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ABSTRACT

The use of methamphetamine is rising faster than most other hard drugs such as

cocaine and heroine. To date, mathematical models have not been used to explore the

dynamics of methamphetamine use in a population. We propose five mathematical

models that can predict and evaluate methamphetamine use: a compartmental model

for rural areas, a compartmental model for urban areas, an optimal control model

for rural areas, an optimal control model for urban areas, and a metapopulation

model. Both the optimal control and metapopulation models are built by extending

the proposed compartmental structures. We separate models for urban and rural

regions due to differing community characteristics that effect the manner in which

methamphetamine is brought into and distributed throughout populations.

Similar to models for the spread of infectious diseases, the interaction between

susceptible, using, dealing, and recovered individuals in our illicit drug using popu-

lation acts as a mechanism for the spread of methamphetamine use in each of our

models. Thus, we use many techniques from infectious disease modeling literature in

the analysis of our models. We also consider several applications of our models to

data on methamphetamine use from Hawaii and Missouri. Our models give several

important insights to previously observed yet unexplained characteristics regarding

the dynamics of methamphetamine spread and the distribution of its use throughout

the United States.
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LIST OF ABBREVIATIONS AND SYMBOLS

S percent of drug-using population in susceptible class

D size of dealing class in terms of percent of drug-using population

U percent of drug-using population in user class

R percent of drug-using population in recovered class

x average number of users to which each dealer deals

β rate of population movement from susceptible to user class

α rate of population movement from user to recovered class

γ rate of population movement from recovered to user class

u1 cost of treatment programs

u2 increase in cost of law enforcement

T optimal time over which to spend control budgets

χR indicator function for rural node

χD indicator function for urban node

ζij rate of travel from node i to node j
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CHAPTER 1

Introduction

Methamphetamine abuse is rising at an alarming rate throughout the United

States of America, surpassing the abuse growth rates of other illicit drugs such as

heroin and cocaine [1] [2] [3]. Methamphetamine use is appealing due to the plea-

surable rush, increase of awareness, and energy given by the drug. However, these

effects cause violent behavior, brain damage, and harmful prenatal effects that make

the prevalence of this illicit drug in our society an immediate issue that requires

further review [4].

While many statistical studies have been performed to analyze trends in metham-

phetamine use [5] [6], mathematical models were not available to model the behavior

of the spread of use previous to this work. Mathematical models are important

because the basic statistical studies provide inaccurate and oversimplified forecasts.

This previous work primarily focused on discovering correlations between metham-

phetamine use and other behaviors such as other illegal drug use and risky sexual

activity [7]. It also looked to track past trends as well as investigate correlation or

causation with various health issues [8].

In addition to their forecasting ability, mathematical models give us the ability to

investigate the dynamics of the spread of methamphetamine. We can quantitatively

determine the equilibrium amount of use in populations given different sets of initial
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conditions and observe factors or control measures that can change that equilibrium.

We can also determine the time period over which these changes in the equilibria

will last. These abilities of mathematical models studying the spread of metham-

phetamine use, in particular, the ones we propose here, allow policy makers to predict

and determine effective measures to prevent “outbreaks” of methamphetamine use in

communities that would be damaging to society.

We begin by noting that the models we propose only serve to model the spread

of methamphetamine use within the United States. The societal characteristics gov-

erning the interactions that drive the dynamics of our models are specific to the

United States because they are based off of and driven by the laws and community

structure of the country. Similar models may be used to study the spread of metham-

phetamine in other parts of the world, but the patterns of acquisition and use need

to be examined to determine whether or not the same characteristics of spread apply.

To model methamphetamine use, we adopt techniques commonly used in in-

fectious disease modeling due to the manner in which interactions between groups

of people in a population act as a mechanism for the spread of methamphetamine

use. We can compartmentalize a population into groups and use the interaction of

these groups to calculate the spread of usage. Analogous compartmental models have

been used for infectious disease modeling since the Kermack-McKendrick model in

1927 [9]. For infectious diseases, the interaction between infected members of society

with members of society that have yet to contract the disease causes the disease to
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spread. We treat current users of methamphetamine use as “infected” and observe

that a very similar structure for spread applies.

With this similar mathematical structure, we can also borrow analysis techniques

from infectious disease modeling to observe meaningful properties of our models for

methamphetamine use. We relate “disease-free” and “endemic” equilibria concepts to

the cases in our models when methamphetamine use dies out and when it reaches the

maximum sustainable level respectively. Furthermore, we can determine the initial

rate of spread when a single user is placed into a population of individuals who have

never before used methamphetamine by using computation techniques for the basic

reproductive number, R0. The basic reproductive number yields the same qualitative

information for infectious disease models when we relate users to infected individuals.

We compute R0 and our equilibria using the methodology originally proposed in [10].

Compartmental models have been significantly expanded since their initial intro-

duction in 1927. Some reviews of the current possibilities of compartmental models

by researchers who contributed significantly to the development of these mathemati-

cal possibilities include [11] and [12]. However, while compartmental models can be

extended by introducing more complexity to the original system in order to more fully

describe the single population spread as done in this previous literature, they can also

be used in different, more complicated models to find further information than just

single population spread. For example, optimal control models have been developed

off of previous compartmental structures to determine effective control measures for

disease outbreaks and disease spread within the body. In [13], Kirschner, et al. use
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an optimal control model to find the optimal chemotherapy treatment for HIV, and,

in [14], Tuite, et al. determined optimal control strategies to limit the outbreak of

cholera in Haiti.

In addition, spatial considerations are taken into account in metapopulation

and network models that frequently use compartmental models to determine disease

spread at each patch or node of the larger model. These models take into account

that a larger population may have smaller population groupings. In compartmental

models for infectious diseases, every person is assumed to have equal probability of

interacting with an infected person. However, we consider the case in which there

are two large cities separated by a very large rural area. If a disease begins in one

city, a person in the other city does not have a very high chance of coming in contact

with the infected person. Thus, treating both cities and the rural area in between

as one population would not be appropriate because it would create a larger than

accurate susceptible class and disease spread would appear to be uniform within the

larger population. Metapopulation and network models allow the populations to be

considered as separate but connected. Frequently, the connection will be mathemat-

ically represented by some rate or probability function representing the chance an

individual from one population will travel to the other population and contract the

disease. Some examples of metapopulation and network models in infectious disease

literature include the work by Fulford, et al. on tuberculosis in [15] and the work by

Rohani, et al. on measles in [16].
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We choose to extend our compartment models with an optimal control struc-

ture and by including them in a metapopulation model. The optimal control model

allows us to analyze the effect of government measures in controlling the spread of

methamphetamine use. The metapopulation model allows us to observe and analyze

the dynamics of the spread of methamphetamine use as use moves between different

population groupings.

