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ABSTRACT

In this dissertation, we study the structure of groups satisfying the weak minimal condi-

tion and weak maximal condition on non-permutable subgroups. In Chapter 1, we discuss

some definitions and well-known results that we will be using during the dissertation. In

Chapter 2, we establish some preliminary results which will be useful during the proof of

the main results. In Chapter 3, we express our main results, one of which states that a

locally finite group satisfying the weak minimal condition on non-permutable subgroups is

either Chernikov or quasihamiltonian. We also prove that, a generalized radical group sat-

isfying the weak minimal condition on non-permutable subgroups is either Chernikov or is

soluble-by-finite of finite rank.

In the Final Chapter, we will discuss the class of groups satisfying the weak maximal

condition on non-permutable subgroups.
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CHAPTER 1

INTRODUCTION

The structure of infinite groups satisfying the minimal (respectively maximal) condition

or the weak minimal (respectively weak maximal) condition has been one of the important

aspects for the development of infinite group theory.

If P is a subgroup theoretical property or class of groups then P̄ denotes the class of

all groups that are either not P-groups or are trivial. In 1964, S. N. Chernikov started the

investigation of groups satisfying the minimal condition on subgroups which do not have the

property P , denoted by min-P̄ , in a series of articles (for a general reference, see [4]). In

particular, he studied groups satisfying the minimal condition on non-abelian subgroups and

groups satisfying the minimal condition on non-normal subgroups. He proved that if such a

group has a series with finite factors, then either the group satisfies the minimal condition on

all subgroups or all the subgroups have the prescribed property P . Later, Philips and Wilson

[19] investigated the same type of problem for several different choices of the property P ,

and proved in particular that a locally graded group satisfying the minimal condition on

non-normal subgroups either is a Chernikov group or has all its subgroups normal.

Taking motivation from such work, in their paper [3], M.R. Celentani and Antonella

Leone considered the class of groups satisfying the minimal condition on non-quasinormal

subgroups. The structure of such groups was given by the following result:

Theorem 1.1. [3, Theorem C] Let G be a group which either is non-periodic or locally

graded. If G satisfies the minimal condition on non-quasinormal subgroups, then either G is

quasihamiltonian or it is a Chernikov group.

The concept of the weak minimal condition was introduced by D. I. Zaitsev [24]. In [25],

he investigated the class of groups satisfying the weak minimal condition on non-abelian
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subgroups where he was able to show that in the case of locally soluble-by-finite (also known

as locally almost soluble) groups the weak minimal condition on non-abelian subgroups is

equivalent to the weak minimal condition on subgroups. By virtue of the result in [25] such

a group is then a soluble-by-finite minimax group. Groups with the weak minimal condition

on non-normal subgroups and non-subnormal subgroups were the subject of interest in [13]

and [14] respectively. In [14], the authors were able to establish the following theorem:

Theorem 1.2. [14, Theorem C] Let G be a generalized radical group with weak minimal

condition on non-subnormal subgroups. Then either G is soluble-by-finite and minimax or

every subgroup of G is subnormal.

The results in these papers and similar other papers were enough to motivate us to

investigate the structure of groups satisfying the weak minimal condition on non-permutable

subgroups. The main purpose of this dissertation is to study the structure of generalized

radical groups satisfying the weak minimal condition on non-permutable subgroups, which

we will discuss in Chapter 3.

In the coming sections of this chapter, we will go through some important definitions,

and results which will be useful in the further chapters and which will also explain some of

the terminology used in the Introduction.

1.1 Permutable Subgroups

In this first section we discuss the notion of permutable subgroups. We begin the section

with the definition of permutable subgroup.

Definition 1.1. A subgroup H of a group G is said to be permutable or quasinormal

in G if HK = KH for every subgroup K of G. This is equivalent to affirming that HK is

a subgroup of G. We often write H per G for H is permutable in G.

The concept of permutability was introduced by Ore [17], who called permutable sub-

groups quasinormal. Later S. E. Stonehewer introduced the term permutable and the be-

havior of permutable subgroups was later investigated by various authors. Obviously, every
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normal subgroup is permutable but the converse is not true. This can be seen by let-

ting the group G be the semidirect product of a cyclic group 〈x〉 of order p2 and a cyclic

group 〈y〉 of order p acting non-trivially. In other words: G is a group of order p3 gen-

erated by x and y satisfying the relations xp
2

= yp = 1 and y−1xy = xp+1. That is,

G = 〈x, y |xp2 = yp = 1, y−1xy = xp+1〉. We claim that the subgroup 〈y〉 is permutable

in G, but it is not normal. Let H be the subgroup generated by the elements of order p.

Then, x /∈ H, hence H 6= G. Moreover, xp, y ∈ H together imply that H has order p2. So,

H is elementary abelian. Now, any cyclic subgroup of H permutes with 〈y〉. Also, if we pick

an element a ∈ G \H then 〈a〉 is of order p2, hence it is maximal in G, so 〈a〉 is normal in

G and permutes with 〈y〉 . So every cyclic subgroup of G permutes with 〈y〉, hence 〈y〉 is

permutable. However, 〈y〉 is not normal as x−1yx = yx−p.

An alternate proof for the permutability of 〈y〉 can be given when p is an odd prime. If

G is a finite p-group which is the product of two cyclic subgroups where p is an odd prime,

B. Huppert showed in [10] that every subgroup of G is permutable. Hence, in our example,

if p is odd, then every subgroup of G is permutable, hence 〈y〉 is permutable.

However, Ore [18] proved that in a finite group permutable subgroups are subnormal. In

the same paper, he was also able to show that a maximal permutable subgroup of a finite

group is normal. We also have the following interesting result of Stonehewer for another

point of view.

Theorem 1.3. [21, 13.2.3] Let G = HK where H per G and K = 〈k〉 is an infinite

cyclic group. Assume that H ∩K = 1. Then H �G.

One of the many consequences of this fundamental result is a further result of Stonehewer

[23].

Lemma 1.1. A simple group cannot have a proper, non-trivial permutable subgroup.

Now we prove one more lemma related to the properties of permutable subgroups.

Lemma 1.2. Let G be a group and let N �G. If H/N is permutable in G/N then H is

permutable in G.
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Proof. For each subgroup K of G, we need to show that HK = KH. Since, H/N is

permutable in G/N we have (
H

N

)(
KN

N

)
=

(
KN

N

)(
H

N

)
.

Then HKN = KHN. Since N is normal in G and N ≤ H, it follows that HK = KH so

H is permutable in G.

�

The converse of Lemma 1.2 also holds.

Lemma 1.3. Let G be a group and let N � G. If H is permutable in G then
HN

N
is

permutable in
G

N
.

Proof. Since H is permutable in G then, by definition of permutability, we have HK =

KH for any subgroup K of G. This implies

HN

N
· K
N

=
HKN

N
=
KHN

N
=
K

N
· HN
N

for any subgroup
K

N
of

G

N
. Hence by definition

HN

N
is permutable in

G

N
.

�

Definition 1.2. Groups in which every subgroup is normal are called Dedekind groups.

Abelian groups are trivial examples of Dedekind groups. A non-abelian Dedekind group

is called a Hamiltonian group. The quaternion group of order 8 is an example of a non-

abelian Dedekind group. Now the more general case, when all subgroups of a group are

permutable, is rather interesting. Clearly, abelian groups and Dedekind groups are examples

of such groups.

Definition 1.3. A group is called quasihamiltonian if all its subgroups are permutable.

It was proved by Stonehewer [23] that permutable subgroups of arbitrary groups are

ascendant, a far-reaching generalization of subnormality, so the quasihamiltonian groups are
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locally nilpotent. The structure of quasihamiltonian groups was described by Iwasawa [11].

Here we give a flavor of the results obtained.

Theorem 1.4. [11, Iwasawa] Let G be a non-abelian group with all subgroups permutable.

Then

(i) G is locally nilpotent

(ii) G is metabelian

(iii) If T (G) is the torsion subgroup of G and if G 6= T (G) then T (G) is abelian and

G/T (G) is a torsion-free abelian group of rank 1.

Finally we give another well-known criterion for a group to be Quasihamiltonian.

Lemma 1.4. Let G be a group. Then every subgroup of G is permutable if and only if

〈a〉〈b〉 = 〈b〉〈a〉 for all a, b ∈ G.

Proof. Suppose every subgroup of G is permutable. Then by definition, 〈a〉〈b〉 = 〈b〉〈a〉

for all a, b ∈ G. Conversely, assume that 〈a〉〈b〉 = 〈b〉〈a〉 for all a, b ∈ G. Now to show every

subgroup of G is permutable, we need to show that BC = CB for all subgroups B, C. Let

B,C be subgroups of G. Let bicj ∈ BC where i, j ∈ Z and b ∈ B, c ∈ C. Then by our

assumption, 〈b〉〈c〉 = 〈c〉〈b〉. Hence bicj = ckbl for some k, l ∈ Z and so bicj ∈ CB. Thus,

BC ⊆ CB. Similarly, if cibj ∈ CB where i, j ∈ Z, then 〈c〉〈b〉 = 〈b〉〈c〉 by our assumption,

so cibj ∈ BC and CB ⊆ BC. Therefore BC = CB which completes the proof.

�

For more information about permutable subgroups, we refer the reader to [22].

1.2 Min-P and Max-P

This dissertation is concerned with the weak minimal and weak maximal conditions, so

in this section we first discuss the minimum and maximum conditions. We begin with the

definition of subgroup theoretical property and finiteness conditions on subgroups.

Definition 1.4. A subgroup theoretical property P is a property of certain subgroups

of a group G so that always the identity subgroup of G has property P and whenever H ≤ G
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has the property P then Hθ also has property P, whenever θ is an isomorphism of G with

some other group.

Let P be a class of groups. We shall say that a group H is a P-group if it belongs to

P and that H ≤ G is a P-subgroup of G if H is a P-group. For a class of groups we write

P̄ for the class that consists of all groups that do not belong to P together with all trivial

groups. Similarly, if P is a property of groups, P̄ will denote the property not-P .

A finiteness condition in the theory of groups is a property satisfied by all finite groups.

It is well known that finiteness conditions have played a great role in the study of infinite

subgroups. Two of the first finiteness conditions defined in the theory of groups were the

minimal and the maximal conditions for subgroups. The minimal condition consists of

the requirements of finiteness of descending chains of subgroups of the group whereas the

maximal condition requires the finiteness of ascending chains of subgroups. Now we define

those two finiteness conditions on subgroups with the property P .

Definition 1.5. Let P be a subgroup theoretical property. The group G is said to satisfy

the minimal condition on P-subgroups (min-P) if every nonempty set S of subgroups of G

with property P contains a subgroup H with the property P such that if K ≤ H and K ∈ S

then K = H;

For example, if P is simply the property of being a subgroup, then the condition min-

P is called the minimum condition and often denoted by min. Similarly, if P represents

the property of being an abelian subgroup, then the group G has min-ab, the minimum

condition on abelian subgroups. We recall that a group G is said to have min-ab, if every

abelian subgroup has the minimum condition. If P is the property of being a permutable

subgroup, then min-P̄ is called the minimum condition on non-permutable subgroups and

so on. For any subgroup theoretical property P , we have the following easily proven result

for the condition min-P .

Lemma 1.5. Let P be a subgroup theoretical property. Then the group G has min-P if

and only if every descending chain of P-subgroups terminates in finitely many steps.
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Proof. Suppose that G has min-P and H1 ≥ H2 ≥ H3 ≥ · · · is a descending chain

of P-subgroups. Then {H1, H2, H3, . . . } is a non-empty set of P-subgroups so there is a

minimal element, Hk, say. Then Hk = Hk+1 = Hk+2 = . . . so the chain terminates in finitely

many steps.

Conversely, let S be a non-empty set of P-subgroups of G and suppose that S has no

minimal element. If Hi ∈ S for some i ∈ N, then, by assumption, there is a subgroup

Hi+1 ∈ S such that Hi+1 � Hi. In this way, since S 6= φ, we obtain an infinite descending

chain

H1 
 H2 
 H3 
 H4 
 · · ·

of P-subgroups contrary to the hypothesis. This completes the proof.

�

In this dissertation a group is called quasicyclic if it is of the type Cp∞ for some prime

p. We note that all proper subgroups of a quasicyclic group are finite and cyclic.

Theorem 1.5. [8, 1.6] Suppose G is an abelian group. Then G has the minimum con-

dition if and only if G is a finite direct product of quasicyclic p-groups and finite cyclic

subgroups.

Definition 1.6. A group which is finite extension of an abelian group satisfying the

minimum condition is called a Chernikov group.

Such groups have also been called extremal and they were named in honor of

S. N. Chernikov, who made an extensive study of groups with the minimum condition.

From the structure Theorem 1.5, it follows that a group G is Chernikov if and only if it has

a normal divisible abelian subgroup N of finite index, and N is a direct product of finitely

many quasicyclic groups. Obviously, all finite groups are Chernikov and every Chernikov

group satisfies the minimum condition. The group Cp∞ o C2 is an example of a Chernikov

group, where Cp∞ has an automorphism of order 2, namely the inversion automorphism.

Next we discuss locally nilpotent groups satisfying the minimal condition on abelian

subgroups (min-ab) via the following Theorem.
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Theorem 1.6. [8, 3.7] Suppose that G is a locally nilpotent group satisfying min-ab.

Then G is Chernikov and hence hypercentral.

For locally finite groups with the minimal condition on abelian subgroups, we have the

following famous result of Shunkov [12].

Theorem 1.7. [12, Theorem 5.8] For the locally finite group G the following are equiv-

alent.

(i) G is a Chernikov group.

(ii) G satisfies min.

(iii) G satisfies min-ab

(iv) The centralizer of every non-identity element of G has min.

Next we define the maximal condition on subgroups with the property P exactly in the

same way we defined the minimal condition.

Definition 1.7. Let P be a subgroup theoretical property. The group G is said to satisfy

the maximal condition on P-subgroups (max-P) if every nonempty set S of subgroups of G

with property P, contains a subgroup H with the property P such that if H ≤ K and K ∈ S

then K = H.

Here we note that min and max both are extension closed properties. Also, analogous

to Lemma 1.5 for min-P , we have an easy to prove, corresponding lemma for max -P given

by:

Lemma 1.6. Let P be a subgroup theoretical property. Then the group G has max-P if

and only if every ascending chain of P-subgroups terminates in finitely many steps.

