying different flux
variations at different wavelengths (e.g., Abdo et al. 2010),
more in line with multi-component scenarios. The flare of
PKS1441+25 appears to be one of the few events whose
detailed temporal and spectral multiwavelength features are
consistent with the emission of a single component beyond
the BLR.
The BLR size can be derived using the estimated black-hole

mass, M M10BH
7.83 0.13= 

 (Shaw et al. 2012), assuming

Figure 2. Multiwavelength emission of PKS1441+25. Side panels show the X-ray (top) and gamma-ray emission (bottom) in 2015 April (MJD 57133–57140). The
various exposures and the model are discussed in Sections 2 and 3, respectively.
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r L10 cm 10 erg sBLR
17

disk
45 1´ - (Kaspi et al. 2007) and

an accretion disk luminosity that is a fraction η=10% of the
Eddington luminosity. Alternatively, Ldisk can be estimated
from the BLR luminosity as Ldisk ; 10×LBLR, with
LBLR=1044.3 erg s−1 (Xiong & Zhang 2014). Both estimates
yield rBLR ; 0.03 pc, setting a lower limit on the distance
between the black hole and the emitting region of r5000
Schwarzschild radii.

We show in Figure 2 that a stationary model can reproduce
the data, using the numerical code of Cerruti et al. (2013) and
the EBL model of Gilmore et al. (2012). Non-stationary Klein–
Nishina effects on electron cooling could be important for this
source (Moderski et al. 2005). Nonetheless, the straight power
law observed from optical to X-rays suggests that the
upscattering electrons see photon energies that are low enough
to stay out of the Klein–Nishina regime. This again indicates
that the emission is outside of the BLR. We parametrize the
electron–positron population by a fixed broken power law with
indices p1=2 and p2=3.58 between γmin=1 and
γmax=7×105, with a break at γbreak=1.2×104 (jet
frame). The particle energy density is on the order of the
magnetic energy density, ue/uB=1.5, with a total luminosity
of 6×1045 erg s−1, and an infrared photon energy density of
1.4×10−5 erg cm−3 at T=103 K (galaxy frame), character-
istic of thermal radiation from the torus. We broke the
degeneracies among the parameters of the model by requiring
that the minimum variability timescale in the observer frame,
tvar=(1+ z)/δ×R/c, be comparable to the flux-halving
timescale of about two weeks observed in X rays, where
we have the best statistics to probe variability. The data
are then modeled with an emitting region of radius
R=4×1017 cm∼0.1 pc and Doppler factor δ∼18. The
magnetic field, B∼80 mG, is tangled within the emitting
frame, but compressed transversely to the motion within the
observer’s frame, which would explain the high optical-
polarization degree, PD. Following Sasada et al. (2014), the
ratio of PD over the maximum theoretical polarization
ΠS=(p+ 1)/(p+ 7/3) constrains the angle θ at which the
emitting region is viewed. We find that the Doppler factor and
the geometry of the system are well reproduced by a jet Lorentz
factor Γjet∼12 and θ∼2°.6, which is within the jet opening
angle, θjet=1/Γjet∼4°.8.

The location of the emission can be roughly estimated
assuming that the whole cross-section of the jet contributes to
the radiation (Tavecchio et al. 2010), as r R tan jetq~ ~
1.5 pc, or 200,000 Schwarzschild radii. The region is not
expected to be much more compact than in this model, as no
fast large-amplitude variability is seen from optical to X-ray
wavelengths, despite the statistics being sufficient to detect
doubling timescales as short as days. The region could still be
further away from the black hole if its size was only fraction of
the jet cross-section.

The model parameters are similar to those obtained by
MAGIC Collaboration et al. (2008), Böttcher et al. (2008),
Tavecchio et al. (2011), and Barnacka et al. (2014) for other
FSRQs, but a remarkably high break energy in the electron
spectrum is needed to explain the optical-to-X-ray synchrotron
emission. The break in the electron distribution is consistent
with radiative cooling, but is pushed to higher energies due to
the magnetic field being two to ten times lower than that
inferred for other VHE FSRQs. The magnetic field is also in
equipartition with the particle population, minimizing the

energy budget required to produce the synchrotron emission.
Finally, the jet Lorentz factor is two to four times smaller than
that required for other VHE FSRQs, highlighting again the
reasonable energetics of this scenario.