We note that we are not the first to apply infectious disease modeling to model

the spread of illicit drug use, though we are the first to model the spread of metham-

phetamine use. White, et al. developed a compartmental model to analyze the

dynamics of the spread of heroin use and observe the effects of treatment programs

in [17]. A compartmental model was also developed to study the spread of cocaine

use in [18] by Burattini, et al. We further note that previous authors in this literature

of illicit drug use modeling, including the given examples, also borrowed the analysis

techniques we described for infectious disease modeling to determine equilibria and

initial speed of spread.

Thus, far we have described our use of compartmental, optimal control, and

metapopulation models throughout this work. We note that for each population we

choose to model, we classify the region as either urban or rural. For each classification,

we have a separate compartmental and optimal control model. Each partition of the

metapopulation model is classified as urban or rural, allowing mathematical modeling

of the interaction between these two population groupings. This model separation is

necessary due to the differing methods of obtaining methamphetamine in urban and
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rural regions of the United States. The dynamics in each region will be discussed

more thoroughly in Chapter 2. We distinguish urban regions as geographical areas

with a population density of 1000 people or more per square mile. Consequently, rural

populations have a population density of 999 people or less per square mile [19].

We proceed as follows. We begin by presenting and analyzing our rural and

urban compartmental models in Chapter 2. Our analysis includes analytical compu-

ation of the equilibria, basic reproductive number, and nullclines. We then fit data

for Hawaii methamphetamine use to our rural model. We move onto our presen-

tation of our optimal control model and solve analytically for the implying optimal

controls in Chapter 3. We fit our rural optimal control model to data for Missouri

methamphetamine users and draw conclusions regarding their budget decisions. For

the purpose of comparison, we take initial conditions from the Missouri data and

perform a simulation with our rural compartmental model to predict the outbreak of

methaphetamine over the same time period without the inclusion of control measures

to observe the true impact our controls. The last model we present is our metapop-

ulation model in Chapter 4 for which each partition is modeled with our urban or

rural compartmental model, depending on its classification. For the application of

our model, we partition Missouri into nine groupings of counties, each of which we

classify as urban or rural, and collect county data for 2004 to find aggregate data for

each partition. We simulate our metapopulation model using this data organized in

the described structure. We make a comparison of our metapopulation model to our
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simulated compartmental model from statewide aggregated data as well as our opti-

mal control model in the previous chapter. In Chapter 5, we discuss the implications

of our analysis for all of the models.
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CHAPTER 2

Compartmental Models

We begin by describing the compartmental structure of our models. We consider

a population of people living in some geographical region. We can separate this

population into three different groups of people: susceptibles, users, and recovered.

Susceptibles are people that have never used methamphetamine. Users are people who

have used methamphetamine within the past three months. Recovered individuals

include any person who has ever used methamphetamine in their lifetime. When

separating a population of people in this manner, we will obviously have a very large

group of susceptible people in comparison to the using and recovered classes. This

size difference will create a significant computational issue when numerically analyzing

any kind of mathematical model, so we consider meaningful ways to restrict the size of

the susceptible class. Clearly, there are large numbers of people in most populations

that would never consider trying methamphetamine. Since methamphetamine is a

hard drug with strong and lasting health consequences, it is normally not the first

illegal drug attempted by users. Normally, “gateway” drugs such as marijuana and

abused use of prescription drugs are attempted before use of methamphetamine [20].

Thus, we only consider individuals “susceptible” to methamphetamine use if they are

already a part of the illegal drug community either through using or dealing. Our

8



model entirely removes individuals outside the illicit drug using community from its

analysis.

We make several further critical assumptions for the compartmental models to

describe methamphetamine use in rural and urban populations. We first assume the

need for separate models for urban and rural areas because the distribution methods

and dynamics of spread differ significantly in rural and urban areas. Secondly, when a

susceptible individual initially tries methamphetamine and moves into the user class,

their brain chemistry is permanently altered [4] [3]. Thus, they will never again be

susceptible in the same way as an individual who has never before used the drug, and

we assume that they will permanently remain in a “recovered” state that essentially

acts a class of people not currently using methamphetamine but at a high risk to

begin. This risk to begin is much higher than the chance that a user of another drug

would begin using methamphetamine. In our model, this assumption implies that

once methamphetamine has been used, the individual user will only be able to move

between the using and recovered classes.

Furthermore, since we work solely with the illicit drug-using community, we make

an assumption for each of our data sets regarding the size of the illicit drug commu-

nity. The National Institute on Drug Abuse (NIDA) reports that around 8.7% of the

population is part of this community [2]. We assume this figure is actually 10% of

the population because NIDA data does not account for unreported cases. Thus, we

take this percentage of the total population of a region for which we are analyzing

data to study dynamics in our model. When we consider applications of our models
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to data, we note that we normalize our data based on this drug using population

size. As our fourth and last assumption, we disregard births and deaths over each

analyzed time period. We made this decision due to initial exploratory analysis of

our data that indicated outbreaks of methamphetamine use occur within the span

of a generation. Therefore, the inclusion of demography is not necessary to gain an

accurate picture and will most likely distort our results by creating more complexity

in our model than our data can accurately describe. We note that since we normalize

our data, this construction implies that S +U +R = 1 where S denotes susceptibles,

U denotes users, and R denotes recovered individuals.

2.1. Rural Model

We begin by presenting our compartmental model for rural regions. In rural areas,

law enforcement is relatively minimal, and population density is low. In addition,

large areas of land between residences allow a great degree of privacy to individual

properties. These characteristics create the distinguishing motives for the type of

acquisition of methamphetamine popular in rural areas.