Earlier we mentioned that Phillips and Wilson obtained the structure of locally graded

groups with the minimal condition on non-normal subgroups. In [6], Giovannni Cutolo

studied the structure of locally graded groups satisfying the maximal condition on non-

normal subgroups (max -n̄), where n represents the property of being a normal subgroup and

proved the following:
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Theorem 1.8. A locally graded group G satisfies max-n̄ if and only if it is one of the

following types:

(a) G has the maximum condition.

(b) G is a Dedekind group.

(c) G is a central extension of Cp∞ by a finitely generated Dedekind group.

(d) G is the direct product of Q2 and a finite Hamiltonian group.

We recall that a group G is locally graded if every finitely generated non-trivial subgroup

of G has a non-trivial finite image. The class of locally graded groups contains the classes

of locally finite groups, locally soluble groups and locally-(soluble by finite) groups.

In above theorem Q2 is defined as follows.

Let π be a non-empty set of primes. Then let Qπ denote the additive group of rational

numbers whose denominators are π-numbers. In particular, if π = {2}, then Q2 represents

the additive group of all rational numbers whose denominators are a power of 2. For more

about the maximal condition on subgroups, we refer the reader to [20].

The class of locally graded groups also contains the class of generalized radical groups,

which we now discuss. It is well-known that the product of two normal nilpotent subgroups

is again nilpotent which is Fitting’s Theorem. The following well-known result due to Hirsch

and Plotkin shows that the same result holds for normal locally nilpotent subgroups. It is

known as the Hirsch-Plotkin Theorem.

Theorem 1.9. [21, 12.1.2] Let H and K be normal locally nilpotent subgroups of a group

G. Then the product J = HK is a normal locally nilpotent subgroup of G.

As a consequence of this theorem, we conclude that in any group G there is a unique

maximal normal locally nilpotent subgroup containing all normal locally nilpotent subgroups

of G, which is called the Hirsch-Plotkin radical of G. We denote it by ρ(G) and it is a

characteristic subgroup of G. Next, we can define the upper Hirsch-Plotkin series {ρα(G)}

of the group G by

9



ρ0(G) = 1

ρ1(G) = Hirsch-Plotkin Radical of G

ρα+1(G)/ρα(G) = ρ(G/ρα(G)) for ordinals α

ργ(G) =
⋃
β<γ

ρβ(G) for limit ordinals γ

Clearly, {ρα(G)} is an ascending locally nilpotent series of characteristic subgroups. Now,

we are ready to define an important class of groups.

Definition 1.8. A group G which has an ascending locally nilpotent series terminating

in G is said to be a radical group.

The class of radical groups is an important class as it contains the locally nilpotent groups

and the soluble groups. However, it does not contain the class of locally soluble groups.

Note that a group G is radical if and only if its upper Hirsch-Plotkin series terminates at

G. So, we conclude that a radical group has at least one ascending locally nilpotent series

of characteristic subgroups.

Next, we prove the following useful lemma which concludes that the product of normal

radical subgroups is again radical.

Lemma 1.7. Let G be a group and let H be a subgroup of G. Assume that H is a product

of proper normal radical subgroups. Then H is a radical, normal subgroup of G.

Proof. Let H be a product of proper normal radical subgroups, that is, H =
∏
α

Hα

where Hα is a proper normal radical subgroup of G for each α. Let Hβ be any proper normal

radical subgroup of G which occurs as a factor in the product H =
∏
α

Hα. Then Hβ has an

ascending series of characteristic subgroups 1 = Hβ,0 ≤ Hβ,1 ≤ Hβ,2 ≤ . . . ≤ Hβ, λβ = Hβ

such that Hβ,θ+1/Hβ,θ is locally nilpotent for any ordinal θ and Hβ, γ = ∪θ<γHβ,θ if γ is a

limit ordinal. Note that each term of this series is a normal subgroup of G as Hα is normal

in G for each α and in particular α = β. Consider the ascending series

1 = H1,0 ≤ H1,1 ≤ H1,2 ≤ . . . ≤ H1,λ1 = H1 = H1H2,0 ≤ H1H2,1 ≤ . . . ≤ H1H2,λ2 = H1H2 =

H1H2H3,0 ≤ H1H2H3,1 ≤ . . . ≤
∏
α

Hα = H.

10



It is clearly an ascending series of H and each factor of this series is locally nilpotent.

�

Next we discuss the class of generalized radical groups in brief.

Definition 1.9. A group G is said to be generalized radical if it has an ascending series

of normal subgroups terminating in G, the factors of which are locally nilpotent or locally

finite.

The subgroups, quotients, and extensions of generalized radical groups are generalized

radical. Moreover, the class of generalized radical groups contains the class of radical groups

and locally finite groups.

In Theorem 1.1 we gave a structure theorem for groups with the minimal condition

on non-permutable subgroups. Continuing with this theme, Maria De Falco and Carmella

Musella in [7] investigated the structure of generalized radical groups satisfying the maximal

condition on non-permutable subgroups. They introduced the class of L1-group defined as:

Let A be a torsion-free abelian group of finite rank r (The definition is given in Section

1.4). We will say that A is an L-group if it is not finitely generated while all its subgroups of

rank less than r are finitely generated. Obviously, every torsion-free abelian group of rank 1

which is not finitely generated is an L-group. An L-group will be called an L1-group if it is

an extension of a finitely generated group by a group of type p∞ for some prime p.

Theorem 1.10. [7, Theorem B] A generalized radical group G satisfies the maximal

condition on non-permutable subgroups if and only if one of the following condition holds:

(i) G is polycyclic-by-finite.

(ii) G is quasihamiltonian.

(iii) G contains a central subgroup P of type p∞ (p prime) and a subgroup E with the

maximal condition such that G = PE; moreover, either G/(P ∩ E) is quasihamil-

tonian or

G/(P ∩ E) = P/(I ∩ E)× E/(P ∩ E),
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where p = 2 and E/(P ∩ E) is the direct product of a finite Dedekind 2-group and

a finite quasihamiltonian 2′-group.

(iv) G contains a central L1-subgroup J , and for every subgroup I of finite index of

J , there exists a subgroup E of G with the maximal condition such that G = IE;

moreover, either G/(I ∩ E) is quasihamiltonian or

G/(I ∩ E) = I/(I ∩ E)× E/(I ∩ E),

where I/(I ∩E) is a group of type 2∞ and E/(I ∩E) is the direct product of a finite

Dedekind 2-group and a finite quasihamiltonian 2′-group.

Now we introduce the finiteness property known as minimax which generalizes both

minimality (min) and maximality (max). The term minimax was introduced by R. Baer [2]

which he introduced in connection with abelian minimax groups. A detailed study of mini-

max groups was done later by several authors including R. Baer, D. Robinson, D. I. Zaitsev

and others.

Definition 1.10. A group G is called minimax if it has a finite series of subgroups

1 = G0 �G1 �G2 � · · ·�Gn = G, each factor of which satisfies either the minimal condition

(min) or the maximal condition (max).

This important class of groups has received much attention in the case of soluble groups.

The length of a shortest minimax series in a minimax group G is called the minimax length

and written as m(G). The class of minimax groups is closed under taking subgroups, and

homomorphic images. It is also closed under extensions. Now we give an example of an

abelian minimax group;

Example 1.1. If π is a finite set of primes, let Qπ denote the additive group of rational

numbers whose denominators are π-numbers. Then Qπ is an example of an abelian minimax

group. This is because Qπ is an extension of the integers Z and Qπ/Z is a group with min.

Concerning minimax groups we have
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Theorem 1.11. [21, 15.2.9] Let A�G where A is abelian. If every abelian subgroup of

G is minimax, then the same is true of the abelian subgroups of G/A.

The relation between radical groups and minimax group is given by the following famous

theorem of Baer and Zaitsev.

Theorem 1.12. [20, 10.35 Baer-Zaitsev] A radical group, all of whose abelian subgroups

are minimax groups, is itself a soluble minimax group.

1.3 Weak-Min-P and Weak-Max-P

In this section we will discuss two further finiteness conditions, namely, the weak minimal

and weak maximal conditions. The concept of the weak minimal condition on P-subgroups,

denoted by min-∞-P , was introduced by R. Baer [2] and D. I. Zaitsev [24]. Using the

notation of D. I. Zaitsev, we have the following definition.

Definition 1.11. For a property P of groups, a group G is said to satisfy the weak

minimal condition for P-subgroups (min-∞-P) if there is no infinite descending chain H1 >

H2 > H3 > · · · of P-subgroups of G with each |Hi : Hi+1| infinite. Equivalently G has min-

∞-P if, for every descending chain H1 > H2 > H3 > · · · of P-subgroups of G, |Hi : Hi+1|

is infinite only for finitely many i.

If P is the class of all subgroups, then the condition is simply known as the weak minimal

condition (min-∞). Every subgroup and factor group of a group satisfying the weak minimal

condition for subgroups, satisfies, obviously, also the weak minimal condition for subgroups.

We have the following lemma, which will be generalized in Lemma 2.3

Lemma 1.8. [24, Lemma 1] Let G be a group and let C � G. Suppose A,B ≤ G and

B ≤ A. Let {aαCB |α ∈ Λ} be a set of distinct cosets of CB in CA, where aα ∈ A for

all α ∈ Λ, and let {cβ(C ∩ B) |β ∈ Γ} be a set of distinct cosets of C ∩ B in C ∩ A. Then

{aαcβB|α ∈ Λ, β ∈ Γ} is a set of distinct cosets of B in A for all α ∈ Λ and β ∈ Γ.

Using Lemma 1.8 we prove that the weak minimal condition on subgroups is an extension

closed property. This follows quite easily using Lemma 1.8.
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Theorem 1.13. The weak minimal condition on subgroups (min-∞) is closed under

extensions.

Proof. Let N � G be such that both N and
G

N
have the weak minimal condition on

subgroups. Then we need to show that the group G also has the property min-∞. Suppose

G1 
 G2 
 G3 
 · · · is a descending chain of subgroups in G. Form descending chains of

subgroups of N and
G

N
as follows:

N ∩G1 ≥ N ∩G2 ≥ · · · ≥ N ∩Gk ≥ · · ·

G1N

N
≥ G2N

N
≥ G3N

N

 · · · ≥ GkN

N

 · · ·

Since both N and
G

N
have min-∞, we can choose an integer k such that,

|N ∩Gi : N ∩Gi+1| is finite for all i ≥ k and also
∣∣∣GiN

N
:
Gi+1N

N

∣∣∣ is finite for all i ≥ k. Now

set C = N,B = Gi+1, A = Gi in the statement of Lemma 1.8. Then

|A : B| = |AC : BC||C ∩ A : C ∩B| implies that

|Gi : Gi+1| = |GiN : Gi+1N ||N ∩Gi : N ∩Gi+1|

is finite for all i ≥ k. So, G1 
 G2 
 G3 
 · · · is a descending chain with min-∞. Hence G

has the weak minimal condition on subgroups.

�

We also note that a group satisfying the weak minimal condition for subgroups need not

be periodic as is the case of a group satisfying the minimal condition on subgroups, as the

infinite cyclic group shows. Next we define the weak maximal condition for P-subgroups.

Definition 1.12. For a property P of groups, a group G is said to satisfy the weak

maximal condition for P-subgroups (max-∞-P) if there is no infinite ascending chain H1 <

H2 < H3 < · · · of P-subgroups of G with each |Hi+1 : Hi| infinite. Equivalently G has max-

∞-P if, for every ascending chain H1 < H2 < H3 < · · · of P-subgroups of G, |Hi+1 : Hi|

is infinite only for finitely many i.
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Like the weak minimal condition on subgroups, the weak maximal condition on sub-

groups is closed under taking subgroups, and homomorphic images. It is also closed under

extensions.

For a property P of groups, if P̄ denotes the class of non-P groups or all trivial groups,

we can speak of the weak minimal condition for subgroups which do not have property P

(min-∞-P̄) or the weak maximal condition on subgroups which do not have the property

P (max-∞-P̄). For example, on letting P denote the class of permutable subgroups, we

may speak of groups satisfying min-∞-P̄ or max-∞-P̄ , the weak minimal condition on non-

permutable subgroups or the weak maximal condition on non-permutable subgroups, which

are a subject of concern in this dissertation. Next we prove the following lemma.

Lemma 1.9. (i) If G is a group satisfying the weak minimal condition on non-

normal subgroups then G has the weak minimal condition on non-permutable sub-

groups.

(ii) If G is a group satisfying the weak maximal condition on non-normal subgroups then

G has the weak maximal condition on non-permutable subgroups

Proof. (i) Suppose

H1 
 H2 
 H3 
 · · · (1)

is a descending chain of non-permutable subgroups in G. Then each Hi is non-normal. So

H1 
 H2 
 H3 
 · · · is a descending chain of non-normal subgroups in G. Since G has the

weak minimal condition on non-normal subgroups then, by definition, |Hi : Hi+1| is infinite

for only finitely many i. Therefore G has the weak minimal condition on non-permutable

subgroups as each Hi in (1) is non-permutable and |Hi : Hi+1| is infinite for only finitely

many i.

(ii) Suppose

K1 � K2 � K3 � · · · (2)

is an ascending chain of non-permutable subgroups in G. Then each Ki is non-normal. So

K1 � K2 � K3 � · · · is an ascending chain of non-normal subgroups in G. Since G has the
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weak maximal condition on non-normal subgroups then, by definition, |Ki+1 : Ki| is infinite

for only finitely many i. Therefore G has the weak maximal condition on non-permutable

subgroups, as each Ki in (2) is non-permutable and |Ki+1 : Ki| is infinite for only finitely

many i. �

In [24], Zaitsev studied the weak minimal condition for the classes of locally finite and

locally solvable groups. He proved that in the case of locally finite groups, the weak minimal

condition for subgroups, min-∞, is equivalent to the usual minimal condition for subgroups,

min. Hence a locally finite group with min-∞ is a Chernikov group. In the same paper, he

was also able to prove that a locally soluble group satisfying the weak minimal condition on

subgroups is in fact soluble. In the case of soluble groups we have:

Theorem 1.14. [16, 5.1.5] The following properties of a soluble group G are equivalent:

(i) G is a minimax group;

(ii) G satisfies max-∞;

(iii) G satisfies min-∞

Zaitsev proved in [26] that a locally (soluble-by-finite) group G satisfying either the

weak maximal or the weak minimal condition for all subgroups is a soluble-by-finite min-

imax group, that is, G has a normal soluble subgroup H of finite index which in turn

has a finite normal series whose factors are abelian and satisfy either max or min. The

structure of groups satisfying the weak minimal condition on non-normal subgroups (min-

∞-n̄) and weak maximal condition on non-normal subgroups (max-∞-n̄) was investigated

by L. A. Kurdachenko and V. E. Goreteskii [13], where the following result was established.

