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ABSTRACT

Graphs of groups were first introduced by Jean-Pierre Serre in his book entitled

Arbres, Amalgames, SL2 (1977), whose first English translation was in 1980 [5]. In

1993, Hyman Bass wrote a paper [1] which discussed such concepts in the category

of Graphs of Groups as morphisms, fundamental groups, and infinite covers. Hence,

this area of geometric group theory is typically referred to as Bass-Serre Theory. The

contents of this dissertation lie within this broad area of study. The main focus of the

research is to try to apply to the category of Graphs of Groups what John Stallings

did in the category of Graphs [6]. In that paper, he explored in graphs a vast number

of topics such as pullbacks, paths, stars, coverings, and foldings. The goal of this

dissertation is to apply many of those concepts to the category of Graphs of Groups.

In this work, we develop our notion of paths, links, maps of graphs of groups, and

coverings. We then explore the resultant path-lifting properties.
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CHAPTER 1

INTRODUCTION

We begin in Chapter 2 with listing the basic graph theory definitions and conven-

tions that underly our work throughout the remainder of the paper. Upon completion

of our basic graph theory discussion, we give the definition of graphs of groups that

we will employ along with a discussion of the canonical example of graphs of groups,

a group acting on a graph. The chapter concludes with a definition of the funda-

mental groupoid of a graph of groups and Proposition 2.4 which states that the map

E (Γ, A)→ π (Γ, A) given by [aeb] 7→ aeb is injective.

In Chapter 3, we turn our attention toward maps of graphs of groups, which we

define simply as homorphisms of the fundamental groupoids of graphs of groups in

Definition 3.1. We then explore the necessary structure embedded in a map of graphs

of groups. This work is primarily found in Lemma 3.3 and Proposition 3.4, where we

recover Bass’ notion of a map of graphs of groups.

The defining of paths in a graph of groups and the notion of homotopy of paths are

the main topics explored in Chapter 4. Paths are defined in Definition 4.1. From there,

we discuss round-trips, elementary reductions, and homotopy. Properties preserved

under homotopy are then discussed and the chapter concludes with a proof that every

homotopy class contains a unique reduced path.

In Chapter 5, we start by defining our notion of a link in Definition 5.1. From

there, we define a covering in Definition 5.2 and proceed to delve into various path lift-

ing conditions and properties. These include the unique path-lifting property stated
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in Theorem 5.5 and the homotopy-lifting property found in Theorem 5.7. The con-

cepts of conjugates of maps of graphs of groups, equivalence of coverings, and the

existence of coverings round out the chapter.

Chapter 6 begins with the ]-construction. This is a necessary step in the proof of

Theorem 5.10 which states that if F : (Γ, A)→ (∆, B) is a covering map, G : (Σ, C)→

(∆, B) is a map of graphs of groups, where Σ is a connected graph, and u, v are vertices

of Γ, Σ such that f(u) = g(v), then there exists a map G̃ : (Σ, C)→ (Γ, A) such that

g̃(v) = u and FG̃ is conjugate to G if and only if [Gπ(Σ, C, v)]b0 ⊆ F π(Γ, A, u) for

some b0 ∈ Bf(u) = Bg(v). Furthermore, the theorem states that if G̃ exists, it is unique

up to conjugacy. The chapter concludes with a detailed proof of the theorem.

Covering transformations of maps of graphs of groups are defined in Definition 7.1

at the outset of Chapter 7. This is followed by Theorem ??, which deals with the

existence and uniqueness of covering transformations. From there, in Lemma ??,

we see the relationship between regular coverings of a graph of groups and regu-

lar coverings of the ]-construction. The chapter concludes with Theorem 7.4 which

states that if F : (Γ, A) → (∆, B) is a regular covering of connected graphs of

groups, then the group of covering transformations is isomorphic to the quotient

group π(∆, B, f(v))/F π(Γ, A, v) for any vertex v of Γ.

In Chapter 8, we conclude with a generalized Bass-Serre theory. Along the way,

we discuss covering maps associated to group actions. Then, in Theorem 8.1, the

relationship between quotient graphs of groups (Γ/H,Hτ ) and (Γ/G,Gσ), where H ≤

G and G is acting on Γ, is explored. The main theorem of Bass-Serre Theory is then

stated in Corollary 8.3 with a subsequent discussion of the uniqueness of the associated

covering and a proof of the existence of coverings.
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CHAPTER 2

PRELIMINARIES

The notion of a graph that we prefer to use is more or less standard. Namely, a

graph Γ consists of two disjoint sets V (Γ) and E(Γ), two functions s, t : E(Γ)→ V (Γ),

and a fix-point free involution on E(Γ) denoted by e 7→ ē satisfying the following

conditions: s(ē) = t(e) and t(ē) = s(e) for all e ∈ E(Γ). The elements of V (Γ) are

called vertices . An element e ∈ E(Γ) is called a (directed) edge; the vertices s(e)

and t(e) are called the source and target of e, respectively; and the directed edge ē is

called the reverse or inverse of e. (By assumption, ē 6= e and ¯̄e = e.)

A map of graphs f : Γ→ ∆ consists of two functions

f : V (Γ)→ V (∆) and f : E(Γ)→ E(∆)

(both denoted by f) that preserve the source, target, and reverse of each edge e ∈

E(Γ).

A non-trival path in a graph Γ is an element e1e2 · · · en (n ≥ 1) of the free monoid

E(Γ)∗ such that t(ei) = s(ei+1) for 1 ≤ i ≤ n − 1. There is an obvious extension of

the source and target functions to paths: If p = e1 · · · en is a path in Γ, then define

s(p) = s(e1) and t(p) = t(en). In addition, we include a trivial path εx (with no

edges) for each vertex x ∈ V (Γ), where s(εx) = t(εx) = x.

A transformation taking a path p to a path q is called an elementary homotopy

if q is obtained from p by the deletion or insertion of a subword of the form eē for

some e ∈ E(Γ). We say that paths p and q are homotopic if there is a finite sequence

of elementary homotopies that carries p to q. Homotopy is an equivalence relation,

denoted by ', on the set of all paths of Γ. Note that if p ' q, then s(p) = s(q)
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and t(p) = t(q) and hence it makes sense to talk about the source and target of a

homotopy class. The homotopy class of a path p is denoted by [p] and the set of all

homotopy classes of paths in Γ is denoted by π(Γ).

If p and q are paths in Γ and t(p) = s(q), then the concatenation pq is again a

path and s(pq) = s(p) and t(pq) = t(q). Concatenation respects homotopy of paths

and therefore determines a (partial) product on the set π(Γ) of homotopy classes

of paths given by [p][q] = [pq], provided that t(p) = s(q). The set π(Γ) with this

operation is called the fundamental groupoid of Γ.