First, dealers do not have a financial incentive to deal methamphetamine in ru-

ral areas due to the low population density. Most individuals in rural areas would

be restricted by time and finances to manage traveling to an urban area to obtain

methamphetamine. However, a distinguishing trait of methamphetamine that has

played a strong factor in its popularity is how easy it is to make. Though some states

restrict the allowed quantity of purchase of over-the-counter drugs that are used in
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methamphetamine production, all the ingredients are legal and readily available at

most drug stores and supermarkets. The primary difficulty for many individuals de-

siring to make methamphetamine is the strong smell associated with its production.

The smell causes neighbors and police to notice the activity and investigate. When

police presence is minimal and neighbors do not live close enough to notice the smell,

there is almost no barrier for an individual to create their own methamphetamine.

As these community characteristics are very common in rural areas, production of

methamphetamine frequently goes unnoticed which has led to a growth in popular-

ity of home or local labs. These labs are operated by a user or group of users that

produce methamphetamine for the primary purpose of personal drug use [21].

From this information regarding the production and acquisition of metham-

phetamine in rural areas, we make a hypothesis regarding the structure of population

movement between different groups of people involved in illegal drug use. We note

that our hypothesis is supported by numerous reports regarding individual cases.

Since users in rural areas tend to produce their own methamphetamine, we hypoth-

esize that for susceptible individuals to begin using methamphetamine, they must

interact with a user. This interaction is necessary because the user initiates an in-

terest in trying the drug, allows them to attempt using the drug before deciding to

produce, and gives them information on how to produce. Though the information

and interest could be provided though other sources such as the internet, surveys from

hospitals and treatment centers dealing with methamphetamine abuse cases support

our claim that the vast majority of use is initiated through contact at some point
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with another user. As previously mentioned, we also assume that after a susceptible

person becomes a user, they will only move between the user and recovered classes as

they move on and off of the drug due to their permanently altered brain chemistry.

We present the diagram in Figure 2.1 to visually represent the pattern of movement

between classes that we propose.

Figure 2.1. SUR Diagram

From the above diagram, we can create a system of differential equations to

represent the rate of change of each group: susceptibles (S), users (U), and recovered

individuals (R). We include the interaction terms SU and RU due to our assumption

that use is initiated or reinitiated through contact with a current user and build the

system,

dS

dt
= −βSU

dU

dt
= βSU − αU + γRU

dR

dt
= αU − γRU.
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Now that we have presented our rural compartmental model, we perform some

analysis regarding its implied population dynamics. We begin by determining the

basic reproductive number, R0, to yield the initial rate of spread when one user is

introduced into a completely susceptible population. We use the FV −1 methodology

from [10] to compute R0. In this method, we create a matrix, F , to represent the

total rate at which secondary “infections”, which we treat as methamphetamine usage,

arise in all non-disease compartments. Since we are computing an initial “outbreak”

case, our only compartment with individuals not “infected” is our susceptible class.

The rate users arise from this class is β, so F = β. We also create a matrix, V , to

represent the total rate at which users decrease from any factors. Since individuals

only leave the user class to enter the recovered class at a rate α, V = α. Thus, we

compute

R0 = FV −1 =
β

α
.

We note that our matrices will always be one dimensional when there is only one

user class.

We move onto the analysis of equilibria. We begin by solving for the model equi-

libria simply by setting each differential equation equal to zero. We immediately see

that any equilibria requires either the number of users or the number of susceptibles

to be equal to zero. We refer to the equilibria where U = 0 as our “disease-free”

equilibria, and we begin our equilibria analysis with this case. If U = 0, movement

between the susceptible and recovered classes is impossible. Thus, denoting S0 as our
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initial number of susceptibles and recalling that S + U + R = 1, we find our disease

free equilibrium to be

(S, U,R) = (S0, 0, 1− S0).

We observe that this equilibrium is a collection of points, not a single point, for all

possible values of S0. Our next concern is determining the stability of this equilibrium.

To determine the stability, we need to find the sign of our eignevalues of the Jacobian

associated with our rural system of equations evaluated at this equilibrium. We set

up the matrix

J − λI =


−λ −βS0 0

0 βS0 − α + γ(1− S0)− λ 0

0 α− γ(1− S0) −λ

 ,

and find the eigenvalues

λ = 0, 0,−α + γ(1− S0) + βS0.

Our equilibrium is stable when all of the eigenvalues are non-positive and at least

one is strictly negative. Thus, our disease-free equilibrium is stable when

R0 =
β

α
<
γ

α
< 1.
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If some but not all of these conditions are not met, then the stability of the

disease-free equilibrium is dependent on the magnitude of the difference between the

relative sizes of α, β, γ, and, consequently, R0. By some of the conditions, we mean a

case such as α < γ but R0 < 1. If all of these conditions are not met, then the disease-

free equilibrium is unstable. This mathematical analysis qualitatively matches our

problem. When α > γ, less people are moving into the user class from the recovered

class than moving to the recovered class from the user class. When R0 < 1, each user

is creating less than one more new user. Thus, the number of users will always revert

to zero. In contrast, if each user creates more than one new user (R0 > 1) or people

are leaving the recovered class at a higher rate than they enter (γ > α), then the user

class could grow depending on the relative size of these rates. Clearly, if each user

creates more than one new user and people leave the recovered class at a higher rate

than they enter, then the user class will continue to grow.

We recall that we only considered the case for which U = 0 in our solution for our

equilibria. We determined that another equilibrium could occur where S = 0. We

refer to this equilibrium as the “endemic” equilibrium, by which we mean the state

at which the system attains the largest sustainable number of users. Again recalling

that S + U +R = 1, we find our endemic equilibrium to be

(S, U,R) = (0, 1− α

γ
,
α

γ
)

15



We proceed again with stability analysis, and find the sign of our eigenvalues of

the Jacobian associated with our rural system of equations evaluated at the endemic

equilibrium. We set up the matrix

J − λI =


−β(1− α

γ
)− λ 0 0

β(1− α
γ
) −λ γ − α

0 0 α− γ − λ

 ,

and find the eigenvalues

λ = 0, α− γ, β
(
α

γ
− 1

)
.

To determine the sign of our eigenvalues, we need to compare α
γ

to 1. However,

we recall that the number of users in our endemic equilibrium is given by 1 − α
γ
.

Clearly, our analysis is not meaningful if we allow numbers of people to take on

negative values. Thus, α
γ
< 1 which implies that our two non-zero eigenvalues are

always negative. Therefore, our endemic equilibrium is always stable.