Theorem 1.15. A locally (soluble-by-finite) group G satisfies the condition min-∞-n̄

(respectively, max-∞-n̄) if and only if G is either Dedekind or almost soluble and minimax.

Continuing with this theme, L. A. Kurdachenko and Howard Smith studied the struc-

ture of groups satisfying the weak minimal and weak maximal condition [14, 15] on non-

subnormal subgroups. In their paper [15] they proved the following:
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Theorem 1.16. Let G be a locally finite group with the weak maximal condition for non-

subnormal subgroups. Then either G is a Chernikov group or G has all subgroups subnormal.

In either case, G is soluble-by-finite.

All these papers motivated us to study groups satisfying the weak minimal condition

(and weak maximal condition) on non-permutable subgroups and some results will be given

in Chapter 3.

1.4 Groups of Finite Rank

As will become apparent we will need to refer to the notion of rank in a group. For most

of the definitions in this section, we use [8] and [21]. We start with the following definition.

Definition 1.13. A group G is said to have finite (Prüfer) rank r if every finitely

generated subgroup can be generated by r elements and r is the least such integer. If there is

no such integer r, the group is said to have infinite rank. We denote the rank of G by r(G).

It is easy to see that every subgroup and quotient group of a group of rank at most r also

has rank at most r. The class of groups with finite rank is closed under forming extensions

and if H � G then r(G) ≤ r(H) + r(G/H), where it is easy to see that inequality holds

in general. Both Cp∞ and Q are locally cyclic, in the sense that every finitely generated

subgroup is cyclic, and hence have rank 1. A finite direct product of quasicyclic groups has

finite rank, so a Chernikov group is of finite rank. Similarly, polycyclic groups and soluble

minimax groups are other examples of groups of finite rank.

Definition 1.14. Let G be an abelian group. The number of elements in a maximal

independent subset consisting of element of infinite order is called the 0-rank of the group

G, denoted by r0(G). The number of elements in a maximal independent subset consisting

of elements of p-power order is called the p-rank of G and denoted by rp(G).

Now we can give the following well-known lemma.

Lemma 1.10. An abelian group G is a direct sum of cyclic groups if and only if it is

generated by an independent set.
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It is easy to show that if G is abelian then rp(G) = rp(T (G)) and that r0(G) =

r0(G/T (G)), where T (G) is the set of elements of finite order in G. It can be also shown

that for each abelian group G, r(G) = r0(G) + max
p
{rp(G)}. Moreover, in an abelian group

G, two maximal independent subsets consisting of elements with order a power of the prime

p have the same cardinality, and the same is true of maximal independent subsets consisting

of elements of infinite order as stated in [21, 4.2.1].

Lemma 1.11. Let G be an abelian group of infinite rank. Then G has a proper subgroup

N of infinite rank which is a direct sum of cyclic subgroups.

Proof. Let G be an abelian group of infinite rank. Then G has a linearly independent

subset S of infinite cardinality. If 〈S〉 6= G, then 〈S〉 is a proper normal subgroup of G

of infinite rank, and by Lemma 1.10, it is a direct sum of cyclic subgroups. Therefore we

assume that 〈S〉 = G. Let x ∈ S. Consider T = S \ {x}. Then, clearly 〈T 〉 � 〈S〉 = G and

〈T 〉 has infinite rank. Thus, 〈T 〉 is a proper subgroup of infinite rank. By Lemma 1.10, it is

a direct sum of cyclic subgroups.

�

Next we proceed with the lemma which describes the structure of abelian p-groups with

finite rank.

Lemma 1.12. [8, 1.12] The abelian p-group G satisfies the minimum condition if and

only if G has finite rank. In this case G is Chernikov and G = D ⊕ F for some divisible

subgroup D and finite subgroup F .

In [1], Baer and Heineken studied radical groups with finite rank and obtained the fol-

lowing result which discusses the effect of the abelian subgroups on the structure of a radical

group G.

Theorem 1.17 (Baer-Heineken Theorem [1]). Let G be a radical group. Then G has

finite rank if and only if the abelian subgroups of G have finite rank.
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From the above theorem, we can conclude that if a radical group G has infinite rank

then it contains an abelian subgroup A of infinite rank. Hence by Lemma 1.11, A contains

a subgroup of infinite rank which is direct sum of cyclic subgroups.

We conclude the section with the structure of generalized radical group of finite rank.

In [9], the authors investigated generalized radical groups of finite rank and established the

following theorem:

Theorem 1.18. [9, Theorem A] Let G be a generalized radical group of finite rank. Then

G has normal subgroups T ≤ L ≤ K ≤ S ≤ G such that

(1) T is locally finite and G/T is soluble-by-finite of finite rank,

(ii) L/T is a torsion-free nilpotent group,

(iii) K/L is a finitely generated torsion-free abelian group,

(iv) G/K is finite and S/T is the soluble radical of G/T.
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CHAPTER 2

PRELIMINARY RESULTS

In this chapter, we obtain various preliminary results which arise during the proof of the

main results. We start with the following example.

Example 2.1. There is a group with the weak minimal condition on non-permutable

subgroups which does not satisfy the minimal condition on non-permutable subgroups.

Consider the infinite dihedral group G = Z o Z2 = 〈a〉 o 〈x〉 where x acts as a power

automorphism of 〈a〉. Then ax = a−1. Since 〈a〉 is normal in G it follows that 〈am〉 is also

normal in G for all m ∈ Z. So we can write G/〈a4〉 = 〈a〉〈x〉/〈a4〉.

Since 〈a4〉〈x〉/〈a4〉 is not permutable in G/〈a4〉 it follows that 〈a4〉〈x〉 is not permutable

in G. Similarly, 〈a8〉〈x〉 is not permutable in G and in general 〈a2i〉〈x〉 is not permutable in

G for i ≥ 2. Thus we have a descending chain of non-permutable subgroups

〈a4〉〈x〉 
 〈a8〉〈x〉 
 〈a16〉〈x〉 
 · · ·

which never terminates. Thus G does not have the minimal condition on non-permutable

subgroups. On the other hand the infinite dihedral group is a soluble minimax group, so

it has the weak minimal condition on subgroups and hence the weak minimal condition on

non-permutable subgroups.

We recall that an automorphism of a group G that leaves every subgroup invariant is

called a power automorphism. Note that such an automorphism maps each element to one

of its powers. Clearly, the set of power automorphisms of G is a subgroup of AutG. In

[5], Cooper proved that each power automorphism of a group is central. As a consequence

of this, power automorphisms fix the elements of the derived subgroup. Moreover, a power
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automorphism of the form x→ xn for some fixed integer n is said to be universal. For more

information about power automorphisms, we refer the reader to [5].

Next, we prove that the class of groups with the weak minimal condition on non-

permutable subgroups is closed under taking subgroups and homomorphic images. We have

the following proposition:

Proposition 2.1. Every subgroup and factor group of a group satisfying the weak min-

imal condition on non-permutable subgroups satisfies the weak minimal condition on non-

permutable subgroups.

Proof. Let G be a group satisfying the weak minimal condition on non-permutable

subgroups. Let H ≤ G. Suppose that

H1 
 H2 
 H3 
 · · · 
 Hi 
 · · ·

is an infinite descending chain in H and suppose these subgroups are not permutable in H.

Then the Hi are not permutable in G either. However G has the weak minimal condition

on non-permutable subgroups so there is an integer k such that, for all j ≥ k, |Hj+1 : Hj| is

finite. Hence H has the weak minimal condition on non-permutable subgroups.

Let N be a normal subgroup of the group G. Suppose there is a descending chain H1/N ≥

H2/N ≥ H3/N ≥ · · · of non-permutable subgroups of G/N . Then H1 ≥ H2 ≥ H3 ≥ · · ·

is a descending chain of non-permutable subgroups of G. Since G has the weak minimal

condition on non-permutable subgroups, |Hi : Hi+1| is infinite for only finitely many i and

hence |Hi/N : Hi+1/N | is infinite for only finitely many i. Thus the group G/N also satisfies

the weak minimal condition on non-permutable subgroups. �

In a group G, if all the subgroups of infinite index are permutable, then the group G has

the weak minimal condition on non-permutable subgroups as we prove in our next lemma.

Lemma 2.1. Let G be a group in which all subgroups of infinite index are permutable in

G. Then G has the weak minimal condition on non-permutable subgroups.
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Proof. Let H1 
 H2 
 H3 
 H4 · · · be a descending chain of subgroups of G, and

suppose that |G : Hi| is infinite for some i. Then, by hypothesis, Hi per G. If K ≤ Hi then

|G : K| is also infinite so K per G. In particular, for k ≥ i, Hk per G. Hence G has the

weak minimal condition on non-permutable subgroups.

�

We note that in a non-periodic group if the set of all elements of finite order forms a

subgroup then the group is generated by its elements of infinite order.

Proposition 2.2. Let G be a non-periodic, non-quasihamiltonian infinite group. Then

every subgroup of infinite index is permutable in G if and only if the following conditions

hold:

(a) T= {x ∈ G |x has finite order} is a Dedekind group, and indeed if x ∈ T then

〈x〉�G.

(b) T is finite.

(c) G/T is abelian and isomorphic to the infinite cyclic group.

(d) G = T o 〈z〉 for some element z of infinite order, which acts as a group of power

automorphisms on T .

Proof. First we suppose that every subgroup of infinite index in G is permutable and

prove (a)− (d).

(a) We first note that T is a subgroup of G. If x ∈ T then x has finite order and

hence |G : 〈x〉| is infinite. Therefore, by hypothesis, 〈x〉 per G. Hence if y ∈ T , we

have 〈x〉〈y〉 = 〈y〉〈x〉, which is finite. Thus T is a normal, being the unique maximal

locally finite subgroup of G. Also, every subgroup of T is permutable in T and hence T is

quasihamiltonian.

Let g be an element of infinite order. Then 〈g〉∩T = 1. If H ≤ T then H is permutable,

since T and thereforeH has infinite index inG. Thus, H〈g〉 ≤ G. NowH = H〈g〉∩T �H〈g〉.

Therefore 〈g〉 normalizes H. Since G is non-periodic and the set of elements of finite order

forms a subgroup, then G is generated by its elements of infinite order. It follows that
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G ≤ NG(H) and hence H �G. Therefore T is Dedekind, and indeed every subgroup of T is

G-invariant.

(b) Since G is non-quasihamiltonian there exists an element g ∈ G of infinite order such

that 〈g〉 is not permutable in G. Then, by hypothesis, |G : 〈g〉| is finite and consequently

|G : CoreG(〈g〉)| is also finite. Thus G is cyclic-by-finite. Hence there exists n ∈ Z such that

〈gn〉�G and also |G : 〈gn〉| is finite. But |T 〈gn〉 : 〈gn〉| = |T |, so T is finite.

(c) Let g ∈ G have infinite order and suppose 〈g〉 is not permutable in G. We have

|G : 〈g〉| is finite, so G is finitely generated. Since G is generated by its elements of infinite

order, we have G = 〈g1, g2, · · · , gk〉, where the order of each gi is infinite. Then |G : 〈gi〉|

is finite, as is |G : CG(gi)|. Since ζ(G) = ∩ki=1CG(gi), we have |G : ζ(G)| is finite. Then,

by Schur’s Theorem [21, 10.1.4], G′ is finite. Thus G′ ≤ T so G/T is abelian. Hence

G/T ∼= Z× Z× · · · × Z︸ ︷︷ ︸
n copies

for some n.

If n ≥ 2 then |G : 〈x〉| is infinite for all x ∈ G and hence G is quasihamiltonian, contrary

to our hypothesis. Therefore n = 1 and hence G/T ∼= Z.

(d) Since G/T is isomorphic to the infinite cyclic group, there exist z ∈ G so that

G/T = 〈zT 〉. Then |z| is infinite and G = T o 〈z〉. Since every subgroup of T is normal in

G, 〈z〉 acts as a power automorphism of T .

Next we prove the converse, and assume (a) − (d). Suppose G = T o 〈z〉, for some

element z of infinite order. Since T is finite, G/CG(T ), which is isomorphic to a subgroup

of AutT , is also finite. Hence there exists an integer k such that zk ∈ CG(T ), which implies

zk ∈ ζ(G). Hence |G : ζ(G)| is finite and moreover |G : 〈zk〉| is also finite.

Let x ∈ G be such that |G : 〈x〉| is infinite. Then we need to prove that 〈x〉 is permutable

in G. For this it suffices to show that 〈x〉 has finite order. Suppose for a contradiction that

|〈x〉| is infinite. Then 〈x〉〈zk〉/〈zk〉 ≤ G/〈zk〉 implies that |〈x〉〈zk〉/〈zk〉| is finite. Thus

|〈x〉 : 〈x〉 ∩ 〈zk〉| is finite as well. However, then 〈x〉 ∩ 〈zk〉 6= 1 so |〈zk〉 : 〈x〉 ∩ 〈zk〉| is

finite. Then |G : 〈x〉 ∩ 〈zk〉| is finite since |G : 〈zk〉| is finite. Therefore |G : 〈x〉| is finite, a

contradiction. Thus x has finite order, so x ∈ T and hence 〈x〉�G and consequently every

subgroup of infinite index is permutable in G.
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Here we note that, in this case, every subgroup of infinite index is normal in G. Moreover,

in the case of an infinite periodic group, if every subgroup of infinite index is permutable

then the group is quasihamiltonian. Now we proceed with the following lemma.

Lemma 2.2. Let G be a group and let C per G. Suppose A,B ≤ G and B ≤ A. Then

there is a transversal X = {aα |α ∈ Λ} to CB in CA such that X ⊆ A.