If f : Γ → ∆ is a map of graphs, then the induced homomorphism of monoids

f : E(Γ)∗ → E(∆)∗ obviously takes paths to paths and homotopic paths to homotopic

paths. Thus f determines a homomorphism of fundamental groupoids which we also

denote by f : π(Γ)→ π(∆). Note that f maps trivial paths to trivial paths and paths

of length one to paths of length one. Conversely, every homomorphism of groupoids

π(Γ)→ π(∆) with this property arises from a map of graphs Γ→ ∆.

We will now define our notion of a graph of groups. The definition below is a

departure from the traditional Bass-Serre Theory in that we require that our edge

groups be subgroups of the corresponding source vertex groups. Our definition agrees

with the one given in [2] and is obviously equivalent to Serre’s definition [5].

Definition 2.1. A graph of groups (Γ, A) consists of

(i) a graph Γ;

(ii) for each x ∈ V (Γ), a group Ax;

(iii) for each e ∈ E (Γ), a subgroup Ae ≤ As(e) and a monomorphism Ae → At(e)

denoted by c 7→ ce; and

(iv) the edge monomorphisms are required to be such that for each edge e, the

image of the map Aee = Ae and the maps e, e are inverses of one another—i.e.,

(ce)e = c and (de)
e

= d for all c ∈ Ae and all d ∈ Ae.

4



Example 2.2. [Main example.] Let G be a group acting on a graph Γ without

edge inversions, on the left. Note here that it is also convenient to write the group

action on the right by letting

x · g = g−1 · x

for all vertices or edges x and g ∈ G.

Let ∆ = Γ/G be the quotient graph and choose a section σ of the orbit map

Γ→ Γ/G = ∆; for each vertex and edge z of ∆, σ(z) is a choice of a member in the

orbit of z. We require that for each e ∈ E(∆),

s(σ(e)) = σ(s(e)).

Also, for each e ∈ E(∆), choose an element ge ∈ G such that

σ(e) · ge = σ (e) .

We require that ge = g−1
e .

Construct a graph of groups (∆, B) as follows. For each vertex or edge z of ∆,

let

Bz = Gσ(z) (the stabilizer subgroup).

Since G acts without inversions, then for every g ∈ Be = Gσ(e) and e ∈ E(∆), we

have that

s(σ(e) · g) = s(σ(e))

⇔ s(σ(e)) · g = s(σ(e))

⇔ σ(s(e)) · g = σ(s(e)).

Thus, Be ≤ Bs(e) and we define Be → Bt(e) via b 7→ be where

be = bge = g−1
e bge.

5



Note that

σ(t(e)) · be = σ(s(e)) · g−1
e bge = s(σ(e)) · g−1

e bge = s(σ(e) · g−1
e bge)

= s(σ(e) · bge) = s(σ(e) · ge) = s(σ(e)) = σ(s(e))

= σ(t(e)).

Hence, bge ∈ Gσ(t(e)) = Bt(e) and we have that b 7→ be is well-defined. It is a monomor-

phism as well.

We thus have a graph of groups (∆, B) determined by the action of G on Γ, the

section σ of the orbit map Γ→ Γ/G = ∆, and the choices of ge ∈ G (e ∈ E(∆)) such

that ge = g−1
e and σ(e) · ge = σ (e).

The fundamental groupoid of our graph of groups can be defined in terms of

generators and relations as is done in [3].

Definition 2.3. The fundamental groupoid of (Γ, A), denoted as π (Γ, A), has

vertex set V (Γ) and is generated by the edges of Γ together with the elements of the

vertex groups Ax for x ∈ V (Γ), where for each a ∈ Ax we define s(a) = t(a) = x.

The defining relations are:

(i) aa′ = b whenever b = aa′ in Ax for some x ∈ V (Γ), and

(ii) ece = ce for all c ∈ Ae, where e ∈ E (Γ).

Note that as a consequence of (ii), e = e−1 in π(Γ, A). From the normal form

theorem for graphs of groups discussed in [3], it follows that the natural map Ax →

π (Γ, A) is an embedding for each x ∈ V (Γ). Thus, to generalize the notion of vertices

of graphs to the category of graphs of groups, we define

V (Γ, A) =
⋃

x∈V (Γ)

Ax ↪→ π (Γ, A) .
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Next, we consider the set E0 =
{
aeb : e ∈ E (Γ) , a ∈ As(e), b ∈ At(e)

}
of words,

and introduce the following equivalence relation: aeb ≡ a′e′b′ whenever e′ = e, a′ =

ac−1, and b′ = ceb for some c ∈ Ae. This leads to our idea of generalized edges:

E(Γ, A) =
{

[aeb] : e ∈ E (Γ) , a ∈ As(e), b ∈ At(e)
}

= E0/≡.

Proposition 2.4. The map E (Γ, A)→ π (Γ, A) given by [aeb] 7→ aeb is injective.

Proof. To see that the map is well-defined, suppose a1e1b1 ≡ a2e2b2. Then,

e1 = e2 and there exists c ∈ Ae1 = Ae2 such that a2 = a1c
−1 and b2 = ce1b1. Thus,

a1e1b1 = a1c
−1e1c

e1b1 = a2e2b2 in the fundamental groupoid. Hence, the map is

well-defined.

In order to see that the map is injective, suppose that [a1e1b1] and [a2e2b2] have

the same image in π (Γ, A). We apply the normal form theorem [3]: Let Te be a choice

of left transversal for Ae in As(e) for each e ∈ E(Γ). Write ai as its unique product in

As(ei) of the form ai = rici, where ri ∈ Tei and ci ∈ Aei . Then, working in π (Γ, A),

we see that

r1e1c
e1
1 b1 = a1e1b1 = a2e2b2 = r2e2c

e2
2 b2.

So by the uniqueness of normal forms, r1 = r2, e1 = e2, and ce11 b1 = ce22 b2. Hence,

a2 = r2c2 = r1

(
c1c
−1
1

)
c2 = a1

(
c−1

2 c1

)−1

and

b2 = (ce22 )−1ce11 b1 = (c−1
2 )e1ce11 b1 = (c−1

2 c1)e1b1.

Therefore, [a1e1b1] = [a2e2b2]. �
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CHAPTER 3

MAPS OF GRAPHS OF GROUPS

Now, we turn our attention toward defining a map between two graphs of groups,

(Γ, A) and (∆, B), say. As in the situation of maps of graphs, we would like such a

map F : (Γ, A)→ (∆, B) to consist of two functions

F : V (Γ, A)→ V (∆, B) and F : E(Γ, A)→ E(∆, B)

that are compatible (in an obvious sense) so as to determine a homomorphism of

groupoids, which we also denote by F : π(Γ, A) → π(∆, B). Thus, we can avoid

worrying about these compatibility conditions all together and define maps of graphs

of groups in the following very simple way.