We can observe the discussed equilibria stability switching points in the nullcline

plot in Figure 2.2. We reduce our system into that of two variables for clarity purposes

by making the substitution R = 1 − S − U in our system. In our plot, we consider

the case in which α < γ and R0 < 1.
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Figure 2.2. Rural Nullclines when α < γ and R0 < 1

Our nullclines associated with dS
dt

= 0 form the axes in Figure 2.2. The remaining

two curves are given by the nullclines associated with dU
dt

= 0. We find that the

stability behavior of our system changes at the S-intercept,

(S, U) =

(
α− γ
β − γ

, 0

)
=

(
1− γ

α

R0 − γ
α

, 0

)
.

We can determine that, in this case for which α > γ and R0 < 1, the stability

of our equilibria is dependent on the size of the susceptible population. If we denote

the S-axis intercept as S∗, on [0, S∗] the disease-free equilibrium is unstable and

on (S∗, 1] the disease-free equilibrium is stable. When the disease-free equilibrium is

unstable, the system reverts to the stable endemic equilibrium. When the disease-free

equilibrium is stable, the system reverts to the disease-free equilibrium.
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Similar analysis can explore the remainder of cases in which stability is deter-

mined by the relative sizes of parameters. However, this case study gives a sufficient

picture of the typical dynamics of our model.

2.2. Urban Model

In this section, we present our compartmental model for urban regions. In con-

trast to rural areas, urban areas have a high population density, allowing little pri-

vacy for individual residences. Additionally, police presence is high. From these

characteristics and supporting case observations, we find a structure for the spread

of methamphetamine use in urban regions.

Due to the high population density, dealers have a much greater financial incentive

to deal methamphetamine in urban areas. However, drug dealers could choose to deal

a variety illicit drug from which they would profit. Thus, we question why would they

choose to deal methamphetamine. We hypothesize that it is unlikely that a dealer

would choose to start dealing methamphetamine unless there was already a population

of methamphetamine users in the area, considering the prevalent drug use in urban

areas. The next question that arises naturally becomes how an individual can acquire

methamphetamine to use before a dealer enters the situation. Initially, it appears

that they would choose to make methamphetamine themselves as was common in

rural areas, but urban areas do not afford the privacy of rural regions. Users cannot

make their own methamphetamine without immediately alerting both surrounding

properties and the local police presence due to the strong and distinct smell. Thus,
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we assume either that the initial group of users in an urban area is required to travel

to a nearby population where they can acquire methamphetamine until a dealer enters

or that the group of users moved from another population grouping where they did

have access to methamphetamine [3].

We present the structure of our model dynamics in Figure 2.3. We note that we

retain the assumption from our rural compartmental model that after a susceptible

individual becomes a user, they will only move between the user and recovered classes

as they move on and off of methamphetamine due to their permanently altered brain

chemistry.

Figure 2.3. SDUR Diagram

Before explicitly writing down our system associated with the proposed structure

in Figure 2.3, we make several more observation. Since we have established that

users cannot make their own methamphetamine in urban areas and must buy it from

dealers instead, the question arises of how dealers acquire methamphetamine. We

recall that we are modeling regions in the United States. Methamphetamine dealt

in urban areas is brought in by dealers from Mexico [22]. Mexican drug cartels

dominate the methamphetamine trade in United States cities, and, due to dealers
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entering a region to deal from a different population, we do not include them in our

drug-using population. Since dealers are not a part of our total population, we cannot

estimate their size and accurately model them without greatly increasing the span

of our compartmental structure. Thus, in our urban system, we choose to make an

estimate of the size of the dealer class by finding an approximate number of users

to which each dealer deals [23]. We denote this value x. We further extend our

previous assumption that a dealer will not enter into a population until a group of

users is already present. We now also claim that an additional dealer will not enter

the population until there is a market available for him. For example, if each dealer

deals to five users on average, another dealer will not begin dealing in the population

until the user class grows by an additional five users. We approximate this behavior

by replacing our interaction terms with the dealers by a scaled user term, specifically

U
x

. We can now write our urban compartmental systems as

dS

dt
= −βSU

x

dU

dt
= βS

U

x
− αU + γR

U

x

dR

dt
= αU − γRU

x
.

We note that from our assumption that dealers are not a part of the measured

drug-using population, we again have S + U +R = 1.
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We now proceed with our analysis of our urban compartmental model which

exhibits several key differences from our rural compartmental model due to our scaling

term. However, we do note that much of the behavior is similar.

We begin by computing the basic reproductive number, R0. We again apply the

methodology in [10], and find F = β and V = α. Thus, we find the same basic

reproductive number as in our rural compartmental model in our computation

R0 = FV −1 =
β

α
.

We now proceed with our analysis of equilibria. Setting each differential equation

equal to zero again yields two possibilities: S = 0 or U = 0. We refer to the

equilibrium in which U = 0 as our disease-free equilibrium and the equilibrium in

which S = 0 as our endemic equilibrium as we did in our rural compartmental model.

These equilibria each convey the same qualitative ideas as in the rural case.

Setting U = 0 yields the same disease-free equilibrium as in the rural case,

(S, U,R) = (S0, 0, 1− S0),

where S0 indicates the initial number of susceptible individuals and 1−S0 arises

from the relation S+U +R = 1. We again recall that this equilibrium is a collection

of points, not a single point, for all possible values of S0.

Despite the identical form of the disease-free equilibrium, the stability analysis

differs from the rural case. We set up the matrix
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J − λI =



−λ −β S0

x
0

0 β S0

x
− α + γ (1−S0)

x
− λ 0

0 α− γ (1−S0)
x

−λ


,

and find the eigenvalues

λ = 0, 0,
γ + βS0 − γS0 − αx

x
.

Again, when our non-zero eigenvalue is negative, our system is stable. We then

determine that when

R0 =
β

α
<
γ

α
< x, (2.2.1)

our disease-free equilibrium is stable. This relationship highlights an interesting and

highly significant aspect of our urban model. Instead of comparing our basic repro-

ductive number and relative rates of recovery and relapse into methamphetamine use

to one, we compare them to x, the average number of users to which each dealer

deals. We clearly except this number to be greater than one. In fact, national av-

erages predict that x = 5 [23]. Thus, we need a much larger value of R0 and much

higher rate of recovery compared to the rate of relapse in an urban population to

22



escape the disease-free equilibrium. In other words, our model implies that it is ex-

tremely difficult for a methamphetamine outbreak to occur from an initial state with

no methamphetamine users in an urban region.