4. EXTRAGALACTIC BACKGROUND LIGHT

The redshift of PKS1441+25, z=0.939, and its detection
up to 200 GeV provide an exceptional opportunity to study
the EBL.
Gamma-rays interact with EBL photons through pair

production, yielding an observed spectrum that is softer than
the intrinsic spectrum. Imposing a maximum intrinsic VHE
hardness can then constrain the EBL intensity (Aharonian
et al. 2006). In a scenario where the HE and VHE energy
photons originate from the same component (but see Stern &
Poutanen 2014, for emission within the BLR), the unattenuated
HE observations set an upper limit on the intrinsic hardness.
Based on Section 3, we neglect any additional emission
component and fit, as in Biteau & Williams (2015), an
absorbed power law with free EBL normalization, α, to the
VERITAS spectrum. We minimize
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where α, f0, and Γ are free parameters, E0 is fixed to 120 GeV,

i i n1 ..{ }f = are the fluxes measured by VERITAS at energies
E ,i i n1 ..{ }= and Θ is the Heaviside function. The Fermi-LAT
log-parabolic spectrum in Figure 2 shows a photon index
ΓLAT=2.76±0.43 at 30 GeV, where the absorption by the
EBL is smaller than 5% (Franceschini et al. 2008; Domínguez
et al. 2011; Gilmore et al. 2012). We account for the systematic
uncertainty on the VERITAS photon index, 0.20, by imposing
a maximum hardness with uncertainty σΓ=0.43⊕0.20=
0.47, where ⊕ indicates a quadratic sum. We finally margin-
alize the equivalent likelihood, exp(−χ2/2), over the VER-
ITAS energy scale. The logarithm of the latter is assumed to be
Gaussian, with zero mean and width 0.2, corresponding to a
20% systematic uncertainty. Equation (1) allows for an intrinsic
VHE spectrum that is softer, but not harder, than the HE
spectrum. This yields an EBL normalization that is consistent
with α=0 and constrained to α<1.5 at the 95% confidence
level for the model of Gilmore et al. (2012). This result is
almost independent of the choice of model (Franceschini
et al. 2008; Domínguez et al. 2011).
Considering both the peak and full width at half maximum

(FWHM) of the cross section integrated along the line of sight
(as in Biteau & Williams 2015, with various evolutions tested),
the VERITAS observations constrain the near-ultraviolet to
near-infrared EBL. Our constraint shown in Figure 3 is
compatible and competitive below 1 μm with other state-of-
the-art gamma-ray measurements from Ackermann et al.
(2012), H.E.S.S. Collaboration et al. (2013b), and Biteau &
Williams (2015). Although α is compatible with zero, there is
no significant tension with local constraints (see Biteau &
Williams 2015, brown and orange arrows in Figure 3), since
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the differences are only 1.5σ and 1.7σ in the peak and FWHM
regions, respectively.

5. DISCUSSION

The low energy threshold of VERITAS enabled the
detection above 80 GeV of one of the most distant VHE
gamma-ray sources (z= 0.939), in a redshift range previously
accessible only to space-borne gamma-ray observatories. We
obtain stringent constraints on the EBL intensity below 1 μm
and conclude that galaxy surveys have resolved most, if not all,
of the sources of the EBL in this region. This provides an
excellent baseline for studies above 1 μm where the redshifted
ultraviolet emission of primordial stars could be detected
(Dwek et al. 2005; Biteau & Williams 2015).

The VHE detection of the highly polarized source PKS1441
+25 is contemporaneous with a period of hard HE emission
and of enhanced flux at all wavelengths. The correlation
between the radio, optical, and HE lightcurves, unusual for this
class of sources (Max-Moerbeck et al. 2014b), together with
slow multiwavelength variability, suggest that the multi-band
flare was produced by a single region located ∼104–105

Schwarzschild radii away from the black hole, which is
consistent with the VHE-gamma-ray escape condition.

PKS1441+25 is by far the dimmest HE emitter of all VHE-
detected FSRQs listed in the 3FGL catalog. While HE activity
remains a prime trigger of VHE observations, searches for new
VHE-emitting quasars could also factor in radio-to-optical
brightening and synchrotron-dominated X-ray emission, as
reported for PKS1441+25. These criteria will be of particular
interest if applied to distant FSRQs, possibly opening a new
observational window on the jets of blazars and on the
transformation of the universe’s light content with cosmic time.
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