Definition 3.1. A map of graphs of groups F : (Γ, A)→ (∆, B) is a homomor-

phism of the fundamental groupoids, that we also denote by F : π(Γ, A)→ π(∆, B),

that maps V (Γ, A) to V (∆, B) and E(Γ, A) to E(∆, B).

Remarks 3.2. (1) Maps of trivial graphs of groups. Regarding a graph as a

graph of groups with a trivial group assigned to each vertex and each edge, we see

that every map of graphs f : Γ→ ∆ is a map of graphs of (trivial) groups.

(2) The identity map. For any graph of groups (Γ, A), the identity maps on

V (Γ, A) and on E(Γ, A) determine a map of graphs of groups Id: (Γ, A)→ (Γ, A).

(3) Compositions. If F : (Γ, A) → (Γ′, A′) and G : (Γ′, A′) → (Γ′′, A′′) are maps

of graphs of groups, then the composite homomorphism GF : π(Γ, A)→ π(Γ′′, A′′) is

a map of graphs of groups GF : (Γ, A)→ (Γ′′, A′′). Thus, graphs of groups with maps

of graphs of groups form a category.
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(4) Projection onto the underlying graph. Given a graph of groups (Γ, A), define

mappings q : V (Γ, A) → V (Γ) and q : E(Γ, A) → E(Γ) by q(a) = x for all x ∈ V (Γ)

and all a ∈ Ax and q([aeb]) = e for all [aeb] ∈ E(Γ, A). These mappings induce a

homomorphism q : π(Γ, A) → π(Γ) which is a map of graphs of groups. We call this

map q : (Γ, A)→ Γ the projection of (Γ, A) onto its underlying graph Γ.

(5) Inclusion of the underlying graph. The mappings i : V (Γ) → V (Γ, A) and

i : E(Γ) → E(Γ, A) given by i(x) = 1x (the identity element in Ax) for all x ∈

V (Γ) and i(e) = [e] for all e ∈ E(Γ) induce a homomorphism i : π(Γ) → π(Γ, A)

which is a splitting of the projection map q : (Γ, A) → Γ. That is, the composition

Γ
i−−−→ (Γ, A)

q−−−→ Γ is the identity map on Γ.

(6) The underlying map of graphs. A map of graphs of groups F : (Γ, A) →

(∆, B) projects to a map of the underlying graphs f : Γ→ ∆ that makes the following

diagram commutative:

(Γ, A)
F−−−→ (∆, B)

p

y yq
Γ

f−−−→ ∆

where p and q are the projections onto the underlying graphs. The map f is given by

the composition f = qF i, where i : Γ→ (Γ, A) is the inclusion map.

(7) Restrictions to homomorphisms of vertex groups. If follows from the above

commutative diagram that F maps the vertex group Ax to the vertex group Bf(x) for

each x ∈ V (Γ). Hence for each x ∈ V (Γ), F restricts to a homomorphism of groups

F |Ax : Ax → Bf(x). On the other hand, in general F does not map edge groups to

edge groups. However the image of an edge group Ae is a conjugate of Bf(e) in the

vertex group Bs(f(e)); see the lemma below.

Recall that the fundamental groupoid of a graph of groups (Γ, A) can be de-

fined by generators and relations, where the generators consist of the elements of Ax

(for each x ∈ V (Γ)) and the elements of E(Γ). We next address the question of

9



when a function defined on this generating set for π(Γ, A) induces a homomorphism

π(Γ, A)→ π(∆, B) which is a map of graphs of groups. More precisely, let (Γ, A) and

(∆, B) be graphs of groups and assume that the following data is given:

• a map of the underlying graphs f : Γ→ ∆;

• a homomorphism fx : Ax → Bf(x), for each x ∈ V (Γ);

• an element α(e) ∈ Bs(f(e)) for each e ∈ E(Γ).

Write β(e) = α(ē) for each e ∈ E(Γ) and define a function F : V (Γ, A) ∪ E(Γ) →

π(∆, B) by F |Ax = fx, for each x ∈ V (Γ), and F (e) = α(e)f(e)β(e)−1, for each

e ∈ E(Γ).

Lemma 3.3 (Induced maps). With this setup, F induces a homomorphism

F : π(Γ, A)→ π(∆, B) which is a map of graphs of groups if for all e ∈ E(Γ) and all

c ∈ Ae,

fx(c)
α(e) ∈ Bf(e) and fx(c)

α(e)f(e) = fy(c
e)β(e)

where x = s(e) and y = t(e).

The conditions in the lemma can be stated as the existence of a commutative

diagram:

Ay

Ae

Ax Bf(x)

Bf(y)

Bf(x)

Bf(e)

Bf(y)

........................................................................................................................................................................................................ ............
fx

........................................................................................................................................................................................................ ............
fy

............................................................................................................................................................................................ ............
adα(e)

...........................................................................
.....
.......
.....

........
................ ...........................................................................

.....
.......
.....

........
................

.................................................................................................................................................................................................................................................................................................................................................................................................................................................................. ............
(adα(e)) ◦ fx.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

..................

............

e
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
..................
............

f(e)

............................................................................................................................................................................................ ............
ad β(e)

for each e ∈ E(Γ), where x = s(e) and y = t(e). In the above diagram, we make use

of the somewhat standard notation: If G is a group and g ∈ G, then ad g denotes the

inner automorphism of G given by (ad g)(x) = xg = g−1xg.
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Proof of the lemma. First of all, let aa′ = b in a vertex group Ax. Then,

F (a)F (a′) = fx(a)fx(a
′)

= fx(aa
′)

= fx(b) = F (b).

Also, for any e ∈ E(Γ) and c ∈ Ae, we have

F (e)F (c)F (e) = α(e)f(e)β(e)−1fx(c)α(e)f(e)β(e)−1

= β(e)f(e)α(e)−1fx(c)α(e)f(e)β(e)−1

= β(e)fx(c)
α(e)f(e)β(e)−1

= β(e)fy(c
e)β(e)β(e)−1

= fy(c
e) = F (ce)

where x = s(e) and y = t(e).

We have shown that F preserves the defining relations of π(Γ, A), and hence

induces a homomorphism F : π(Γ, A) → π(∆, B). Furthermore, it follows immedi-

ately from the way F was defined that it maps V (Γ, A) to V (∆, B) and E(Γ, A) to

E(∆, B). Therefore F is a map of graphs of groups. �

Conversely, we next observe that every map of graphs of groups arises as in

Lemma 3.3. It also follows from this that our notion of a map of graphs of groups

agrees with Bass’ notion of a morphism [1].