We note that our disease-free equilibrium is not stable when none of the previous

conditions hold. When some but not all of the given conditions hold, the stability is

determined by the magnitude of the difference between the relative sizes of α, β, γ,

and, consequently, R0.

We now return to our second equilibrium case: the endemic equilibrium. We

determined that another equilibrium could occur where S = 0, and, thus far, we have

only considered the case in which U = 0. Again recalling that S + U + R = 1, we

find our endemic equilibrium to be

(S, U,R) = (0, 1− αx

γ
,
αx

γ
).

We analyze the stability of this equilibrium by finding the sign of the eigenval-

ues of the Jacobian associated with our urban system of equations evaluated at the

endemic equilibrium. We set up the matrix
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J − λI =



−β
x

+ βα
γ
− λ 0 0

β
x

+ βα
γ

−λ γ
x
− α

0 0 −γ
x

+ α− λ


,

and find the eigenvalues

λ = 0,
β

x

(
αx

γ
− 1

)
, α− γ

x
.

From the form of our endemic equilibrium, if αx
γ
> 1, the number of users in our

system will be negative. Clearly, our analysis is not meaningful if we allow numbers

of people to take on negative values. Therefore, we must have αx
γ
< 1 which implies

that both of our two non-zero eigenvalues are always negative. Thus, our endemic

equilibrium is always stable.

We now explore the stability switching points and dynamics between our two

equilibria for a specific case in which relative differences between our parameters are

pivotal in stability. Similar to the rural model, we consider the case in which α < γ

and R0 < 1. We recall that the stability behavior of our rural system switched at

the S-intercept of the non-zero nullcline associated with dU
dt

= 0. We find analogous

behavior of our urban nullclines to that shown in Figure 2.2 for our rural system.
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However, the S-intercept at which stability of the system switches now occurs at the

point

(S, U) =

(
αx− γ
β − γ

, 0

)
=

(
x− γ

α

R0 − γ
α

, 0

)
.

Denoting the S value in this intercept as S∗, we observe that on [0, S∗] the disease-

free equilibrium is unstable and on (S∗, 1] the disease-free equilibrium is stable. When

the disease-free equilibrium is unstable, the system reverts to the stable endemic

equilibrium. However, when the disease-free equilibrium is stable, the system reverts

to the disease-free equilibrium.

2.3. Application of the Rural Model

Throughout Chapter 2, we have given strong justification for the structure and

assumptions of our models. In addition, we have found reasonable implications re-

garding the dynamics of methamphetamine users from our proposed models. We

further support the validity of our compartmental structure by demonstrating both

that we can fit our rural model well to data and that the fit of our rural model to

data yields realistic parameter choices.

For our application, we use use a data set with the number of users in Hawaii over

the years 1968 to 1990. We classify Hawaii as a rural region because the population

density of Hawaii is 200.56 people per square mile. We recall that we classify any

region as rural with a population density under 999 people per square mile, so Hawaii

falls well into the category of rural.
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Our data set comes from a survey performed through a partnership of the Na-

tional Institute on Drug Abuse with the Alcohol and Drug Abuse Branch of the

Hawaii Department of Health [24]. We find this data set particularly interesting

because it catches the outbreak of a methamphetamine use “epidemic.” The popular-

ity of methamphetamine began to become a serious issue in the continental United

States before it became an issue at all in Hawaii. Due to the past trends in illegal

drug problems throughout the United States, both organizations involved in the sur-

vey anticipated an imminent issue in Hawaii. Thus, they kept track of the number

of incidents for 22 years. However, for approximately the first 15 years of the study,

the reports only found less than 10 methamphetamine users in Hawaii every year.

Consequently, the funding for the study was discontinued four years before the end.

The last data points were unofficially collected and were not verified for accuracy

though the study included them as “estimates.” Incidentally, the last decade of the

study, the long-anticipated outbreak of methamphetamine use in Hawaii occurred.

We discard the first 12 years of data points in which consistently less than 10 users

each year were found in Hawaii and fit our model to the “outbreak” data in the last

decade of the study in Figure 2.4.

The best-fit parameters for our rural model to this data are β = 0.8599, α =

0.1691, and γ = 0.4428. Reports on numbers of users, recovery rates, and relapse

rates suggest that these parameters are reasonable [23].
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Figure 2.4. Hawaii Methamphetamine Users: 1980 to 1990
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CHAPTER 3

Optimal Control Models

With our proposed compartmental models, we observed many important char-

acteristics of the dynamics of the spread of methamphetamine use. However, the

primary motivation in understanding the dynamics and gaining predictive ability of

the spread of methamphetamine use is to control the use in order to end the problems

it creates in society. In this chapter, we propose an optimal control structure to im-

pose on our rural and urban compartmental models in order to develop and evaluate

strategies to minimize the number of methamphetamine users in a single population.

3.1. The Model

We introduce two different control functions, u1(t) and u2(t). We let u1(t) repre-

sent the cost of law enforcement and u2(t) represent the cost of treatment programs.

We briefly discuss what we include in each measure of cost. The cost of treatment

programs is fairly straightforward.

We note that the cost of law enforcement includes the increase in both jail and

police force costs associated with implementing new laws controlling the distribution

and use of methamphetamine.
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Each control measure acts on our system by removing users from our user class

and putting them in our recovered class at a rate proportional to the number of users

in the population. We specifically rewrite our rural system with these control effects,

dS

dt
= −βSU

dU

dt
= βSU − αU + γRU − (u1(t) + u2(t))U

dR

dt
= αU − γRU + (u1(t) + u2(t))U.

Similarly, we rewrite our urban system with our control effects,

dS

dt
= −βSD

dU

dt
= βSD − αU + γRD − (u1(t) + u2(t))U

dR

dt
= αU − γRD + (u1(t) + u2(t))U,

where D = U
x

.

As each control appears to act in the same manner on our system, it may seem

that our controls can be combined into one control and our problem simplified sig-

nificantly. However, each of these controls are subject to different constraints which

are quite unrelated to each other. Treatment and law enforcement budgets are al-

located completely separately and spent by different organizations within different
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government systems. Furthermore, our controls have different levels of effects on

the reduction of users in our populations under consideration implying that their

associated weights in our proposed objective functions 3.1.1 and 3.1.2 will be differ-

ent. Thus, we analyze our controls separately and write the isoperimetric constraints

implied by the qualitative meaning of our controls as

∫ T

0

u1(t) dt = B1,∫ T

0

u2(t) dt = B2.