Proof. To prove the lemma, we first note that CB and CA are subgroups of G. Let

xCB be an arbitrary coset of CB in CA. Since x = ca, for some c ∈ C, a ∈ A and since C

is permutable in G, we have xCB = caCB = a′c′CB = a′CB for some a′ ∈ A and c′ ∈ C.

Therefore xCB = a′CB and it can be assumed that aα ∈ A for all α ∈ Λ.

�

Now using Lemma 2.2, we can give the generalization of Lemma 1.8 as follows.

Lemma 2.3. Let A,B be two permutable subgroups of a group G with B ≤ A. Suppose

C is any subgroup of G. Let {aαCB |α ∈ Λ} be a set of all the distinct cosets of CB in CA,

where aα ∈ A and let {cβ(C∩B) | β ∈ Γ} be a set of all the distinct cosets of C∩B in C∩A,

where cβ ∈ C. Then {aαcβB |α ∈ Λ, β ∈ Γ} is a set of all distinct cosets of B in A for all

α ∈ Λ and β ∈ Γ.

Proof. We remark that by the previous lemma we are justified in our selection of the

aα ∈ A. Let xB be an arbitrary coset of B in A, where x ∈ A. For some α ∈ Λ we have

xCB = aαCB and this implies that x = aαy for some y ∈ CB. Then, y can be written in

the form y = cb for some c ∈ C, b ∈ B, and hence x = aαcb. Then c = a−1
α xb−1, so c ∈ A∩C.

Also, by assumption, c(C ∩ B) = cβ(C ∩ B) is true for some β ∈ Γ. Hence c = cβz, where

z ∈ C ∩B. Thus, x = aαcβzb. Hence xB = aαcβzbB = aαcβB.

Now we will show that all the cosets aαcβB are distinct. Suppose that aαcβB = aδcγB

where aα, aδ ∈ A and cβ, cδ ∈ C. Then aαcβBC = aδcγBC. Since cβ ∈ BC, we have

aαcβBC = aαCB and, by the same argument, we also have, aδcγBC = aδCB. Consequently
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aαCB = aδCB. By the hypothesis of the lemma, α = δ. But in this case cβB = cγB, which

implies that c−1
γ cβ ∈ B. Hence c−1

γ cβ ∈ B ∩ C, that is cβ(C ∩ B) = cγ(C ∩ B) and again by

the hypothesis of the lemma, β = γ. Hence all the cosets are distinct. This completes the

proof.

�

Lemma 2.3 has the following interesting consequence.

Lemma 2.4. Let C ≤ B ≤ A and suppose A,B,C are permutable where

|A : B|, |B : C| are infinite. Let x ∈ G. Then at least one of |A〈x〉 : B〈x〉|, |B〈x〉 : C〈x〉|

is infinite.

Proof. Since B ≤ A and both A,B are permutable, B〈x〉 is a subgroup of A〈x〉. Let

{aαB〈x〉} be a set of all distinct cosets of B〈x〉 in A〈x〉 where aα ∈ A and {cβ(B∩〈x〉)} be a

set of all distinct cosets of B∩〈x〉 in A∩〈x〉 where cβ ∈ 〈x〉. Then, by Lemma 2.3, {aαcβB}

is a set of all distinct cosets of B in A. Therefore |A : B| = |A〈x〉 : B〈x〉| |A∩ 〈x〉 : B ∩ 〈x〉|.

Since |A : B| is infinite, the quantities on the right hand side can not both be finite. If

|A〈x〉 : B〈x〉| is finite then |A ∩ 〈x〉 : B ∩ 〈x〉| is infinite, so B ∩ 〈x〉 = 1. Similarly,

|B〈x〉 : C〈x〉||B ∩ 〈x〉 : C ∩ 〈x〉| = |B : C|. Since B ∩ 〈x〉 = 1 we have |B〈x〉 : C〈x〉| infinite.

In either case, the result holds.

�

As a consequence of the above lemma, we have the following frequently used corollary.

Corollary 2.1. (i) Suppose A1 ≥ A2 ≥ A3 ≥ · · · is a descending chain of per-

mutable subgroups of G with |Ai : Ai+1| infinite for all i. Let x ∈ G. Then there is

a subsequence {ij}j≥1 such that |Aij〈x〉 : Aij+1
〈x〉| is infinite for all j ≥ 1.

(ii) Suppose A1 ≤ A2 ≤ A3 ≤ · · · is an ascending chain of permutable subgroups of G

with |Ai+1 : Ai| infinite for all i. Let x ∈ G. Then there is a subsequence {ij}j≥1

such that |Aij+1
〈x〉 : Aij〈x〉| is infinite for all j ≥ 1.

25



Proof. (i) For each i ≥ 1, we consider A3i ≥ A3i+1 ≥ A3i+2 and for any x ∈ G form

A3i〈x〉 ≥ A3i+1〈x〉 ≥ A3i+2〈x〉. Then by Lemma 2.4, either |A3i〈x〉 : A3i+1〈x〉| is infinite or

|A3i+1〈x〉 : A3i+2〈x〉| is infinite.

(ii) The proof of this part is analogous to part (i).

�

Elements of infinite order often create difficulties. One difficulty is removed by the

following lemma.

Lemma 2.5. Suppose A1 
 A2 
 A3 
 · · · , where Ai = Bi × Bi+1 × Bi+2 × · · · and

Bi ≤ G for all i. If x is an element of G of infinite order then, for some j, 〈x〉 ∩ Aj = 1.

Proof. Here we may assume that A1 ∩ 〈x〉 6= 1. Then for some i ∈ Z,

xi = (b1, b2, b3, · · · , bi1 , 1, 1, · · · ) for some integer i1. Now for j > i1, we have

(B1 × B2 × · · · × Bi1) ∩ Aj = 1. If Aj ∩ 〈x〉 6= 1 we can find l ∈ Z such that xl ∈ Aj. Then

xl = (1, 1, ..1︸ ︷︷ ︸
i1

, 1, 1, .., bi2 , ..., bi3 , 1, ...) and hence

xil = (bl1, b
l
2, · · · , bli1 , 1, 1, · · · )

xli = (1, 1, · · · , 1, 1, · · · , 1, bii2 , · · · , b
i
i3
, 1, 1, · · · ).

But xil = xli so (bk)
l = 1 for all k, such that 1 ≤ k ≤ i1. Therefore, xil = xli = 1 which

implies that x has finite order, a contradiction. Therefore 〈x〉 ∩ Aj = 1 for some j.

�

The next lemma is a very important observation which will be used in the proof of some

of our other results later in the dissertation.

Lemma 2.6. Let G be a group with the weak minimal condition on non-permutable sub-

groups and suppose that G contains subgroups X, Y with Y �X such that X/Y = Dr
i≥1

(Ai/Y )

for certain Ai such that Ai/Y 6= 1. Then

(i) X is permutable in G.

(ii) For any x ∈ G, X〈x〉 is permutable in G.
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Proof. (i) Since X/Y = Dr
i≥1

(Ai/Y ), we can relabel X/Y and rewrite it as

X/Y = Dr
i≥1
j≥1

(Bij/Y ). For fixed j, let us define Cj/Y = Dr
i≥1
j fixed

(Bij/Y ). Therefore, we can

write X/Y = Dr
i≥1

(Ci/Y ) ∼= Dr
i≥1

(Ai/Y ) where each Ci/Y is an infinite direct product and

X =
∏
i≥1

Ci. Now we have a descending chain D1 
 D2 
 D3 
 · · · of subgroups of G with

|Di : Di+1| infinite for all i, where Di = CiCi+1Ci+2 · · · . Since G has the weak minimal

condition on non-permutable subgroups, there is a positive integer k such that Dk per G.

Thus CkCk+1Ck+2 · · · is permutable in G. Now construct a descending chain of subgroups

of G

C1C2C3 · · · 
 C1C2 · · ·CkCk+2 · · · 
 C1C2 · · ·CkCk+3 · · · 
 C1C2 · · ·CkCk+4 
 · · ·

with |C1C2C3 · · ·CrCr+1Cr+2 · · · : C1C2C3 · · ·CrCr+2 · · · | infinite for all r. Since the group

G has the weak minimal condition on non-permutable subgroups, there exists a positive

integer l such that C1C2C3 · · ·CkCk+lCk+l+1 · · · is permutable in G. Since the product of

two permutable subgroups is permutable therefore C1C2 · · ·CkCk+1 · · · = X is permutable

in G.

(ii) By part (i) each Dk is permutable in G and we have a descending chain D1 
 D2 


D3 
 · · · of permutable subgroups of G with |Dk : Dk+1| is infinite for all k.

Fix x ∈ G. We have D1 
 D2 
 D3 
 · · · . By Corollary 2.1 there is a subsequence

Dk1 
 Dk2 
 Dk3 
 · · · such that |Dkl〈x〉 : Dkl+1
〈x〉| is infinite for all l. Since G has

the weak minimal condition on non-permutable subgroups, there exists a positive integer

m such that Dkm〈x〉 is permutable in G, that is CkmCkm+1Ckm+3 · · · 〈x〉 is permutable in

G. Since each Ci is permutable in G by the first part therefore C1C2C3 · · ·Ckm−1 is per-

mutable in G. Since the product of two permutable subgroups is permutable therefore

C1C2C3 · · ·Ckm−1CkmCkm+1 · · · 〈x〉 is permutable in G and equivalently X〈x〉 is permutable

in G.

�

Here we note that, in the above lemma, if Y is trivial then every subgroup X of the

form X = Dr
i≥1

Ai is permutable in G provided G satisfies the weak minimal condition on
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non-permutable subgroups. We also observe that the proof of Lemma 2.6 shows that if

X = Dr
i≥1

Ci then we can write X = Dr
i≥1

Bi where |Dr
i≥j

Bi : Dr
i≥j+1

Bi| is infinite for all j, and

each Bi is permutable in G. As a corollary we have

Corollary 2.2. Let G be a group satisfying the weak minimal condition on non-

permutable subgroups. Suppose that G contains a subgroup A of the form B1×B2×B3×· · ·

where |Dr
i≥j

Bi : Dr
i≥j+1

Bi| is infinite for all j, and Bi per G. Let x be any element of infinite

order such that A ∩ 〈x〉 = 1. Then x ∈ NG(Bk) for all k.

The proof of the corollary follows by Theorem 1.3. Now we continue this section with

another lemma which is interesting in its own right.

Lemma 2.7. Let G be a group satisfying the weak minimal condition on non-permutable

subgroups. Suppose that G contains a subgroup A of the form B1 × B2 × B3 × · · · , with

Bi 6= 1. Let x ∈ G be any element of infinite order such that A∩ 〈x〉 = 1. Then x ∈ NG(Bk)

for all k.

Proof. Since A = B1 ×B2 ×B3 × · · · . We can write A = Bk ×Dr
i≥1

Ci where

|Dr
i≥j

Ci : Dr
i≥j+1

Ci| is infinite. Then Bk × Ci per G by Lemma 2.6 and so x ∈ NG(Bk × Ci) for

all i by Theorem 1.3. Hence x ∈ NG( ∩
i≥1

(Bk × Ci)) = NG(Bk) �

We proceed the section with the following useful lemma.

Lemma 2.8. Let C1 ≥ C2 ≥ C3 ≥ · · · be a descending chain of subgroups of a group G

satisfying the weak minimal condition on non-permutable subgroups such that ∩
i≥1
Ci = L�Ci

and Ci/L = Dr
j≥i

(Dj/L) where |Ci : Ci+1| is infinite. Then ∩
i≥1
Ci〈x〉 = L〈x〉 for all x ∈ G. In

particular, L〈x〉 ≤ G, for all x ∈ G and L is permutable in G.

Proof. We note that, by Lemma 2.6, Ci per G. To prove the lemma, we first prove that

∩
i≥1
Ci〈x〉 = L〈x〉 for all x ∈ G. Since L〈x〉 ⊆ Ci〈x〉, for all i, it follows that L〈x〉 ⊆ ∩

i≥1
Ci〈x〉.

For the converse, let d ∈ ∩
i≥1
Ci〈x〉. Then d ∈ Ci〈x〉 for all i. Thus, we have

d = c1x
i1 = c2x

i2 = c3x
i3 = · · · (1)
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where ci ∈ Ci and ik ∈ Z for each k. This implies c−1
k+1 ck = xik+1 x−ik ∈ C1 ∩ 〈x〉 for all k.

Suppose C1 ∩ 〈x〉 = 1. Then ck+1 = ck for all k, so ck ∈ ∩
k≥1

Ck = L and hence d ∈ L〈x〉.

Therefore L〈x〉 = ∩
i≥1
Ci〈x〉 in this case.

On the other hand when C1 ∩ 〈x〉 6= 1 then for some l, xl ∈ C1. This implies that

xlL ∈ C1/L and hence xlL = (a1L, a2L, a3L, · · · , arL,L, L, · · · ) for certain elements ak ∈ Dk.

Suppose that xm ∈ Cn for some n > r, and some m ∈ Z, so that xmL ∈ Cn/L. Then

xmL = (L,L, L, · · · , L, ar+1L, ar+2L, ar+3L · · · ) for some ak ∈ Dk. We have,

xlmL = (am1 L, a
m
2 L, a

m
3 L, · · · , amr L,L, L, · · · ) (2)

xmlL = (L,L, L, · · · , L, alr+1L, a
l
r+2L, a

l
r+3L · · · ) (3)

Therefore ami , a
l
r+i ∈ L for all i. Hence xlm ∈ L = ∩

i≥1
Ci, which implies that

L ∩ 〈x〉 = 〈xµ〉 for some µ ∈ Z. Thus xµ ∈ Ci for all i. Now, in equation (1) we write

ij = µqj + rj with 0 < rj < µ. Therefore

d = c1x
q1µ+r1 = c2x

q2µ+r2 = c3x
q3µ+r3 = · · ·

and hence,

d = c1x
q1µxr1 = c2x

q2µxr2 = c3x
q3µxr3 = · · · (4)

Now we can write equation (4) in the form

d = d1x
r1 = d2x

r2 = d3x
r3 = · · ·

where di = cix
qiµ ∈ Ci. Since 0 < ri < µ, we can find a subset {l1, l2, l3, · · · } of {1, 2, 3, · · · }

with l1 ≤ l2 ≤ l3 ≤ · · · such that rl0 = rl1 = rl2 = rl3 = · · · . Therefore

d = dl1x
lr0 = dl2x

lr0 = dl3x
lr0 = · · ·

and consequently, dl1 = dl2 = dl3 = · · · . Thus dl1 ∈ ∩
i≥1
Cli = L and d = dl1x

lr0 ∈ L〈x〉.