Proposition 3.4. Associated to every map F : (Γ, A) → (∆, B) of graphs of

groups is the following data:

(i) a map of graphs f : Γ→ ∆,

(ii) a homomorphism fx = F |Ax : Ax → Bf(x) for each x ∈ V (Γ),
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(iii) a function α = αF : E(Γ)→ V (∆, B)

such that for each e ∈ E(Γ), F ([e]) = [α(e)f(e)α(e)−1]. Moreover this data com-

pletely determines F , satisfies the conditions of Lemma 3.3, and is unique up to the

equivalence on αF discussed below.

The proposition asserts that there is a one-to-one correspondence between maps

F : (Γ, A)→ (∆, B) and equivalence classes of triples (f, {fx}x∈V (Γ), α) that satisfy the

conditions of Lemma 3.3, where f : Γ→ ∆ is a map of graphs, each fx : Ax → Bf(x) is

a homomorphism, and α : E(Γ)→ V (∆, B) is a function such that α(e) ∈ Bf(s(e)) for

all e ∈ E(Γ). Two such triples (f, {fx}x∈V (Γ), α) and (f ′, {f ′x}x∈V (Γ), α
′) are equivalent

if f = f ′, fx = f ′x for each x ∈ V (Γ), and there exist elements ce ∈ Bf(e) associated

to the edges of Γ such that ce = c
f(e)
e and α(e) = α′(e)ce for all e ∈ E(Γ).

Proof of the proposition. First of all, the methods for divulging f : Γ→ ∆

and fx = F |Ax : Ax → Bf(x) are discussed in Remarks (6) and (7) above. To construct

the function α, choose an orientation E+(Γ) of the graph Γ; i.e., E+(Γ) consists of a

choice of exactly one edge in each pair {e, e}. Let e ∈ E+(Γ) such that x = s(e) and

y = t(e). Since F maps E(Γ, A) to E(∆, B), we have that F ([e]) = [af(e)b] for some

a ∈ Bf(x) and b ∈ Bf(y). We define α(e) = a and β(e) = b−1. Then

F ([e]) =
[
α(e)f(e)β(e)−1

]
and by Proposition 2.4, we see that F ([e]) = [β(e)f(e)α(e)−1]. Defining α(e) = β(e)

and β(e) = α(e), we see that α has the desired property for all edges of Γ.

Next, suppose there exists α′ : E(Γ) → V (∆, B) also satisfying this condition.

Let e ∈ E+(Γ). Since α(e)f(e)β(e)−1 ≡ α′(e)f(e)β′(e)−1, there exists ce ∈ Bf(e) such

that α(e)c−1
e = α′(e) and c

f(e)
e β(e)−1 = β′(e)−1; whence

α(e) = α′(e)ce and β(e) = β′(e)cf(e)
e .
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Setting ce = c
f(e)
e , we see that c

f(e)
e = c

f(e)f(e)
e = ce and we also have

α(e) = α′(e)ce and β(e) = β′(e)c
f(e)
e .

Hence α′ is equivalent to α in the above sense.

It remains to show that the conditions of Lemma 3.3 hold. To this end, let

e ∈ E(Γ) and c ∈ Ae. Then since c−1ece ≡ e, we must have

fx(c
−1)α(e)f(e)β(e)−1fy(c

e) ≡ α(e)f(e)β(e)−1.

Hence, there exists d ∈ Bf(e) such that

fx(c
−1)α(e) = α(e)d−1 and β(e)−1fy(c

e) = df(e)β(e)−1.

The former yields that

fx(c)
α(e) = d ∈ Bf(e),

and the latter that

fy(c
e)β(e) = df(e) = fx(c)

α(e)f(e),

exactly the two conditions of Lemma 3.3. �

Remark 3.5 (Notational conventions). From here on, we will adhere to the no-

tation and conventions in the previous proposition for maps of graphs of groups.

That is, a map of graphs of groups will be denoted by a capital letter, such as

H : (Γ, A) → (∆, B). Its underlying map of graphs will be denoted by the corre-

sponding lower case letter, such as h : Γ → ∆. The vertex homomorphisms will be

denoted by this lower case letter with a vertex as a subscript, such as hx : Ax → Bh(x).

The edge labeling function (which is only unique up to equivalence) will be denoted

by α, with a subscript if there is possible ambiguity, such as α = αH . Finally, for each

13



edge e in the underlying graph of the domain, we will write β(e) = α(e), possibly

with a subscript, such as β = βH .
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CHAPTER 4

PATHS

Let n be a positive integer and In be the graph obtained by subdividing the

interval [0, n] at the integer points. As always, we view graphs as graphs of trivial

groups.

Definition 4.1. A path of length n ≥ 1 in a graph of groups (Γ, A) is a map of

graphs of groups

P : In → (Γ, A) .

For n = 0, the elements of the vertex groups a ∈ Ax, for all x ∈ V (Γ), are regarded

as paths of length zero in (Γ, A).

The underlying map of graphs of a path P : In → (Γ, A) is a path p : In → Γ.

Let α = αP : E (In) → V (Γ, A) be an edge labeling function as in Proposition 3.4.

Denote the edges of In by [i− 1, i]±1, where 1 ≤ i ≤ n is an integer. As before, write

β(e) = α(e). The path P determines a word a0e1a1 · · · enan where

• a0 = α([0, 1]);

• ai = β([i− 1, i])−1α([i, i+ 1]) for 1 ≤ i ≤ n− 1;

• an = β([n− 1, n])−1; and

• ei = p([i− 1, i]) for all 1 ≤ i ≤ n, the image of [i− 1, i] under the underlying

map of graphs p : In → Γ.

Note that by Proposition 3.4, this representation is unique up to the following

equivalence relation: a0e1a1 · · · enan ≡ a′0e
′
1a
′
1 · · · e′ma′m if m = n, and for each 1 ≤ i ≤

n we have that e′i = ei and there exists ci ∈ Aei such that
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• a′0 = a0c
−1
1 ,

• a′i = ceii aic
−1
i+1 for 1 ≤ i ≤ n− 1, and

• a′n = cenn an.

That is, the second word is obtained from the first by replacing each ei by c−1
i eic

ei
i .

Conversely, every word of the form a0e1a1 · · · enan where n ≥ 1, e1e2 · · · en is a

path in Γ, and each ai ∈ At(ei) = As(ei+1) is a representation of some path P : In →

(Γ, A). We write P ≡ a0e1a1 · · · enan to indicate that P is represented by this word

and we identify P = [a0e1a1 · · · enan], the ≡-class of the word a0e1a1 · · · enan. Note

that when n = 0 this agrees with our definition of paths of length zero. Thus V (Γ, A)

consists of all paths of length zero and E (Γ, A) consists of all paths of length one in

(Γ, A).