We denote our law enforcement budget as B1 and our treatment budget as B2.

We note that each budget is the current total budget available for each control.

Our overall goal with each control is minimizing the total number of people

using methamphetamine in our population under consideration. Thus, in our optimal

control problem, we look to find an optimal spending plan for each control over a given

period of time to minimize users as represented in our following objective function.

min

u1, u2

(∫ T

0

U(t) + A1u
2
1(t) + A2u

2
2(t) dt

)
(3.1.1)

Our above objective function can give us information regarding how to spend

current budget allocations which is useful information for organizations making deci-

sions with already allocated money between our two controls. However, we can take
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our model much further. If we take our budget as fixed and solve for an optimal

time period over which we should spend the budget with regard to an optimal spend-

ing schedule, we find much more information. One of our hypotheses regarding the

United States government’s spending on treatment programs is that it is too little to

make a difference. If we solve for an optimal time period over which to spend the

treatment budget and it is very short, but it was allocated for a much longer period

of time, our model would imply that too little money is being spent on treatment

programs. On the other hand, if we solve for an optimal time over which to spend a

budget and it is longer than the time allocated for that budget to be spent, then we

can conclude that too much money is begin allocated to that control measure, and the

additional money is not having a significant effect on reducing the methamphetamine

using population. Thus, we introduce this free time component into our previous

objective function giving us the new minimization problem stated below.

min

u1, u2, T

(
Φ(T ) +

∫ T

0

U(t) + A1u
2
1(t) + A2u

2
2(t) dt

)
(3.1.2)

We continue our analysis of both the problem in which an optimal time is solved

for and that in which it is not. We see the usefullness of including free time into our

analysis, but we also wish to observe the behavior of our model in which we take all

the relevant initial conditions of our system that we have as given.

We observe that each objective function can be paired with either our rural or

urban system to form different optimal control problems for our two different systems.
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The analytical solution our optimal control problem yields the following two

optimal controls,

u∗1 =
(λ2 − λ3)U − λ4

2A1

,

u∗2 =
(λ2 − λ3)U − λ5

2A2

.

We note that these two controls are optimal for the rural optimal control problem

as well as the urban optimal control problem. However, as our system of differential

equations behave differently for each problem, our numerical solutions for each prob-

lem are different. Also, whether or not we choose to solve for an optimal time over

which to implement our controls will not effect the analytical solution of our controls.

It will only effect our numerical solution of the problem which we discuss in Section

3.2.

3.2. Application to Missouri

We apply our optimal control model to data from Missouri over the years 2002

to 2012. The population density of Missouri is 85.82 people per square mile, so we

classify Missouri as a rural region. For our weights, we estimate law enforcement to be

approximately four times more effective than treatment programs in stopping users

from continuing methamphetamine use. We consider the given budgets for spending

as a percent of the total state budget. Figure 3.1 shows the projected behavior

of our population of users over time compared to our data. We found the best-fit
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parameters for our model without the free-time optimization with this data set to

be β = 0.1760, α = 0.4626, and γ = 0.4349. All these values are reasonable and

qualitatively appropriate, implying that our our model is applicable to this data set.

Figure 3.1. Missouri Methamphetamine Use From 2002 to 2012

We observe that our optimal control model appears to match the general decreas-

ing trend of the data. However, the fit does not look very accurate. We consider three

possible explanations for our lack of fit.

(1) Policies regarding spending for the controls changed significantly enough

throughout our modeled time span to effect the system, creating the os-

cillatory behavior of the data. Our model does not take into account these

changing policies.
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(2) We do not have very much data for which to make a comparison between

our simulation and actual occurrences. If we had more data, we may observe

a closer fit and more obvious trends.

(3) The controls implemented in Missouri were not optimal. Though we fit our

parameters to the data, we solve for an optimal spending plan for the system.

If their spending decisions were not close to optimal, our model will not fit

the system regardless of the parameters.

We anticipate that all three explanations play a role in the difference between

our data and projected behavior. Though the actual implemented controls may not

be optimal, the overall decreasing trend in the data indicates that the controls may

still be effective. We explore this question further in Section 3.3.

In regards to the behavior of our controls, we see very similar trends in both

optimal treatment and law enforcement spending. Both require high initial spending

which decreases quickly at first before leveling out until the budget is spent. We

observe this behavior in Figures 5.1, 5.2, 5.4, and 5.3, all of which we include in our

appendix.

3.3. Comparison to the Unconstrained Case

To more clearly observe the effects that each control has upon the final state of our

system, we create an estimate of the unconstrained case. We use the first point from

our data set as our initial point in our unconstrained model. We then numerically

solve our unconstrained model. The graph of simulated data over the same time
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period of the optimal control model analysis is presented in Figure 3.2. We make

parameter estimates close to the found values in Section 2.3 which we believe match

qualitative information from the region. In particular, we let β = 0.75, α = 0.30, and

γ = 0.35.

Figure 3.2. Projected Unconstrained Methamphetamine Use in Missouri

Without the controls restraining the growth of our user class, we observe a pre-

dicted 1300 % increase in the number of users in our unconstrained model compared

to our control model by the end of the same time period over which the controls

were implemented. We can thus conclude that the government controls on metham-

phetamine use are indeed effective in decreasing the user class. However, further
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analysis and consideration is needed to determine whether the level to which they

were effective given the budget spent is optimal for the state of Missouri. Though

the percent increase in use is large, the difference in terms of numbers of users may

not be so much as to create a drastic difference in damage and danger to society.

The Missouri government ought to determine if the level of spending on treatment

programs and law enforcement is sustainable, and, if it is not, consider if they can

spend less on the programs but allow them to be sustained.

We note that the programs will need to be sustained since they did not signifi-

cantly decrease the number of users to a point which the system would revert to the

disease-free equilibrium; they simply prevented the number from growing. Thus, if

we considered a simulation from a later year, we could anticipated the same degree

of growth as that given in Figure 3.2 being at the point which the controls ended.