Therefore, ∩
i≥1
Ci〈x〉 = L〈x〉. Since each Ci per G it follows that Ci〈x〉 ≤ G for all i and
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hence ∩
i≥1
Ci〈x〉 ≤ G. Therefore L〈x〉 ≤ G. Since L〈x〉 is a subgroup for each x ∈ G,

L〈x〉 = 〈x〉L so L is permutable in G.

�

We conclude the section with two similar lemmas.

Lemma 2.9. Let G be a group and let x, y ∈ G be elements of finite order. Suppose

{Ak}k≥1 is a collection of subgroups of G such that ∩
k≥1

Ak = 1. Suppose further Ak〈x〉〈y〉is

a subgroup for all k. Then 〈x〉〈y〉 is a subgroup of G.

Proof. Since Ak〈x〉〈y〉 is a subgroup for all k so ∩
k≥1

Ak〈x〉〈y〉 is a subgroup. To show

〈x〉〈y〉 is a subgroup of G it suffices to to show that ∩
k≥1

Ak〈x〉〈y〉 = 〈x〉〈y〉. Since 〈x〉〈y〉 ⊆

Ak〈x〉〈y〉 for all k we have 〈x〉〈y〉 ⊆ ∩
k≥1

Ak〈x〉〈y〉. Conversely, suppose d ∈ ∩
k≥1

Ak〈x〉〈y〉.

Then d ∈ Ak〈x〉〈y〉 for all k. So we have the equations;

d = a1x
i1yj1 = a2x

i2yj2 = a3x
i3yj3 = · · · (1)

where ak ∈ Ak and ik, jk are non-negative integers for all k. Since both x and y have finite

order, there is a subset {k1, k2, k3, . . . } of {1, 2, 3, . . . } with k1 ≤ k2 ≤ k3 ≤ · · · such that

i0 = ik1 = ik2 · · · and j0 = jk1 = jk2 = · · · where i0, j0 ∈ Z. Then, from (1), we have,

d = ak1x
i0yj0 = ak2x

i0yj0 = ak3x
i0yj0 = · · · (2)

where aki ∈ Aki . So, ak1 = ak2 = ak3 = · · · . Thus, ak1 ∈ ∩
i≥1
Aki = 1. So, aki = 1

for all i and hence d = xi0yj0 . Thus d ∈ 〈x〉〈y〉. Therefore, ∩
k≥1

Ak〈x〉〈y〉 ⊆ 〈x〉〈y〉. So,

〈x〉〈y〉 = ∩
k≥1

Ak〈x〉〈y〉 is a subgroup of G. �

We can prove a similar lemma in the case when x is an element of infinite order and y is

an element of finite order.

Lemma 2.10. Let G be a group and let x be an element of infinite order and y be an

element of finite order. Suppose {Ak}k≥1 is a collection of subgroups of G with Ak = Dr
j≥k

Cj

and ∩
k≥1

Ak = 1. Suppose further Ak〈x〉〈y〉is a subgroup for all k. Then 〈x〉〈y〉 is a subgroup

of G.
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Proof. Suppose d ∈ ∩
k≥1

Ak〈x〉〈y〉. Then d ∈ Ak〈x〉〈y〉 for all k. So,

d = a1x
i1yj1 = a2x

i2yj2 = a3x
i3yj3 = · · · (1)

where ak ∈Ak and ik is an integer, jk is a non-negative integer for all k. Since y has finite

order, there is a subset {k1, k2, k3, . . . } of {1, 2, 3, . . . } with k1 ≤ k2 ≤ k3 ≤ · · · such that

j0 = jk1 = jk2 = jk3 · · · , where j0 ∈ Z. Then, from (1),

d = ak1x
ik1yj0 = ak2x

ik2yj0 = ak3x
ik3yj0 = · · · (2)

where, aki ∈ Aki for all i. So, ak1x
ik1 = ak2x

ik2 = ak3x
ik3 · · · . Therefore,

a−1
km
akn = xikm x−ikn ∈ A1 ∩ 〈x〉 for all m, n ∈ N.

Using Lemma 2.5, we may assume that A1∩〈x〉 = 1, so a−1
km

akn= xikm x−ikn = 1. Therefore,

we have ak1 = ak2 = ak3 = · · · and i0 = ik1 = ik2 = · · · for some i0 ∈ Z. Thus, ak1 ∈ ∩
i≥1
Aki .

But ∩
i≥1
Aki = 1 and thus d = xi0yj0 . This implies that d ∈ 〈x〉〈y〉 and hence ∩

k≥1
Ak〈x〉〈y〉 ⊆

〈x〉〈y〉. It follows that ∩
k≥1

Ak〈x〉〈y〉 = 〈x〉〈y〉 is a subgroup of G. �
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CHAPTER 3

PROOF OF MAIN THEOREMS

In this chapter, we prove the main results of our research. The proof of our first main

result is very similar to that given in [3], where it is proved that if G is non-periodic or

locally graded group satisfying the minimal condition on non-quasinormal subgroups then

either it is quasihamiltonian or it is a Chernikov group. The first main result is as follows.

Theorem 3.1. Let G be a locally finite group satisfying the weak minimal condition on

non-permutable subgroups, then either G is quasihamiltonian or it is a Chernikov group.

Proof. Suppose that G is not a Chernikov group. Then, by Theorem 1.7, G does not

satisfy the minimal condition on abelian subgroups. Therefore G contains an infinite abelian

subgroup A, which is not Chernikov. Since A is an abelian, locally finite group, it follows

that A = Dr
p
Ap, where Ap is the p-component of A. Let π(A) denote the set of primes

dividing the orders of the elements of A. If all Ap have finite rank then, by Lemma 1.12,

each Ap is Chernikov and consequently A is Chernikov if π(A) is finite. Therefore π(A) is

infinite and hence A contains an infinite direct product of the form Dr
i≥1
〈ai〉, where every ai

has prime power order. On the other hand, if some Ap has infinite rank then Ap contains

an infinite direct product of the form Dr
i≥1
〈ai〉, by Lemma 1.11. Hence, in either case, we

may assume A is of the form A = Dr
i≥1
〈ai〉, where every ai has prime power order. For our

convenience, let us write Ai = 〈ai〉, so A = Dr
i≥1

Ai.

We can rewrite A as A = Dr
i≥1
j≥1

Bij where Bij 6= 1 for all i, j and hence assume A = Dr
j≥1

Cj

where each Cj = Dr
i≥1
j fixed

Bij and |Dr
j≥i

Cj : Dr
j≥i+1

Cj| is infinite. Also, by Lemma 2.6, each Cj is

permutable in G.
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Define Bm = Dr
j≥m

Cj so that B1 = A. Let x, y be fixed elements of G. Let T = 〈x, y〉, a

finite group. Then we may assume that T ∩B1 = 1 (on replacing A with some suitable sub-

group if necessary). Since each Bi is permutable in G, by Lemma 2.6, we have a descending

chain

B1 
 B2 
 B3 
 B4 
 · · ·

of permutable subgroups with |Bi : Bi+1| infinite for all i.

For every non-negative integer n, let Hn = 〈x〉Bn. Then, there is a descending chain of

subgroups

H1 
 H2 
 H3 
 H4 · · ·

with |Hi : Hi+1| infinite for all i ≥ 1, upon passing to a subsequence, by Corollary 2.1. Since

G has the weak minimal condition on non-permutable subgroups, there is an integer r ∈ Z

such that Hr is permutable. Then, 〈y〉〈x〉Br = 〈x〉Br〈y〉 = 〈x〉〈y〉Br. In particular, there

exist s, t ∈ Z and an element z ∈ B1 such that yx = xsytz. Then z ∈ 〈x, y〉∩B1. But 〈x, y〉∩

B1 = 1, and hence z = 1. Thus we have xsyt = yx. It follows that 〈x〉 and 〈y〉 permute.

Since x and y were arbitrary elements of G, it follows that G is quasihamiltonian. �

Now using some of the preliminary results that we obtained in Chapter 2, we prove the

next theorem:

Theorem 3.2. Let G be a group satisfying the weak minimal condition on non-permutable

subgroups. Suppose that G contains a subgroup B of the form B = B1×B2×B3×· · · where

each Bi 6= 1. Then G is quasihamiltonian.

Proof. Since B is an infinite direct product we can write it as B = Dr
i≥1
j≥1

Bij and hence

assume B = Dr
j≥1

Cj where each Cj = Dr
i≥1
j fixed

Bij and |Dr
j≥i

Cj : Dr
j≥i+1

Cj| is infinite. Also, by

Lemma 2.6, each Cj is permutable in G.

Define Ai = Dr
j≥i

Cj so that A1 = B. Clearly ∩
i≥1
Ai = 1. Since each Ai is permutable in

G, by Lemma 2.6, we have a descending chain

A1 
 A2 
 A3 
 A4 
 · · ·
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of permutable subgroups with |Ai : Ai+1| infinite for all i.

Fix x, y ∈ G. Then by Lemma 2.6, Ak〈x〉, Ak〈y〉 per G for all k ≥ 1. Therefore

(Ak〈x〉)〈y〉 = 〈x〉〈y〉Ak = 〈y〉(Ak〈x〉) = 〈y〉(〈x〉Ak) for all k.

Claim: 〈x〉〈y〉 = ∩
k≥1

Ak〈x〉〈y〉

Since 〈x〉〈y〉 ⊆ Ak〈x〉〈y〉 for all k it follows that, 〈x〉〈y〉 ⊆ ∩
k≥1

Ak〈x〉〈y〉. To prove the

converse, ∩
k≥1

Ak〈x〉〈y〉 ⊆ 〈x〉〈y〉, we consider the following different cases:

Case (1): When x and y both are elements of finite order.

By the above construction, Lemma 2.9 implies that 〈x〉〈y〉 is a subgroup of G for all

elements x, y ∈ of finiter order. Hence all finite cyclic subgroups of G permute.

Case (2): When x is an element of infinite order and y is an element of finite order.

By the above construction, Lemma 2.10 implies that 〈x〉〈y〉 is a subgroup. Hence 〈x〉

and 〈y〉 permute, in this case.

Case (3): When both x and y are elements of infinite order.

Since both x and y are of infinite order, using Lemma 2.5, we may assume that Ak∩〈x〉 =

1 = Ak ∩ 〈y〉 = 1 for all k. Here we note that each Ak is permutable in G. Then, by

Theorem 1.3, x, y ∈ NG(Ak). Therefore, Ak �Ak〈x〉〈y〉 for all k. Now we have the following

sub-cases to consider:

Case 3(a): Ak〈x〉 ∩ 〈y〉 = 1 for all k.

Since Ak〈x〉 is permutable and Ak〈x〉 ∩ 〈y〉 = 1 for all k, then, by Theorem 1.3, Ak〈x〉�

Ak〈x〉〈y〉 for all k. Therefore, ∩
k≥1

Ak〈x〉� ∩
k≥1

Ak〈x〉〈y〉. But, by Lemma 2.8, ∩
k≥1

Ak〈x〉 = 〈x〉.

It follows that 〈x〉� ∩
k≥1

Ak〈x〉〈y〉 is a subgroup and hence 〈x〉〈y〉 = 〈y〉〈x〉 in this case.

Case 3(b): Ak〈x〉 ∩ 〈y〉 6= 1 for all k and 〈x〉 ∩ 〈y〉 6= 1.

Again, in this case, for any d ∈ ∩
k≥1

Ak〈x〉〈y〉, we have

d = a1x
i1yj1 = a2x

i2yj2 = a3x
i3yj3 = · · · . (1)

Here Ak∩〈x〉 = 1 = Ak∩〈y〉 for all k. Since 〈x〉∩〈y〉 6= 1, we have xr = ys for some r, s ∈ Z.

Also, jn = sqn + rn where 0 ≤ rn < s. So

xinyjn = xinyqns+rn = xinxrqnyrn = xin+rqnyrn .
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Thus, from the above observation, we can write equation (1) in the form

d = a1x
l1yr1 = a2x

l2yr2 = a3x
l3yr3 = · · · , (2)

where ri < s and ln = in + r qn. Since, 0 ≤ ri < s there are only finitely many powers of y

occurring. Therefore we can find a subset {k1, k2, k3, · · · } of {1, 2, 3, · · · } with k1 ≤ k2 ≤ k3 ≤

· · · (possibly after renumbering or re-indexing if necessary) such that r0 = rk1 = rk2 = · · · ,

with r0 ∈ Z. Equation (2), now reduces to

d = ak1x
lk1yr0 = ak2x

lk2yr0 = ak3x
lk3yr0 = · · · , (3)

where, r0, lki ∈ Z and aki ∈ Aki for all i. Now, from equation (3), we have

dy−r0 = ak1x
lk1 = ak2x

lk2 = ak3x
lk3 = · · ·

which implies in particular that a−1
km
ak1 = xlkm x−lk1 ∈ 〈x〉 ∩ Ak1 = 1. So, akm = ak1 and

xlk1 = xlkm . Thus ak1 ∈ ∩
i≥1
Aki = 1 and hence ak1 = ak2 = ak3 = · · · = 1. Therefore, from

equation (2),

d = xl1yr1 = xl2yr2 = xl3yr3 = · · · .

This implies that d ∈ 〈x〉〈y〉 and consequently, 〈x〉〈y〉 = ∩
k≥1

Ak〈x〉〈y〉, which is a subgroup

of G. Hence 〈x〉 and 〈y〉 permute in this case as well.

Case 3(c): Ak〈x〉 ∩ 〈y〉 6= 1 for all k and 〈x〉 ∩ 〈y〉 = 1.

Since x and y both have infinite order then, using Lemma 2.5 we can assume that

Ak ∩ 〈x〉 = 1 = Ak ∩ 〈y〉 for all k. Also from Lemma 2.7, we have

Bk�(B1×B2×. . . )〈x〉〈y〉 for all k. To prove our claim in this case, suppose d ∈ ∩
k≥1

Ak〈x〉〈y〉.