The source and target of a path P in (Γ, A) are the obvious vertices of Γ: if

P ≡ a0e1a1 · · · enan, then s (P ) = s(e1) and t (P ) = t(en). In the case of n = 0,

s (P ) = t (P ) = x where a0 ∈ Ax.

If P : In → (Γ, A) and Q : Im → (Γ, A) are paths such that t (P ) = s (Q), then

the product PQ is the path

PQ : Im+n → (Γ, A)

defined using Lemma 3.3 as follows. Its underlying map of graphs is pq, where p, q

are the underlying paths of P , Q in Γ, and α : E (Im+n)→ V (Γ, A) is given by

α([i, i+ 1]) = αP ([i, i+ 1]) for 0 ≤ i ≤ n− 1

and

α([i, i+ 1]) = αQ([i− n, i− n+ 1]) for n ≤ i ≤ n+m− 1.

Define β the same way. This data determines PQ by Lemma 3.3. It is easy to see

that if P ≡ a0e1a1 · · · enan and Q ≡ a′0e
′
1a
′
1 · · · e′ma′m, then

PQ ≡ a0e1a1 · · · en(ana
′
0)e′1a

′
1 · · · e′ma′m.
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Note that |PQ| = |P |+ |Q|, s (PQ) = s (P ), and t (PQ) = t (Q).

Composition of paths is an associative operation, provided that the products

are all defined. Thus, the set of all paths in (Γ, A) forms a small category, denoted

P(Γ, A). A map F : (Γ, A) → (∆, B) of graphs of groups induces a natural length

preserving homomorphism (or functor) also denoted F : P(Γ, A) → P(∆, B). If

P ∈ P(Γ, A), then P : In → (Γ, A) and F (P ) is the composite map

F ◦ P : In → (∆, B).

Suppose that P ≡ a0e1a1 · · · enan and write xi = t(ei) = s(ei+1) for 0 ≤ i ≤ n. Then,

F (P ) ≡ fx0(a0)αF (e1)f(e1)βF (e1)−1fx1(a1) · · · f(en)βF (en)−1fxn(an)

Definition 4.2. A round-trip in a path is a subpath of the form ece, where

e ∈ E (Γ) and c ∈ Ae.

First note that the existence of a round-trip in a path P is independent of the

representation of P . Specifically, if P ≡ a0e1a1 · · · enan and eiaiei+1 is a round-trip

(i.e., ei = ei+1 and ai ∈ Aei+1
), then for any representation P ≡ b0e1b1 · · · enbn, we

have that eibiei+1 is a round-trip. To see this, note that from the definition of ≡ we

have that

bi = ceii aic
−1
i+1,

where ci ∈ Aei . Additionally, the fact that eiaiei+1 is a round-trip yields

ei = ei+1 and ai ∈ Aei+1
.

Hence,

eibiei+1 = ei+1c
ei
i aic

−1
i+1ei+1.

Now, since ci ∈ Aei , we have that ceii ∈ Aei+1
. Furthermore, we already have that

ai ∈ Aei+1
and ci+1 ∈ Aei+1

. Thus, bi = ceii aic
−1
i+1 ∈ Aei+1

. Therefore, eibiei+1 is a
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round-trip. If a path P contains a round-trip ece, then by replacing the round-trip

by ce ∈ At(e) we get a path P ′ with the same source and target vertices as P and with

|P ′| = |P | − 2.

It should be noted that this operation is also independent of the representation

of P . If P ≡ a0e1a1 · · · enan ≡ b0e1b1 · · · enbn and eiaiei+1 is a round-trip in the first

word, then eibiei+1 is a round-trip in the second word and

a0 · · · ei−1 (ai−1a
ei+1

i ai+1) ei+2 · · · an ≡ b0 · · · ei−1 (bi−1b
ei+1

i bi+1) ei+2 · · · bn.

To see this fact, since a0e1a1 · · · enan ≡ b0e1b1 · · · enbn, we have that

bi−1b
ei+1

i bi+1 = c
ei−1

i−1 ai−1c
−1
i

(
ceii aic

−1
i+1

)ei+1 c
ei+1

i+1 ai+1c
−1
i+2

= c
ei−1

i−1 ai−1c
−1
i (ceii )ei+1 a

ei+1

i

(
c−1
i+1

)ei+1 c
ei+1

i+1 ai+1c
−1
i+2

= c
ei−1

i−1 ai−1c
−1
i

(
c
ei+1

i

)ei+1

a
ei+1

i

(
c−1
i+1ci+1

)ei+1 ai+1c
−1
i+2

= c
ei−1

i−1 ai−1c
−1
i cia

ei+1

i ai+1c
−1
i+2

= c
ei−1

i−1 ai−1a
ei+1

i ai+1c
−1
i+2.

The above calculation combined with our definition of ≡ yields the fact that

a0 · · · ei−1 (ai−1a
ei+1

i ai+1) ei+2 · · · an ≡ b0 · · · ei−1 (bi−1b
ei+1

i bi+1) ei+2 · · · bn,

the desired result. We write that P ↘ P ′ and say that P ′ is obtained from P by an

elementary reduction . The equivalence relation on the set of paths in (Γ, A) that is

generated by ↘ is called homotopy and is denoted by '.

The product of paths is compatible with homotopy. If P1 ' P2, Q1 ' Q2, and

t (Pi) = s (Qi), then P1Q1 ' P2Q2. To see this, suppose that

a0 · · · ai−1eiaiei+1ai+1 · · · am ≡ P1 ' P2 ≡ a0 · · · ei−1 (ai−1a
ei+1

i ai+1) ei+2 · · · am
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and

b0 · · · bj−1djbjdj+1bj+1 · · · bn ≡ Q1 ' Q2 ≡ b0 · · · dj−1

(
bj−1b

dj+1

j bj+1

)
dj+2 · · · bn.

Then,

P1Q1 ≡ a0 · · · ai−1eiaiei+1ai+1 · · · (amb0) · · · bj−1djbjdj+1bj+1 · · · bn

' a0 · · · ei−1 (ai−1a
ei+1

i ai+1) ei+2 · · · (amb0) · · · bj−1djbjdj+1bj+1 · · · bn

' a0 · · · ei−1 (ai−1a
ei+1

i ai+1) ei+2 · · · (amb0) · · · dj−1

(
bj−1b

dj+1

j bj+1

)
dj+2 · · · bn

≡ P2Q2.