In our last justification of our optimal control model, we make a final application

of our unconstrained rural compartmental model to the data set from Missouri. When

we observed the drastic difference between the prediction in Figure 3.2 and the data,

we picked our own parameters instead of fitting the compartmental model to the

data. To observe that our compartmental models are not appropriate for modeling

the spread of methamphetamine when controls are introduced and, consequently, that

our optimal control model is necessary, we attempt to fit our rural compartmental

model to the data set from Missouri. We observe the result in Figure 3.3.

While the prediction does not look completely inaccurate, this fit yields parameter

values of β = 0.0944, α = 0.7564, and γ = 202.4470. The value of γ necessary for our
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Figure 3.3. An Attempt to Fit Parameters From Our Unconstrained Model

model to even come close to fitting the data is entirely impracticle. The qualitative

interpretation of such a large value for this rate is meaningless. Therefore, we conclude

that our compartmental models are not appropriate for modeling these situations, and

our optimal control models are necessary.
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CHAPTER 4

Metapopulation Model

Thus far, we have constructed models for the case in which methamphetamine

use spreads unconstrained throughout a single population and the case in which the

dynamics of the spread are changed and use is controlled by government implemented

treatment programs and legal enforcement. However, population groupings are not

all adjacent to each other, and the spread of methamphetamine use will certainly be

different within a single large population in a small region as opposed to a similar

size population separated into clusters throughout a very large region. Our separation

between urban and rural regions deals in part with the differing dynamics of spread

when populations are distributed differently. With that distinction, we account for

the change in the mechanism of spread, but we do not account for the spatial barrier

between population clusters. In this section, we account for that change by construct-

ing a metapopulation model.

4.1. The Model

The mathematical formulation of our metapopulation model is a natural exten-

sion of our compartmental models. We classify each partition as an urban or rural

region and use our urban or rural compartmental model as per the classification to

model the behavior within each smaller region. We make only two additions to the
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model for each partition. For each model, we must take into account the movement

of our drug-using population both in and out of the partition.

We begin taking into account this movement by finding some rate of travel be-

tween the two regions. We consider while we are building the model what type of data

will be available for an application. Data listing number of cars traveling on regions

of highways in the United States is readily available and separates movement in each

direction [25]. Thus, we can use this information to determine a rate of movement

out of each partition, i, and into each partition, j.

We note the meaning of the following new parameters we will use to construct

our system.

• χR = indicator function for rural node

• χD = indicator function for urban node

• ζij = rate of travel from partition i into partition j

We further note that any index j denotes the current node our system is modeling

and i denotes an adjacent node. We use this notation to write our metapopulation

model as

dSj
dt

= −βjSj(χRUj + χD
Uj
x

)−
n∑
i=1

ζjiSj +
n∑
i=1

ζijSi

dUj
dt

= βjSj(χRUj + χD
Uj
x

)− αjU + γjR(χRUj + χD
Uj
x

)−
n∑
i=1

ζjiUj +
n∑
i=1

ζijUj

dRj

dt
= αjUj − γjRj(χRUj + χD

Uj
x

)−
n∑
i=1

ζjiRj +
n∑
i=1

ζijRi.
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4.2. Application

Given data availability, we can do no meaningful parameter fit of our metapop-

ulation model in this form because we would need data on a large region during the

breakout of an epidemic of methamphetamine use due to the fact that the metapopu-

lation model is unconstrained in its current form. Every large region for which data is

currently available has an established presence of methamphetamine use with growth

and fluctuations taking place as a result of various levels of control measures typically

implemented by federal or state governments. An area of future work would include

integrating our metapopulation model with our optimal control model to track and

analyze these fluctuations. However, we focus our work here on demonstrating the

model’s behavior through an example simulation using reasonable parameter guesses

for a specific area and make a comparison to the simulation for the aggregate case

presented in Section 3.3 as well as the data. We use data from methamphetamine use

in 2004 in Missouri as an initial point and simulate the spread given by our model.

From our observation in our Chapter 3, we verified that the control measures

implemented in Missouri over the years 2004 to 2012 were effective in reducing the

spread of methamphetamine use. Thus, for our models to be consistent, simulation

of our metapopulation model which does not take the control measures into account

should yield aggregate state methamphetamine use higher than the actual use in the

data. Furthermore, we should find more information and detail regarding patterns of

distribution than previously given from our simulation in Chapter 3.
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We begin our application by creating a partition of the state of Missouri and

related data demonstrated in Figure 4.1. Now that we have grouped the counties in

Missouri into 9 partitions, we classify each partition based on population density as

urban or rural. We find that A and C are both urban, and the remaining partitions

are rural.

Figure 4.1. Missouri Methamphetamine Laboratory Incident Totals 2004

Using this partition, we create Figure 4.2 with the graph of the numerical solution

of our model. We input parameters within .1 of the parameters used in our aggregate
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simulation in Section 3.3: β = 0.75, α = 0.30, and γ = 0.35. We want the simulations

to be comparable without the parameters in each partition being identical. Our data

for the rates of travel between regions were estimated from related data given by

the Missouri State Highway Patrol and the Missouri Department of Transportation,

Traffic and Highway Safety Division [26]. Furthermore, in the graph of our metapop-

ulation model, we let the percents denote the percent of the population within each

partition.

We find a very interesting insight from modeling Missouri methamphetamine use

in this manner. We find that the number of users in F , G, and I increase the most

drastically. However, the number of users in both of our urban regions, A and C,

are actually declining. Considering the location of F , G, and I directly between

the two urban locations, our model seems to imply that users in urban regions with

immediately adjacent rural regions will tend to leave the urban regions for the urban

regions where they have easier availability of methamphetamine. This analysis makes

sense because isolated urban regions tend to obtain methamphetamine from nearby

rural communities. However, rural producers typically produce for personal use, not

for distribution. Thus, users from urban regions would have a motive to move to

the rural regions when they are nearby to self-produce methamphetamine, increasing

their ability to easy acquire the drug.
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Figure 4.2. Metapopulation Simulation of Unconstrained Growth
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CHAPTER 5

Conclusion

We believe that our models are very successful in informing us about the dynam-

ics of the spread of methamphetamine use in the United States. We made reasonable

assumptions in our models from previously observed and well supported characteris-

tics of methamphetamine use, distribution, relapse, and recovery. We found that our

models fit well with reasonable parameter results to data from a variety of regions

throughout the country. Furthermore, our analysis yielded several insights to the

spread and distribution patterns of methamphetamine use throughout the country

that were not obvious before our modeling exercise. We review the main conclusions

we found from our models. We begin by reviewing the results from our applications

and analyses of our compartmental models and metapopulation model.