Then d ∈ Ak〈x〉〈y〉 for all k. Since Ak〈x〉〈y〉 = 〈x〉Ak〈y〉, we may write

d = xi1a1y
j1 = xi2a2y

j2 = xi3a3y
j3 = · · · . (4)

Suppose a1 = (b1, b2, · · · bs, 1, 1, · · · ) and as+1 = (1, 1, · · · , 1, bs+1, bs+2, · · · , bt, 1, · · · ); for

some s and t. Then we have,

xi1(b1, b2, · · · , bs, 1, 1, · · · )yj1=xi2(1, 1, · · · , 1, bs+1, bs+2, · · · , bt, 1, · · · )yj2 .
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Hence x(i1−i2)(b1, b2, · · · bs, 1, 1, · · · ) = (1, 1, · · · , 1, bs+1, bs+2, · · · , bt, 1, · · · )y(j2−j1).

Using Lemma 2.7, we get,

x(i1−i2) = (1, 1, · · · 1, bs+1, · · · bt, 1, · · · )(b′1, b′2, · · · , b′s, 1, 1, · · · )y(j2−j1),

and consequently,

x(i1−i2) = (b′1, b
′
2, · · · b′s, bs+1, · · · bt, 1, · · · )y(j2−j1) (5)

Similarly, repeating the above procedure for large enough k, we have

x(ik−ik+1) = (1, · · · , 1, b′t+1, b
′
t+2 · · · , b′u, bu+1, · · · , bv, 1, · · · )yjk+1−jk (6)

Combining equations (5) and (6) and, then using Lemma 2.7 we have,

x(i1−i2)(ik−ik+1) = [(b′1, b
′
2, · · · b′s, bs+1, · · · , bt, · · · )y(j2−j1)](ik−ik+1)

or

x(i1−i2)(ik−ik+1) = (c1, c2, c3, · · · ct, 1, 1, · · · )y(j2−j1)(ik−ik+1) (7)

Similarly,

x(ik−ik+1)(i1−i2) = (1, 1, · · · , 1, ct+1, · · · cv, 1, · · · )y(jk+1−jk)(i1−i2) (8)

Thus from equations (7) and (8), we have

(c1, c2, c3, · · · , ct, 1, · · · )y(j2−j1)(ik−ik+1) = (1, 1, · · · , 1, ct+1, · · · cv, 1, · · · )y(jk+1−jk)(i1−i2),

which implies that,

(c1, c2, · · · , ct, c−1
t+1, · · · , c−1

v , 1, · · · ) = y(jk+1−jk)(i1−i2)−(j2−j1)(ik−ik+1) (9)

Since A1 ∩ 〈y〉 = 1 it follows that, c1 = c2 = c3 = · · · = 1 and hence

x(i1−i2)(ik−ik+1) = y(j2−j1)(ik−ik+1)
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Also, 〈x〉 ∩ 〈y〉 = 1, so it follows that, (i1 − i2)(ik − ik+1) = (j2 − j1)(ik − ik+1) = 0.

If i1 = i2, then from equation (4) it follows that a−1
2 a1 = yj2−j1 ∈ A1 ∩ 〈y〉 = 1

Thus we have a1 = a2, which contradicts our choice of a1 and a2.

If i1 6= i2 then for all large k, i = ik = ik+1. Therefore,

d = xikaky
jk = xik+1ak+1y

jk+1 = xik+2ak+2y
jk+2 = · · ·

or,

x−id = aky
jk = ak+1y

jk+1 = ak+2y
jk+2 = · · · (10)

which implies a−1
k+l ak = y(jk+l−jk) ∈ A1 ∩ 〈y〉 = 1. Therefore, ak = ak+1 = ak+1 = · · · , and

hence ak ∈ ∩
k≥1

Ak = 1. Thus, ak = 1 for all k and consequently,

d = xi1yj1 = xi2yj2 = xi3yj3 = · · ·

Thus d ∈ 〈x〉〈y〉 and hence ∩
k≥1

Ak〈x〉〈y〉 ⊆ 〈x〉〈y〉. Therefore 〈x〉〈y〉 is a subgroup and hence

〈x〉〈y〉 = 〈y〉〈x〉. It follows that for all x, y ∈ G, 〈x〉〈y〉 = 〈y〉〈x〉. ThusG is quasihamiltonian.

�

Lemma 3.1. Let G be a generalized radical group with the weak minimal condition on

non-permutable subgroups. Suppose G contains an abelian subgroup A that has a normal

subgroup K such that A/K is periodic and π(A/K) is infinite. Then K〈x〉〈y〉 is a subgroup

for all x, y ∈ G.

Proof. Since π(A/K) is infinite and A/K is periodic we can write A/K = Dr
i≥1

(Ai/K),

with ∩
i≥1
Ai = K, and each Ai/K is the p-component of A/K. Moreover each Ai/K 6= 1.

We can rewrite A/K as A/K = Dr
i≥1
j≥1

Bij/K and hence assume A = Dr
j≥1

Cj/K where each

Cj/K = Dr
i≥1
j fixed

Bij/K and |Dr
j≥i

Cj/K : Dr
j≥i+1

Cj/K| is infinite. Also, by Lemma 2.6, each Cj is

permutable in G.

Define Bm/K = Dr
j≥m

Cj/K. Since each Bi is permutable in G, by Lemma 2.6, we have a

descending chain

B1 
 B2 
 B3 
 B4 
 · · ·
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of permutable subgroups with |Bi : Bi+1| infinite for all i.

Fix x, y ∈ G. Then by Lemma 2.6, Bk〈x〉, Bk〈y〉 per G for all k ≥ 1. Therefore

(Bk〈x〉)〈y〉 = 〈x〉〈y〉Bk = 〈y〉(Bk〈x〉) = 〈y〉(〈x〉Bk) for all k. To prove K〈x〉〈y〉 is a subgroup

of G, we have the following different cases:

Case 1: When x and y are both elements of finite order.

Clearly, K〈x〉〈y〉 ⊆ ∩
i≥1
Bi〈x〉〈y〉. For the converse, suppose d ∈ ∩

i≥1
Bi〈x〉〈y〉. Then

d ∈ Bi〈x〉〈y〉 for all i. So we have

d = b1x
i1yj1 = b2x

i2yj2 = b3x
i3yj3 = · · · (1)

where bi ∈ Bi and ik, jk are non-negative integers for all k. Since both x and y have finite

order, we can find a subset {k1, k2, k3, . . . } of {1, 2, 3, . . . } with k1 ≤ k2 ≤ k3 ≤ · · · such that

i0 = ik1 = ik2 · · · and j0 = jk1 = jk2 = · · · where i0, j0 ∈ Z. Then from (1), we have

d = bk1x
i0yj0 = bk2x

i0yj0 = bk3x
i0yj0 · · · (2)

where bki ∈ Bki . Hence, bk1 = bk2 = bk3 = · · · . Thus, bk1 ∈ ∩
i≥1
Bki = K. So, bki ∈ K for all

i and hence d ∈ K〈x〉〈y〉. Therefore, ∩
i≥1
Bi〈x〉〈y〉 ⊆ K〈x〉〈y〉, and K〈x〉〈y〉 = ∩

i≥1
Bi〈x〉〈y〉.

Hence K〈x〉〈y〉 is a subgroup of G.

Case 2 : Suppose x is an element of infinite order and y is an element of finite order.

Suppose d ∈ ∩
i≥1
Bi〈x〉〈y〉. Then d ∈ Bi〈x〉〈y〉 for all i and hence we can write d as

d = b1x
i1yj1 = b2x

i2yj2 = b3x
i3yj3 = · · · (3)

where bi ∈ Bi, ik ∈ Z, jk is a positive integer. Since y has finite order, we can find a subset

{k1, k2, k3, · · · } of {1, 2, 3, · · · } with k1 ≤ k2 ≤ k3 ≤ · · · such that j0 = jk1 = jk2 = jk3 · · · ,

where j0 ∈ Z. Then from (3),

d = bk1x
ik1yj0 = bk2x

ik2yj0 = bk3x
ik3yj0 = · · · (4)
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where, bki ∈ Bki for all i. So,

dy−j0 = bk1x
ik1 = bk2x

ik2 = bk3x
ik3 = · · · ∈ ∩

i≥1
Bki〈x〉

But ∩
i≥1
Bki〈x〉 = K〈x〉 by Lemma 2.8. Therefore, dy−j0 ∈ ∩

i≥1
Bki〈x〉 = K〈x〉. So d ∈ K〈x〉〈y〉

and hence K〈x〉〈y〉 is subgroup.

Case 3: When x and y both are elements of infinite order.

We have the following sub-cases to prove here.

Case 3(a): Bi〈x〉 ∩ 〈y〉 = 1 for all i ≥ 1.

Since Bi〈x〉 per G and Bi〈x〉 ∩ 〈y〉 = 1 for all i then, by Theorem 1.3, Bi〈x〉� Bi〈x〉〈y〉

for all i. Therefore, ∩
i≥1
Bi〈x〉� ∩

i≥1
Bi〈x〉〈y〉. Since ∩

i≥1
Bi〈x〉 = K〈x〉 by Lemma 2.8 we have,

K〈x〉� ∩
i≥1
Bi〈x〉〈y〉, so K〈x〉〈y〉 is a subgroup.

Case 3(b): Bi〈x〉 ∩ 〈y〉 6= 1 and 〈x〉 ∩ 〈y〉 6= 1 for all i.

Since 〈x〉 ∩ 〈y〉 6= 1, we have xr = ys for some r, s ∈ Z. Also, for some

d ∈ ∩
i≥1
Bi〈x〉〈y〉, we have

d = b1x
i1yj1 = b2x

i2yj2 = b3x
i3yj3 = · · · , (5)

where bi ∈ Bi, ik, jk ∈ Z. Here we can write jk = qks+ rk, 0 ≤ rk < s. Therefore,

d = b1x
i1yq1syr1 = b2x

i2yq2syr2 = · · ·

or

d = b1x
i1xq1ryr1 = b2x

i2xq2ryr2 = · · · .

Hence

d = b1x
l1yr1 = b2x

l2yr2 = b3x
l3yr3 = · · · (6)

where lk = ik + rqk. Since rk < s, we can find a subset {k1, k2, k3, · · · } of {1, 2, 3, · · · } such

that r0 = rk1 = rk2 = · · · . So, equation (6) reduces to

d = bk1x
lk1yr0 = bk2x

lk2yr0 = bk3x
lk3yr0
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and, consequently

dy−r0 = bk1x
lk1 = bk2x

lk2 = bk3x
lk3 = · · · . (7)

Thus, dy−r0 ∈ ∩
i≥1
Bki〈x〉. Now Lemma 2.8 implies that dy−r0 ∈ K〈x〉 and therefore

d ∈ K〈x〉〈y〉. Hence ∩
i≥1
Bi〈x〉〈y〉 = K〈x〉〈y〉 is a subgroup in this case.

Case 3(c): When Bi〈x〉 ∩ 〈y〉 6= 1 , 〈x〉 ∩ 〈y〉 = 1 for all i.

Sub-case 1: Bi ∩ 〈y〉 6= 1, B1 ∩ 〈x〉 = 1.

Suppose d ∈ ∩
i≥1
Bi〈x〉〈y〉. Then d ∈ Bi〈x〉〈y〉 for all i and hence d can be written in the

form

d = xi1b1y
j1 = xi2b2y

j2 = xi3b3y
j3 = · · · (8)

Since B1 ∩ 〈y〉 6= 1, then yk ∈ B1 and hence ykK ∈ B1/K. Therefore,

ykK = (b1K, b2K, b3K, · · · , brK,K,K, · · · ) where bi ∈ Bi. If 〈y〉 ∩ Br+1 6= 1, then for some

l, yl ∈ Br+1 and hence ylK ∈ Br+1/K. Thus, ylK = (K,K,K, · · ·K, br+1K, br+2K, · · · ). So,

yklK = (bl1K, b
l
2K, · · · blrK,K,K, · · · ) and ylkK = (K,K · · ·K, bkr+1K, b

k
r+2K, · · · ). Therefore

bli ∈ K, bkr+i ∈ K for all i. Thus ykl ∈ K = ∩
i≥1
Bi, and hence K ∩ 〈y〉 = 〈yµ〉 for some µ ∈ Z.

So yµ ∈ Bi for all i. We have jk = qkµ + rk where 0 < rk < µ, for some qk ∈ Z. Therefore,

from equation (8),

d = xi1b1y
q1µyr1 = xi2b2y

q2µyr2 = xi3b3y
q3µyr3 · · ·

Since yµ ∈ Bi for all i, yqiµ ∈ Bi for all i. Thus we can write,

d = xi1c1y
r1 = xi2c2y

r2 = xi3c3y
r3 = · · · (9)

where ck= bky
µqk . Since, 0 < rk < µ, we can find a subset {l1, l2, l3, · · · } of {1, 2, 3, · · · } with

l1 ≤ l2 ≤ l3 ≤ · · · such that r0 = rl1 = rl2 = rl3 = · · · . Therefore,

d = xil1cl1y
r0 = xil2cl2y

r0 = xil3cl3y
r0 = · · ·
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and

dy−r0 = xil1cl1 = xil2cl1 = xil3cl3 = · · · (10)

which implies dy−r0 ∈ ∩
i≥1
Bi〈x〉 and hence by Lemma 2.8, dy−r0 ∈ K〈x〉. Thus, d ∈ K〈x〉〈y〉

and henc K〈x〉〈y〉 is a subgroup of G.

Sub-Case 2: B1 ∩ 〈x〉 = 1 = B1 ∩ 〈y〉.

Since B1 ∩ 〈x〉= 1 = B1 ∩ 〈y〉, therefore by Theorem 1.3 x, y ∈ NG(Bi) for all i. So

x, y ∈ NG(K). Hence we can form the groups Bi〈x〉〈y〉/K. In particular by Theorem 3.2,

we have ∩
i≥1
Bi〈x〉〈y〉/K = 〈Kx〉〈Ky〉. Therefore K〈x〉〈y〉/K is a subgroup of Bi〈x〉〈y〉/K

and hence K〈x〉〈y〉 is a subgroup of G. �

Now we prove a proposition which will be useful in the proof of our main theorem.