Therefore, P1Q1 ' P2Q2. Additionally, every path P in (Γ, A) has a homotopy

inverse. If s (P ) = x and t (P ) = y, then there exists a path P−1 with s (P−1) = y

and t (P−1) = x such that PP−1 ' 1x and P−1P ' 1y, where 1x and 1y are paths

of length zero corresponding to the identity elements of Ax and Ay. In order to see

this fact, first note that if s(e) = x and t(e) = y, then the operation ↘ whereby a

round-trip ece is replaced with ce also yields that ee is replaced by 1y, since ee ≡ e1xe

where 1x ∈ Ae and we know that 1ex = 1y. Analagously, ee is replaced by 1x.

Now, consider the path P ≡ a0e1a1 · · · enan in (Γ, A). Define

P−1 ≡ a−1
n ena

−1
n−1 · · · e1a

−1
0 .

Note that P−1 is a path in (Γ, A) and

s
(
P−1

)
= s (en) = t (en) = t (P ) .
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Thus PP−1 is well-defined and

PP−1 ≡ a0 · · · an−2en−1an−1en
(
ana

−1
n

)
ena

−1
n−1en−1a

−1
n−2 · · · a−1

0

≡ a0 · · · an−2en−1an−1en1t(en)ena
−1
n−1en−1a

−1
n−2 · · · a−1

0

' a0 · · · an−2en−1an−11s(en)a
−1
n−1en−1a

−1
n−2 · · · a−1

0

≡ a0 · · · an−2en−11t(en−1)en−1a
−1
n−2 · · · a−1

0

' a0 · · · an−21s(en−1)a
−1
n−2 · · · a−1

0

...

' a01s(e1)a
−1
0

≡ 1x,

where x = s (e1) = s (P ). A similar calculation yields the fact that P−1P ' 1y, where

y = t(en) = t(P ). Hence, if P ≡ a0e1a1 · · · enan, then P−1 ≡ a−1
n ena

−1
n−1 · · · e1a

−1
0 .

Thus, the set of homotopy classes of paths in (Γ, A) forms a groupoid. This groupoid

is naturally isomorphic to the fundamental groupoid, π (Γ, A). To demonstrate this

point, first note that it has already been shown that given paths P and Q in (Γ, A),

where t(P ) = s(Q), we have that PQ is a path in (Γ, A) as well. Multiplication at

the homotopy level is thus defined by [P ][Q] = [PQ]. Additionally, it has already

been described how to form the inverse of a given path P , and hence [P ]−1 is defined

to be [P−1]. Thus, we need to prove the following statements are true for all paths

P ,Q, and R in (Γ, A) where t(P ) = s(Q) and t(Q) = s(R):

(i) (PQ)R ' P (QR);

(ii) (PQ)Q−1 ' P ; and

(iii) P−1(PQ) ' Q.
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To see (i), suppose that P ≡ a0e1 · · · enan, Q ≡ a′0e
′
1 · · · e′ma′m, and R ≡ a′′0e

′′
1 · · · e′′ra′′r .

Then,

(PQ)R ≡ (a0e1 · · · en(ana
′
0)e′1 · · · e′ma′m)(a′′0e

′′
1 · · · e′′ra′′r)

≡ a0e1 · · · en(ana
′
0)e′1 · · · e′m(a′ma

′′
0)e′′1 · · · e′′ra′′r

≡ (a0e1 · · · enan)(a′0e
′
1 · · · e′m(a′ma

′′
0)e′′1 · · · e′′ra′′r)

≡ P (QR).

Thus, we have that (PQ)R ≡ P (QR). Hence, at the homotopy level, we have

([P ][Q])[R] = ([PQ])[R] = [(PQ)R] = [P (QR)] = [P ]([QR]) = [P ]([Q][R]).

Therefore, (PQ)R ' P (QR).

For (ii), we employ (i) to see that

(PQ)Q−1 ' P (QQ−1)

' P (1s(Q))

≡ a0e1 · · · enan(1s(Q))

≡ a0e1 · · · en(an1s(Q))

≡ a0e1 · · · enan

≡ P.

A similar calculation yields (iii) as well. Therefore, the set of homotopy classes of

paths in (Γ, A) does in fact form a groupoid.
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Now, it remains to be seen that this groupoid is naturally isomorphic to the fun-

damental groupoid, π (Γ, A). To this end, if P ∈ P (Γ, A) such that P ≡ a0e1 · · · enan,

we define the evaluation map

η : P (Γ, A)→ π (Γ, A) via

η(P ) = a0e1 · · · enan.

It is easy to see that this map is well defined. Furthermore, suppose that ei−1ai−1ei

is a round-trip below so that

a0e1 · · · ai−2ei−1ai−1eiai · · · enan ≡ P ' Q ≡ a0e1 · · · ai−2a
ei
i−1ai · · · enan.

Then,

η (P ) = a0e1 · · · ai−2ei−1ai−1eiai · · · enan

= a0e1 · · · ai−2a
ei
i−1ai · · · enan

= η (Q) .

Thus, η induces a well-defined homomorphism also denoted η : P(Γ, A)/' → π(Γ, A).

Now, define φ on the generators of π (Γ, A) by

φ : π (Γ, A)→ P (Γ, A) /' via

φ(a) = [a] and φ(e) = [e] (mod ')

for all a ∈ Ax and e ∈ E(Γ) where x runs through the vertices of Γ.

It remains to be seen that the appropriate relations hold. To this end, if aa′ = b

in Ax for some x ∈ V (Γ), we have that

φ(a)φ(a′) = [a][a′] = [b] = φ(b)

in P (Γ, A) /'. In addition, if e ∈ E(Γ) and c ∈ Ae, then

φ(e)φ(c)φ(e) = [e][c][e] = [ece] = [ce] = φ (ce) (mod ')
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in P (Γ, A) /'. Thus, φ extends to a well-defined homomorphism.

Lastly, we need to show that ηφ and φη are the respective identity maps. To this

end,

ηφ(a) = η ([a]) = a and ηφ(e) = η ([e]) = e

and

φη ([P ]) = φ (a0e1 · · · enan)

= φ (a0)φ (e1) · · ·φ (en)φ (an)

= [a0] [e1] · · · [en] [an]

= [P ].

Therefore, P (Γ, A) /' is isomorphic to π (Γ, A).

Finally, we say that a path P in (Γ, A) is reduced if it contains no round-trips.

Note that each homotopy class of paths contains a unique reduced path. For, by

definition every path in (Γ, A) is of finite length. Hence, each path can contain at

most finitely many round-trips. Therefore, every homotopy class of paths does contain

a reduced path. Uniqueness is handled below in Theorem 4.3.

Theorem 4.3 (Normal Form Theorem). Every path P in P(Γ, A) is homotopic

to a unique reduced path and the evaluation map P(Γ, A)→ π(Γ, A) maps the set of

reduced paths in P(Γ, A) bijectively onto π(Γ, A).