Our urban compartmental model reveals an explanation for the strange pattern

of methamphetamine use distribution throughout the continental United States. We

see a clear estimate of this distribution through the map of methamphetamine users

admitted for drug treatment in each state for the year 2009 in Figure 5.5 from [27]

included in our appendix. We notice that methamphetamine use is concentrated in

California and the Midwest. In contrast, use of the drug is almost nonexistent in the

Northeastern states. Since methamphetamine has been an issue for many decades in

the United States, this uneven pattern is interesting. Other drugs often have uneven
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distribution of use, but typically the concentrations of use are associated with the

characteristics of a certain type of region. For example, much other illicit drug use

is more heavily observed in urban areas due to the necessity of acquiring the drug

through a dealer. For the point of comparison, we consider the distribution of heroin

throughout the United States in 2005 represented in the map in Figure 5.6 from [28] in

our appendix. Though use is not evenly distributed, heavy areas of use are distinctly

focused in urban regions. No such pattern is obvious with methamphetamine.

Our urban compartmental model analysis together with historical information

regarding the origins of methamphetamine in the United States give a complete expla-

nation of the strange distribution of use throughout the country. Methamphetamine

was not illegal until the passage of the U.S. Drug Abuse Regulation and Control

Act of 1970. In fact, use was promoted by both the Axis powers and the Allies in

World War II to keep troops awake. In the 1950’s, Obetrol Pharmaceuticals patented

Obetrol, one of the first pharmaceutical methamphetamine products. Throughout

the rest of that decade and into the 1960’s, Obetrol was a very popular diet pill sold

throughout the United States. Thus, when the harmful effects of methamphetamine

were investigated and the drug was outlawed in 1970, large numbers of people were

already addicted [29].

Shortly after methamphetamine was outlawed, Mexican drug cartels entered Cal-

ifornia and profited heavily off of the population of already addicted residents through

the continued distribution of methamphetamine. In addition, deserts adjacent to ma-

jor Southwest cities proved prime locations for nearby community labs. Use in rural
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communities continued to spread with the discovery of the ability to self-produce the

drug fairly easily. However, use in the Northeast did not prevail to a significant extent

past the banning of the pharmaceutical products. The population of the Northeast

did not immediately began making methamphetamine because regions were mostly

urban. Cartels were located much closer to California, so the Northeast was an incon-

venient first market. Our models provide more insight to why no significant growth of

methamphetamine use has occurred in the Northeast since the downturn after 1970.

We introduce the idea that a sufficient base of users must first be present for

dealers to enter an urban region in our model. This dynamic is made possible by the

construction of our metapopulation model as well as the existence of use before the

ban of the substance. The combination of these two traits imply that urban areas

that transition quickly to very nearby rural areas can gain a using population, but

the barriers are large for a population to begin use of methamphetamine when many

urban areas are adjacent to each other as is characteristic of the Northeast.

Furthermore, Equation 2.2.1 demonstrates the difficulty of escaping the disease-

free equilibrium in our urban compartmental model. Through the relationship given

in Equation 2.2.1, we found that the disease-free equilibrium in the rural model is

unstable only for the case in which the “infection” rate and relapse rate are both much

higher than the “recovery” rate additionally implying that we require a very high

basic reproductive number for this equilibrium to be unstable. In our applications,

we typically do not see parameter differences of the magnitude necessary for the

disease-free equilibrium to be unstable. Thus, we can anticipate that the disease-free
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equilibrium in most urban areas is stable, resulting in additional difficulty for an

outbreak of methamphetamine use to occur.

We note that the endemic equilibrium in urban areas is also stable, so, given either

an existing “epidemic” or a sudden influx of a large number of users, large numbers

of methamphetamine users can be sustained in an urban population. We observe

the case in which an existing epidemic continued in many Western cities, particularly

throughout California. However, neither of these characteristics are applicable to the

Northeast.

One question brought to light by this analysis remains. Not all of the Midwest

is rural. In particular, Missouri has many urban regions, and those regions appear to

have just a large a methamphetamine problem and the rural areas in the Midwest.

However, the cartel presence supplying the Western cities with methamphetamine

dealers does not exist in these cities. Our metapopulation model allows us to observe a

probable dynamic for these regions. While use spreads through the surrounding rural

areas in the Midwest, residents of the urban regions interact with rural users. They

temporarily become urban users receiving their drugs from rural “dealers” contrary

to the general dynamics of our models. However, our metapopulation model shows

the tendency of residents of urban areas to move to the immediately adjacent areas

to produce their own methamphetamine as their use continues. We see decrease in

use only in the urban partitions which corresponds exactly with increases in use in

the adjacent rural partitions. This dynamic is again impossible for the Northeast, so
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our description of the distribution throughout the United States only becomes more

complete.

We move onto review our results given by our optimal control model. Our results

from this model are not as general, but its use in continued applications is possibly the

most extensive. We found in our application to data from Missouri that the controls

attempting to restrict methamphetamine use throughout the state are not the optimal

set of controls, but they are definitely effective in decreasing use. We also validated

our model by showing that our application to data yielded meaningful parameters.

We can continue our use of this model with further data to analyze the effectiveness

of control measures and appropriate allocation of budgets for governments of different

levels throughout the United States.

Looking ahead, we hope that these models can continue to be used to discover

information regarding the use and abuse of methamphetamine throughout the United

States to control the harm use and production causes for so many people. To continue

their application, the main area of future work in these studies is data collection. In

addition, we hope to combine our optimal control model with our metapopulation

model. Both the increase in data availability and the combination of these two models

would allow an enormous increase in accuracy and power of our model’s predictive

and explanatory ability.
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Appendix

Figure 5.1. Optimal State Spending on Law Enforcement
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Figure 5.2. Optimal State Spending on Treatment Programs
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Figure 5.3. Optimal Aggregate State Spending on Law Enforcement
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Figure 5.4. Optimal Aggregate State Spending on Treatment Programs
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Figure 5.5. United States Methamphetamine Use Distribution
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Figure 5.6. United States Heroin Use Distribution
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