Proposition 3.1. Let G be a generalized radical group satisfying the weak minimal

condition on non-permutable subgroups. Then G is radical-by-finite.

Proof. Let R be the maximal normal radical subgroup of G. The existence of such a

group is a consequence of Lemma 1.7. Suppose R 6= G. Then there exists N �G such that

R � N and N/R is either locally finite or locally nilpotent. The choice of R implies that

N/R is locally finite. Let L = G/R and suppose K is the maximal normal locally finite

subgroup of L. Since K satisfies the weak minimal condition on non-permutable subgroups

then, by Theorem 3.1, K is either quasihamiltonian or Chernikov. If K is quasihamiltonian

then, by Theorem 1.4, K is locally nilpotent and therefore K is trivial by the choice of R.

Thus K is Chernikov. Since a radical-by-abelian group it follows that K must be finite.

If L is infinite then K 6= L. Since L/K is a generalized radical group and since an

extension of a locally finite group by a locally finite group is locally finite it follows that the

locally finite radical of L/K is trivial. Hence there is a normal locally nilpotent subgroup

M/K of L/K. Furthermore M/K must be torsion-free. Therefore, L/K must contain a

torsion free normal locally nilpotent subgroup M/K. Note that M/K is infinite. Moreover

L/CL(K) is finite since K is finite and K ∩ CM(K) = ζ(K) = 1, by the choice of R. The
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isomorphisms

CM(K) ' CM(K)/CM(K) ∩K ' CM(K)K/K ≤M/K

imply that CM(K) is locally nilpotent. Also L/CL(K) is finite so that MCL(K)/CL(K) '

M/M ∩ CL(K) is finite and hence M ∩ CL(K) = CM(K) is infinite. This contradicts the

choice of R. Hence the result follows.

�

Theorem 3.3. Let G be a generalized radical group satisfying the weak minimal condition

on non-permutable subgroups. Then either

(i) G is quasihamiltonian, or

(ii) G is soluble-by-finite of finite rank.

Proof. Since G is a generalized radical group with the weak minimal condition on non-

permutable subgroups it follows, by Proposition 3.1, that G is radical-by-finite. Let N be

a normal radical subgroup of G such that G/N is finite. Now, we consider the abelian

subgroups of G. If G contains an abelian subgroup A of infinite rank, then A contains a

subgroup of the form A1 × A2 × A3 × · · · , with Ai 6= 1, by Lemma 1.11. Since G satisfies

the weak minimal condition on non-permutable subgroups and it has a subgroup of the form

A1 × A2 × A3 × · · · , it follows, by Theorem 3.2, that G is quasihamiltonian.

If all the abelian subgroups of G have finite ranks then, by Theorem 1.17, G also has

finite rank. Next we prove that G is soluble-by-finite in this case. To prove this, we may

assume that G is non-quasihamiltonian. Since G has finite rank then, by Theorem 1.18, there

exist normal subgroups 1 ≤ T ≤ L ≤M ≤ G such that T is locally finite and G/M is finite.

Moreover, L/T is a torsion-free nilpotent group and M/L is a finitely generated torsion-free

abelian group. Since T satisfies the weak minimal condition on non-permutable subgroups

then, by Theorem 3.1, T is either quasihamiltonian or Chernikov. If T is quasihamiltonian

then T is locally nilpotent, by Theorem 1.4. Hence by the structure theorem of periodic

locally nilpotent groups, T = Dr
p∈π

Tp, where π is a set of primes. If |π| is infinite then G is
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quasihamiltonian by Theorem 3.2. Therefore |π| is finite. Since a locally finite p-group of

finite rank is Chernikov, by Theorem 1.6, each Tp is Chernikov and hence so is T .

Since the class of soluble groups is closed with respect to formation of extensions, it

follows by Theorem 1.18, that M/T is soluble. We also note that T is Chernikov, therefore

it is either finite or has a non-trivial normal abelian subgroup of finite index. Hence without

loss of generality, we may assume that T is finite. This implies that M/CM(T ) is finite. The

isomorphism

CM(T )/ζ(T ) = CM(T )/CM(T ) ∩ T ' CM(T )T/T ≤M/T

implies that CM(T )/ζ(T ) is soluble and hence by the extension property of soluble group,

CM(T ) is soluble. Moreover, G/M and M/CM(T ) both are finite and CM(T ) is soluble and

consequently G is soluble-by-finite. This completes the proof. �

Theorem 3.4. Let G be a generalized radical group satisfying the weak minimal condition

on non-permutable subgroups. If G is neither quasihamiltonian nor minimax then G has

a torsion subgroup T , consisting of the set of all elements of finite order, such that T is

Chernikov and G/T is torsion-free.

Proof. Since G is not quasihamiltonian, G is soluble-by-finite of finite rank, by Theo-

rem 3.3. Furthermore, if all abelian subgroups of G are minimax then G is a soluble-by-finite

minimax group, by Theorem 1.12. Hence we may assume that G has an abelian non-minimax

subgroup A. Thus A contains a free abelian subgroup K of the form Z× Z× Z× · · · × Z︸ ︷︷ ︸
n

,

such that A/K is periodic.

If π(A/K) is finite then A/K = Dr
finite

Ap where Ap is a p-component of A/K. Since

each Ap is Chernikov, by Lemma 1.12, it follows that A/K is Chernikov and thus has the

minimum condition. But K has the maximum condition, So A is a minimax group, which

is a contradiction. Therefore, π(A/K) is infinite and A/K = Dr
i≥1

(Ai/K) where ∩
i≥1
Ai = K

and each Ai/K 6= 1. Hence, by Lemma 3.1, K〈x〉〈y〉 is a subgroup for any x, y ∈ G.

Let Kn = {kn|k ∈ K}. Then K/Kn is finite. Moreover, A/Kn is also periodic and we

may replace K by Kn in Lemma 3.1 to deduce that Kn〈x〉〈y〉 is also a subgroup, for each
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n and for each x, y ∈ G. Let Hn = Kn. For any two elements x, y of finite order, we claim

that

〈x〉〈y〉 = ∩
n≥1

Hn〈x〉〈y〉

Clearly 〈x〉〈y〉 ⊆ Hn〈x〉〈y〉 for all n. So, 〈x〉〈y〉 ⊆ ∩
n≥1

Hn〈x〉〈y〉. Conversely, suppose d ∈

∩
n≥1

Hn〈x〉〈y〉. Then d ∈ Hn〈x〉〈y〉 for all n. So we have

d = h1x
i1yj1 = h2x

i2yj2 = h3x
i3yj3 = · · · (1)

where each hn ∈ Hn. Since both x and y have finite order, we can find a subset {k1, k2, k3, · · · }

of {1, 2, 3, · · · } such that i0 = ik1 = ik2 = · · · and j0 = jk1 = jk2 = · · · , where i0, j0 ∈ Z.

Then from equation (1), we have

d = hk1x
i0yj0 = hk2x

i0yj0 = hk3x
i0yj0 = · · · (2)

Thus, hk1 = hk2 = hk3 = · · · , which implies, hk1 ∈ ∩
i≥1
Hki = 1. So hki = 1 for all i

and hence d = xi0yj0 and thus d ∈ 〈x〉〈y〉. Therefore, ∩
n≥1

Hn〈x〉〈y〉 ⊆ 〈x〉〈y〉 and hence

〈x〉〈y〉 = ∩
n≥1

Hn〈x〉〈y〉. This implies that 〈x〉〈y〉 = 〈y〉〈x〉 for all x, y of finite order.

Let T be the set of elements of finite order. Then T is a characteristic subgroup of G

and G/T is torsion-free.

But, by Theorem 1.4, T is locally nilpotent. Therefore, T = Dr
p∈π

Tp, where π is a set

of primes and Tp is the p-component of T . If π is infinite, then G is quasihamiltonian

by Theorem 3.2. Therefore π is finite. Since each Tp is Chernikov, by Theorem 1.6, T is

Chernikov.

�

It seems to be a very difficult problem to prove that if G is generalized radical group with

weak minimal condition on non-permutable subgroups then either G is quasihamiltonian or

minimax. If G is a generalized radical group of finite rank with the weak minimal condition

on non-permutable subgroups then there are normal subgroups T, L,M of G such that 1 ≤

T ≤ L ≤ M ≤ G, where T is locally finite, L/T is torsion-free nilpotent, M/L is a finitely

generated torsion-free abelian group and G/M is finite. By Theorem 3.4, T is Chernikov
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so minimax, and G/L is likewise minimax. Thus whether G is minimax is dependent upon

whether L/T is minimax or not.
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CHAPTER 4

GROUPS WITH THE WEAK MAXIMAL CONDITION ON
NON-PERMUTABLE SUBGROUPS

In this chapter we give some results related to the groups satisfying the weak maximal

condition on non-permutable subgroup. We begin the chapter with an easy to prove lemma:

Lemma 4.1. Every subgroup and factor group of a group satisfying the weak maximal con-

dition on non-permutable subgroups satisfies the weak maximal condition on non-permutable

subgroups.

Next we give a lemma, which connects the weak maximal condition on non-permutable

subgroups with the maximal condition on non-normal subgroups.

Lemma 4.2. If G is a group satisfying the weak maximal condition on non-normal sub-

groups then G has the weak maximal condition on non-permutable subgroups.

The proof of the above lemma is analogous to the proof of the Lemma 1.9. Next we

establish another lemma which will be useful later in this chapter.

Lemma 4.3. Let G be a group satisfying the weak maximal condition on non-permutable

subgroups. Suppose G contains a subgroup B of the form B1 × B2 × B3 × · · · , with Bi 6= 1.

Then B is permutable in G.

Proof. Since B is an infinite direct product we can relabel B and rewrite it as B =

Dr
i≥1
j≥1

Bij and hence assume B = Dr
j≥1

Cj where each Cj = Dr
i≥1
j fixed

Bij and

| Dr
j≤i+1

Cj : Dr
j≤i

Cj| is infinite.

Let us suppose H = C1×C3×C5×· · · and K = C2×C4×C6×· · · so that B = H×K.

Now we can construct an ascending chain

H ≤ H × C2 ≤ H × C2 × C4 ≤ H × C2 × C4 × C6 ≤ · · ·
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of subgroups. Since G has the weak maximal condition on non-permutable subgroups, there

exists a positive integer k such that H × C2 × C4 × C6 × · · · × C2k is permutable in G.

Similarly, for an ascending chain

K ≤ K × C1 ≤ K × C1 × C3 ≤ K × C1 × C3 × C5 ≤ · · ·

there exists a positive integer l such that K × C1 × C3 × C5 × · · · × C2l+1 is permutable

in G. Since the product of two permutable subgroups is permutable it follows that B is

permutable.

�

Analogous to Theorem 3.1, we have the corresponding theorem for group satisfying the

weak maximal condition on non-permutable suubgroups.

Theorem 4.1. Let G be a locally finite group satisfying the weak maximal condition on

non-permutable subgroups, then either G is quasihamiltonian or it is a Chernikov group.

Proof. Suppose that G is not a Chernikov group. Then, by Theorem 1.7, G does not

satisfy the minimal condition on abelian subgroups. Therefore G contains an infinite abelian

subgroup A, which is not Chernikov. Since A is an abelian, locally finite group, it follows

that A = Dr
p
Ap, where Ap is the p-component of A. Let π(A) denote the set of primes

dividing the orders of the elements of A. If all Ap have finite rank then, by Lemma 1.12,

each Ap is Chernikov and consequently A is Chernikov if π(A) is finite. Therefore π(A) is

infinite and hence A contains an infinite direct product of the form Dr
i≥1
〈ai〉, where every ai

has prime power order. On the other hand, if some Ap has infinite rank then Ap contains an

infinite direct product of the form Dr
i≥1
〈ai〉. Hence, in either case, we may assume A is of the

form A = Dr
i≥1
〈ai〉, where every ai has prime power order. For our convenience, let us write

Ai = 〈ai〉, so A = Dr
i≥1

Ai.

We can rewrite A as A = Dr
i≥1
j≥1

Bij and hence assume A = Dr
j≥1

Cj where each Cj = Dr
i≥1
j fixed

Bij

and | Dr
j≤i+1

Cj : Dr
j≤i

Cj| is infinite. Also, by Lemma 4.3, each Cj is permutable in G.
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Define Bn = Dr
j≤n

Cj so that B1 = C1. Let x, y be fixed elements of G. Let T = 〈x, y〉, a

finite group. Then we may assume that T ∩ Bn = 1 for all n. Since each Bi is permutable

in G, by Lemma 4.3, we have an ascending chain

B1 � B2 � B3 � · · ·

of permutable subgroups with |Bi+1 : Bi| infinite for all i.

For every non-negative integer n, let Hn = 〈x〉Bn. Then, there is an ascending chain

H1 � H2 � H3 � H4 · · ·

of subgroups with |Hi+1 : Hi| infinite for all i ≥ 1, by Corollary 2.1. Since G has the weak

maximal condition on non-permutable subgroups, there is an integer r ∈ Z such that Hr is

permutable. Then, 〈y〉〈x〉Br = 〈x〉Br〈y〉 = 〈x〉〈y〉Br. In particular, there exist s, t ∈ Z and

an element z ∈ Br such that yx = xsytz. Then z ∈ 〈x, y〉 ∩ Br. But 〈x, y〉 ∩ Br = 1, and

hence z = 1. Thus we have xsyt = yx. It follows that 〈x〉 and 〈y〉 permute. Since x and y

were arbitrary elements of G, it follows that G is quasihamiltonian.

�

Using Theorem 4.1, we have the following easy to prove proposition.

Proposition 4.1. Let G be a generalized radial group satisfying the weak maximal con-

dition on non-permutable subgroups. Then G is radical-by-finite.

The proof of the above proposition is analogous to the proof of the Proposition 3.1.

Theorem 4.2. Let G be a group satisfying the weak maximal condition on non-permutable

subgroups. Suppose G contains a subgroup B of the form B1 × B2 × B3 × · · · , with Bi 6= 1.

Then G is quasihamiltonian.