Proof. The first part follows immediately from the second part, which is a gener-

alization of Proposition 2.4; and the proof given there extends as follows, using induc-

tion on the lengths of reduced paths. Let P ≡ a0e1a1 · · · emam and Q ≡ b0e
′
1b1 · · · e′nbn

be reduced paths with the same evaluation in π(Γ, A). By the normal form theorem

of Higgins [3], we must have that e1 = e′1, a0 = r0c1, and b0 = r0d1, where r0 ∈ Te1
and c1, d1 ∈ Ae1 (with the setup as in the proof of Proposition 2.4). Thus, in π(Γ, A)
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we have

r0e1(ce11 a1)e2 · · · emam = r0e1(de11 b1)e′2 · · · e′nbn.

Cancelling r0e1 from the left sides of this equation and using induction on the sum of

the lengths of the reduced paths, we conclude that

(ce11 a1)e2a2 · · · emam ≡ (de11 b1)e′2b2 · · · e′nbn.

Note also that b0 = r0d1 = (a0c
−1
1 )d1 = a0(d−1

1 c1)−1 and that d−1
1 c1 ∈ Ae1 . Thus

a0e1a1 · · · emam ≡ a0(d−1
1 c1)−1e1(d−1

1 c1)e1a1e2a2 · · · emam

= b0e1(d−1
1 )e1(ce11 a1)e2a2 · · · amem

≡ b0e1(d−1
1 )e1(de11 b1)e′2b2 · · · e′nbn

= b0e
′
1b1e

′
2b2 · · · e′nbn,

yielding that P = Q, as required. �
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CHAPTER 5

COVERINGS

Now, in an effort to develop some aspects of covering space theory in the category

of graphs of groups, we turn our attention toward defining the notion of a link in

(Γ, A).

Definition 5.1. Let (Γ, A) be a graph of groups and x ∈ V (Γ). Then, the link

of x in (Γ, A) is defined as

Lx = {(aAe, e) : a ∈ Ax, e ∈ E (Γ) , s(e) = x} .

If P ≡ a0e1a1 · · · enan is a path of length n ≥ 1, then define P ′(0) ∈ Lx where

x = s (P ) by

P ′(0) = (a0Ae1 , e1) .

Note that P ′(0) does not depend on the word representing P . This is easily demon-

strated. Suppose that P ≡ a0e1a1 · · · enan ≡ b0e1b1 · · · enbn is a path in (Γ, A). Then,

by our definition of ≡, we have that b0 = a0c
−1 for some c ∈ Ae1 . Thus, using the

representative a0e1a1 · · · enan we have that P ′(0) = (a0Ae1 , e1) and using the repre-

sentative b0e1b1 · · · enbn we have that

P ′(0) = (b0Ae1 , e1) =
(
a0c
−1Ae1 , e1

)
= (a0Ae1 , e1)

since c ∈ Ae1 . Thus P ′(0) does not depend on the representation of P .

Now, suppose that F : (Γ, A) → (∆, B) is a map of graphs of groups. Write

f : Γ→ ∆ for the underlying map of graphs. For each vertex x ∈ V (Γ), F induces a

map
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Fx : Lx (Γ, A)→ Lf(x) (∆, B)

given by (aAe, e) 7→
(
fx(a)α(e)Bf(e), f(e)

)
. Note that Fx is well-defined. For if

aAe = bAe for some a, b ∈ Ax, then b = ac for some c ∈ Ae, and we have that

Fx (bAe, e) =
(
fx(b)α(e)Bf(e), f(e)

)
=

(
fx(ac)α(e)Bf(e), f(e)

)
=

(
fx(a)fx(c)α(e)Bf(e), f(e)

)
=

(
fx(a)α(e)fx(c)

α(e)Bf(e), f(e)
)

=
(
fx(a)α(e)Bf(e), f(e)

)
= Fx (aAe, e)

since fx(c)
α(e) ∈ Bf(e) by Proposition 3.4. Furthermore, Fx (P ′ (0)) = (FP )′ (0). In

order to see this, let P ≡ a0e1a1 · · · enan be a path in (Γ, A). Then,

Fx (P ′ (0)) = Fx (a0Ae1 , e1) =
(
fx(a0)α(e1)Bf(e1), f(e1)

)
,

and

FP ≡ fs(e1) (a0)α (e1) f (e1) β (e1)−1 fs(e2) (a1) · · · f (en) β (en)−1 ft(en).

Thus,

(FP )′ (0) =
(
fs(e1)(a0)α(e1)Bf(e1), f(e1)

)
=

(
fx(a0)α(e1)Bf(e1), f(e1)

)
= Fx (P ′ (0)) .

Now that we have a well-defined map on the links in (Γ, A) we can explore the

notion of a covering map in the category of Graphs of Groups, as Bass did in [1].
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Definition 5.2. A map F : (Γ, A) → (∆, B) is called a covering if for all x ∈

V (Γ),

(i) fx = F |Ax : Ax → Bf(x) is injective, and

(ii) Fx : Lx → Lf(x) is bijective.

5.1. Path-lifting

We first consider the path lifting property for coverings of graphs of groups. From

here forward in this section we will assume that F : (Γ, A)→ (∆, B) is a covering.

Lemma 5.3 (Uniqueness of lifts of paths). If P ≡ a0e1a1 · · · emam and Q ≡

b0e
′
1b1 · · · e′nbn are paths in (Γ, A) such that s(P ) = s(Q) and F (P ) = F (Q), then

P = Q.

Proof. First of all, since F (P ) = F (Q), we have that (FP )′(0) = (FQ)′(0).

But, since Fx (P ′(0)) = (FP )′(0) and Fx (Q′(0)) = (FQ)′(0) where x = s(P ) = s(Q),

we also have that Fx (P ′(0)) = Fx (Q′(0)). The fact that F is a covering then yields

that P ′(0) = Q′(0) which implies that (a0Ae1 , e1) =
(
b0Ae′1 , e

′
1

)
. Hence, e′1 = e1 and

b0 = a0c for some c ∈ Ae1 .

Now, we have that P ≡ a0e1a1 · · · emam and Q ≡ b0e
′
1b1 · · · e′nbn ≡

a0e1c
e1b1e

′
2 · · · e′nbn. Note here that paths given by a1e2a2 · · · emam and

ce1b1e
′
2b2 · · · e′nbn have the same intial vertex, namely t (e1), and map to the same

path under F . So, by induction on the length of paths,

a1e2a2 · · · emam ≡ ce1b1e
′
2b2 · · · e′nbn.