Proof. Since B is an infinite direct product we can write it as B = Dr
i≥1
j≥1

Bij and hence

assume B = Dr
j≥1

Cj where each Cj = Dr
i≥1
j fixed

Bij and | Dr
j≤i+1

Cj : Dr
j≤i

Cj| is infinite. Also, by

Lemma 4.3, each Cj is permutable in G. Clearly ∩
j≥1
Cj = 1.
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Since C1 is an infinite direct product, we can construct an ascending chain

D1 � D2 � D3 � · · · � C1

of permutable subgroups Di such that |Di+1 : Di| is infinite for all i

Fix x, y ∈ G. We have D1 � D2 � D3 � · · · . By Corollary 2.1 there is a subsequence

Di1 � Di2 � Di3 � · · · such that |Dij+1
〈x〉 : Dij〈x〉| is infinite for all j. By relabeling

we may assume that D1 � D2 � D3 � · · · and |Di+1〈x〉 : Di〈x〉| is infinite for all i.

Then there exists a subsequence Dn1 � Dn2 � Dn3 � · · · such that |Dni+1
〈y〉 : Dni〈y〉| is

infinite. Relabeling then we have D1 � D2 � D3 � · · · , with |Di+1 : Di| infinite. Also

|Di+1〈x〉 : Di〈x〉|, |Di+1〈y〉 : Di〈y〉| are both infinite for all i. In this manner we construct

ascending chains of subgroup of G

D1〈x〉 � D2〈x〉 � D3〈x〉 � · · ·

D1〈y〉 � D2〈y〉 � D3〈y〉 � · · ·

of subgroups of G with |Di+1〈x〉 : Di〈x〉|, |Di+1〈y〉 : Di〈y〉| both infinite for all i and each Di

is permutable in G. Since G has the weak maximal condition on non-permutable subgroups,

there exist a positive integer k such that Dk〈x〉, Dk〈y〉 per G. Let us write Dk = E1 so

E1〈x〉, E1〈y〉 per G. Again repeating the above procedure inside Ck for all k ≥ 1, we can

find Ek ≤ Ck such that Ek〈x〉, Ek〈y〉 per G. Therefore we may assume that Ek〈x〉, Ek〈y〉

per G for all k. This implies that Ek〈x〉〈y〉 ≤ G for all k and hence ∩
k≥1

Ek〈x〉〈y〉 ≤ G. Notice

that ∩
k≥1

Ek = 1.

Now we claim ∩
k≥1

Ek〈x〉〈y〉 = 〈x〉〈y〉. Since 〈x〉〈y〉 ⊆ Ek〈x〉〈y〉 for all k we have 〈x〉〈y〉 ⊆

∩
k≥1

Ek〈x〉〈y〉. Conversely, for d ∈ ∩
k≥1

Ek〈x〉〈y〉, we consider the following different cases:

Case 1: When x and y are both elements of finite order.

By the above construction, Lemma 2.9 implies that 〈x〉〈y〉 is a subgroup of G for all

elements x, y ∈ G of finite order. Hence all finite cyclic subgroups of G permute.

Case 2: When x is an element of infinite order and y is an element of finite order.
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Suppose d ∈ ∩
k≥1

Ek〈x〉〈y〉. Then d ∈ Ek〈x〉〈y〉 for all k. So,

d = e1x
i1yj1 = e2x

i2yj2 = e3x
i3yj3 = · · · (1)

where ek ∈ Ek and ik is an integer, jk are non-negative integers for all k. Since y has finite

order, we can find a subset {k1, k2, k3, · · · } of {1, 2, 3, · · · } with k1 ≤ k2 ≤ k3 ≤ · · · such that

j0 = jk1 = jk2 = jk3 · · · , where j0 ∈ Z. Then from (1),

d = ek1x
ik1yj0 = ek2x

ik2yj0 = ek3x
ik3yj0 = · · · (2)

where, eki ∈ Eki for all k. Now we can write equation (2) in the form

dy−j0 = ek1x
ik1 = ek2x

ik2 = ek3x
ik3 = · · ·

or

dy−j0 = ek1x
ik1 = ek2x

ik2 = ek3x
ik3 = · · · (3)

Let us define E = E1 × E2 × E3 × · · · . Then from (3), we have

e−1
k2
ek1 = xik2 x−ik1 ∈ E ∩ 〈x〉.

If E ∩ 〈x〉 = 1, then ek1 = ek2 = · · · and this implies that ek1 ∈ ∩
i≥1
Eki = 1. Therefore

ek1 = ek2 = ek3 = · · · and i0 = ik1 = ik2 = · · · . Thus d ∈ 〈x〉〈y〉. It follows that

∩
k≥1

Ek〈x〉〈y〉 = 〈x〉〈y〉.

When E ∩ 〈x〉 6= 1, then for some k, xk = (e1, e2, e3, · · · , er, 1, 1, · · · ) and suppose that

xl = (1, 1, · · · , 1, er+1, er+2, · · · ). Then,

xkl = (el1, e
l
2, · · · , elr, 1, 1, · · · ) and xlk = (1, 1, 1, · · · , 1, ekr+1, e

k
r+2, · · · ) which implies that

eli = 1 and ekr+i = 1 for all i. Therefore, xkl = 1 and thus x has finite order, contrary to our

assumption. Hence ∩
k≥1

Ek〈x〉〈y〉 = 〈x〉〈y〉.

Case (3): When both x and y are element of infinite order.
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In this case, we may assume that 〈x〉 ∩ Ek = 〈y〉 ∩ Ek = 1 for all k. Since each Ek

is permutable then by Theorem 1.3, x, y ∈ NG(Ek) for all k. Now we have the following

subcases to prove:

Case 3(a): Ek〈x〉 ∩ 〈y〉 = 1 for all k.

Since Ek〈x〉 is permutable and Ek〈x〉 ∩ 〈y〉 = 1 for all k. Then by Theorem 1.3, Ek〈x〉�

Ek〈x〉〈y〉 for all k. Therefore, ∩
k≥1

Ek〈x〉� ∩
k≥1

Ek〈x〉〈y〉. Next we claim ∩
k≥1

Ek〈x〉 = 〈x〉.

Clearly, 〈x〉 ⊆ Ek〈x〉 for all k. So, 〈x〉 ⊆ ∩
k≥1

Ek〈x〉. Conversely, suppose d ∈ ∩
k≥1

Ek〈x〉\〈x〉,

then

d = e1x
i1 = e2x

i2 = e3x
i3 = · · ·

This implies that e−1
2 e1 = xi2−i1 ∈ E ∩ 〈x〉. If E ∩ 〈x〉 = 1 then e1 = e2 = e3 =. Therefore,

e1 ∈ ∩
k≥1

Ek = 1. Thus d ∈ 〈x〉. If we have E ∩ 〈x〉 6= 1 then x has finite order as in the

earlier case, a contradiction. Therefore ∩
k≥1

Ek〈x〉 = 〈x〉. However, ∩
k≥1

Ek〈x〉 � ∩
k≥1

Ek〈x〉〈y〉.

This implies 〈x〉 � Ek〈x〉〈y〉, so 〈x〉〈y〉 is a subgroup in this case. Thus 〈x〉〈y〉 = 〈y〉〈x〉 in

this case.

Case 3(b): Ek〈x〉 ∩ 〈y〉 6= 1 for all k and 〈x〉 ∩ 〈y〉 6= 1.

In this case, for any d ∈ ∩
k≥1

Ek〈x〉〈y〉, we have

d = e1x
i1yj1 = e2x

i2yj2 = e3x
i3yj3 = · · · (4)

Here Ek ∩ 〈x〉 = 1 = Ek ∩ 〈y〉. Since 〈x〉 ∩ 〈y〉 6= 1, we have xr = ys for some r, s ∈ Z. Also,

j1 = sq1 + r1 where 0 ≤ r1 < s. So

xi1yj1 = xi1yq1s+r1 = xi1xrq1yr1 = xi1+rq1yr1

Thus, from the above observation, we can write equation (4) in the form

d = e1x
l1yr1 = e2x

l2yr2 = e3x
l3yr3 = · · · (5)

where ri < s and ln = in + r qn. Since, ri < s, we can find a subset {k1, k2, k3, · · · } of

{1, 2, 3, · · · } with k1 ≤ k2 ≤ k3 · · · (possibly after renumbering or re-indexing if necessary)
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such that r0 = rk1 = rk2 = · · · , with r0 ∈ Z. So,

d = ek1x
lk1yr0 = ek2x

lk2yr0 = ek3x
lk3yr0 = · · · (6)

Here, r0, ij1 , ij2 , · · · ∈ Z and eki ∈ Eki for all i. Now, from equation (6), we have

dy−r0 = ek1x
lk1 = ek2x

lk2 = ek3x
lk3 = · · ·

which implies in particular that e−1
k2
ek1 = xlk2 x−lk1 ∈ 〈x〉 ∩ Ek = 1. So, ek2 = ek1 .

Hence, ek1 ∈ ∩
i≥1
Eki = 1. Therefore, ek1 = ek2 = ek3 = · · · = 1. Thus,

d = xl1yr1 = xl2yr2 = xl3yr3 = · · ·

which implies that d ∈ 〈x〉〈y〉 and hence, 〈x〉〈y〉 = ∩
k≥1

Ek〈x〉〈y〉, which is a subgroup of G.

Hence 〈x〉〈y〉 = 〈y〉〈x〉.

Case 3(c): Ek〈x〉 ∩ 〈y〉 6= 1 for all k and 〈x〉 ∩ 〈y〉 = 1.

Note that x and y both have infinite order and also we can assume that Ek ∩ 〈x〉 = 1 =

Ek ∩ 〈y〉. Using Theorem 1.3, we also get

Ek � (E1 × E2 × E3 × · · · )〈x〉〈y〉 (7)

for all k. Suppose d ∈ ∩
k≥1

Ek〈x〉〈y〉. Then d ∈ Ek〈x〉〈y〉 for all k. Since Ek〈x〉〈y〉 = 〈x〉Ek〈y〉,

we can write

d = xi1e1y
j1 = xi2e2y

j2 = xi3e3y
j3 = · · · (8)

where ek ∈ Ek and ∩
k≥1

Ek=1. Suppose e1 = (b1, b2, · · · bs, 1, 1, · · · ) and

es+1 = (1, 1, · · · , 1, bs+1, bs+2, · · · , bt, 1, · · · ) for some s and t. Then we have,

xi1(b1, b2, · · · , bs, 1, 1, · · · )yj1 = xi2(1, 1, · · · , 1, bs+1, bs+2, · · · , bt, 1, · · · )yj2

x(i1−i2)(b1, b2, · · · bs, 1, 1, · · · ) = (1, 1, · · · , 1, bs+1, bs+2, · · · , bt, 1, · · · )y(j2−j1)

From equation 7,

x(i1−i2) = (1, 1, · · · 1, bs+1, · · · bt, 1, · · · )(b′1, b′2, · · · , b′s, 1, 1, · · · )y(j2−j1).
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This implies that x(i1−i2) = (b′1, b
′
2, · · · b′s, bs+1, · · · bt, 1, · · · )y(j2−j1) (9)

Similarly repeating the above procedure for large enough k, we have

x(ik−ik+1) = (1, · · · , 1, b′t+1, b
′
t+2 · · · , b′u, bu+1, · · · , bv, 1, · · · )yjk+1−jk (10)

Now combining (9) and (10), we can write

x(i1−i2)(ik−ik+1) = [(b′1, b
′
2, · · · b′s, bs+1, · · · , bt, · · · )y(j2−j1)](ik−ik+1)

and then by (7), we have

x(i1−i2)(ik−ik+1) = (c1, c2, c3, · · · ct, 1, 1, · · · )y(j2−j1)(ik−ik+1).

Again, from (8) and (9) and then using (7),

x(ik−ik+1)(i1−i2) = (1, 1, · · · , 1, ct+1, · · · cv, 1, · · · )y(jk+1−jk)(i1−i2).

Therefore,

(c1, c2, c3, · · · , ct, 1, )y(j2−j1)(ik−ik+1) = (1, 1, · · · , 1, ct+1, · · · cv, 1, · · · )y(jk+1−jk)(i1−i2).

This implies that,

(c1, c2, · · · , ct, c−1
t+1, · · · , c−1

v , 1, · · · ) = y(jk+1−jk)(i1−i2)−(j2−j1)(ik−ik+1) ∈ E ∩ 〈y〉.

Since E ∩ 〈y〉 = 1 it follows that c1 = c2 = c3 = · · · = 1 and hence

x(i1−i2)(ik−ik+1) = y(j2−j1)(ik−ik+1)

Also, 〈x〉 ∩ 〈y〉 = 1 it follows that, (i1 − i2)(ik − ik+1) = (j2 − j1)(ik − ik+1) = 0.

When i1 = i2, then from equation (10) it follows that e−1
2 e1 = yj2−j1 ∈ E ∩ 〈y〉 = 1

Thus we have e1 = e2, which contradicts our choice of e1 and e2.

If i1 6= i2 then for all large k, i = ik = ik+1. Therefore,

d = xikeky
jk = xik+1ek+1y

jk+1 = xik+2ek+2y
jk+2 = · · · , (11)
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which implies that

x−id = eky
jk = ek+1y

jk+1 = ek+2y
jk+2 = · · ·

and thus e−1
k+1 ek = y(jk+1−jk) ∈ E ∩ 〈y〉 = 1. Therefore, ek = ek+1 = ek+1 = · · · ,

Thus, ek ∈ ∩
k≥1

Ek = 1. Therefore, ek = 1 for all k. Hence

d = xi1yj1 = xi2yj2 = xi3yj3 = · · ·

and thus d ∈ 〈x〉〈y〉. Hence ∩
k≥1

Ek〈x〉〈y〉 ⊆ 〈x〉〈y〉. Therefore 〈x〉〈y〉 = ∩
k≥1

Ek〈x〉〈y〉, is a

subgroup in this case also. It follows that G is quasihamiltonian.

�

Finally, using the above theorem and other preliminary results, we can prove a theorem

analogous to Theorem 3.3.

Theorem 4.3. Let G be a generalized radical group satisfying the weak maximal condition

on non-permutable subgroups. Then either

(i) G is quasihamiltonian, or

(ii) G is soluble-by-finite of finite rank.

The proof of the above theorem is analogous to the proof of the Theorem 3.3.
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