Hence, we have that

(a0e1) a1e2a2 · · · emam ≡ (a0e1) ce1b1e
′
2b2 · · · e′nbn.
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Thus, P = Q. For paths of length 0, the result follows immediately from (i) in

Defintion 5.2. �

Lemma 5.4. Let P be a path in (∆, B) from a vertex x to a vertex y in ∆ and let

x̃ be a vertex in Γ with f (x̃) = x. Then, there exists a path P̃ in (Γ, A) with source

vertex x̃ and an element b ∈ By such that

F (P̃ ) = Pb.

Proof. This will be a proof by induction on |P |. To begin, if |P | = 0, let P̃ = 1x̃

and let b = P−1. Then, F (P̃ ) = 1x = Pb. Now, assume that |P | = n ≥ 1. Then,

P ′ (0) ∈ Lx and Fx̃ : Lx̃ → Lx is a bijection. So, there exists (ã0Aẽ1 , ẽ1) ∈ Lx̃ such

that

Fx̃ (ã0Aẽ1 , ẽ1) =
(
fx̃ (ã0)α (ẽ1)Bf(ẽ1), f (ẽ1)

)
= P ′(0).

Thus, P has a representation

P ≡ a0e1a1e2 · · · enan

where a0 = fx̃ (ã0)α (ẽ1) and e1 = f (ẽ1). Let P̃0 ≡ ã0ẽ1 be a path in (Γ, A) from

s(ẽ1) = x̃. Then,

F (P̃0) ≡ fx̃ (ã0)α (ẽ1) f (ẽ1) β (ẽ1)−1 = a0e1β (ẽ1)−1 .

Now, since P1 ≡ β (ẽ1) a1e2 · · · enan is a path of length n − 1 starting at s (e2) =

t (e1) = f (x̃1), by induction there exists a path P̃1 in (Γ, A) with source vertex

x̃1 = t(ẽ1) = s(ẽ2) and an element b ∈ By such that

F (P̃1) = P1b.
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Taking the product P̃ = P̃0P̃1 yields a path with source x̃ such that

F (P̃ ) = F (P̃0)F (P̃1)

≡ (a0e1β(ẽ1)−1)(β(ẽ1)a1e2 · · · enanb)

≡ Pb.

�

Theorem 5.5 (Unique path-lifting property). Let P be a path in (∆, B) from x

to y such that By = 1, and let x̃ be a vertex in Γ with f (x̃) = x. Then, there exists

a unique path P̃ in (Γ, A) with source vertex x̃ such that F (P̃ ) = P .

5.2. Homotopy lifting

Lemma 5.6. Let P and Q be paths in (Γ, A) such that s(P ) = s(Q) and F (P )↘

F (Q). Then, P ↘ Q.

Proof. To begin, suppose that F (P ) contains a round-trip e1be2 (i.e., e1 = e2

and b ∈ Be2) and that F (Q) is obtained from F (P ) by replacing e1be2 with be2 . Now

in P there must be a subpath of the form ẽ1aẽ2 where f (ẽ1) = e1, f (ẽ2) = e2,

β (ẽ1)−1 fx̃(a)α (ẽ2) = b, and x̃ = s (ẽ2).

Since b ∈ Be2 and e2 = e1,

(fx̃(a)α(ẽ2)Be2 , e2) = (β(ẽ1)bBe2 , e2) = (β(ẽ1)Be1 , e1)

as elements of Lf(x̃). Thus,

Fx̃ (aAẽ2 , ẽ2) = Fx̃
(
Aẽ1 , ẽ1

)
.

However, F is a covering map. Hence, ẽ1 = ẽ2 and a ∈ Aẽ2 . Thus, we have that ẽ1aẽ2

is a round-trip in P .
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Now, let P ′ be the path obtained from P by replacing ẽ1aẽ2 by aẽ2 . We need to

show that P ′ = Q. To this end, note that if ỹ = t (ẽ2), then we see that

fỹ
(
aẽ2
)β(ẽ2)

= fx̃ (a)α(ẽ2)f(ẽ2) = fx̃ (a)α(ẽ2)e2 = be2

since

fx̃(a)α(ẽ2) = α(ẽ2)−1fx̃(a)α(ẽ2) = β(ẽ1)−1fx̃(a)α(ẽ2) = b.

It follows that F (P ′) = F (Q). Hence, by Lemma 5.3, we have that P ′ = Q. There-

fore, P ↘ Q.

�

The theorem below is an immediate consequence of Lemma 5.6.

Theorem 5.7 (Homotopy-lifting property). Let P and Q be paths in (Γ, A) with

the same source vertex. If F (P ) ' F (Q), then P ' Q; in particular P and Q have

the same target vertex.

Combining this theorem with Theorem 5.5 we have

Corollary 5.8. Let P and Q be paths in (∆, B) from x to y such that By = 1,

and let P̃ and Q̃ be the unique lifts of P and Q starting at x̃, a vertex in Γ with the

property that f (x̃) = x. Then, if P ' Q, we have that P̃ ' Q̃; in particular P̃ and

Q̃ also have the same target vertex.

5.3. Conjugation of maps and general lifting criterion

For our analogue for graphs of groups of the general lifting criterion in the topo-

logical theory of covering spaces, we need the following notion of equivalence of maps

of graphs of groups, called conjugacy.

Let G : (Σ, C) → (Γ, A) be a map of graphs of groups with underlying map of

graphs g : Σ → Γ. For each x ∈ V (Σ), choose an element ax ∈ Ag(x). Then by the
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conjugate of G by the ax’s we will mean the map G′ with the same underlying map

of graphs g′ = g, defined as follows: for each x ∈ V (Σ), define the homomorphism

g′x : Cx → Ag(x) by g′x(c) = gx(c)
ax ; and for each e ∈ E(Σ), define its edge label by

α′(e) = a−1
s(e)α(e). It is easy to see that the conditions of Lemma 3.3 hold for the g′x’s

and α′(e)’s, and hence a map G′ : (Σ, C) → (Γ, A) is induced, called a conjugate of

G.

Conjugation is obviously an equivalence relation on the set of maps from (Σ, C)

to (Γ, A). And as we next show, homomorphisms of fundamental groups induced by

conjugate maps are the same up to conjugation by an element of the base vertex

group.

Lemma 5.9. If G,G′ : (Σ, C) → (Γ, A) are conjugate maps of graphs of

groups and v ∈ V (Σ), then the induced homomorphisms of fundamental groups

G,G′ : π(Σ, C, v) → π(Γ, A, g(v)) are also conjugates. More precisely, there exists

a ∈ Ag(v) ⊆ π(Γ, A, g(v)) such that G′([P ]) = G([P ])a for all [P ] ∈ π(Σ, C, v).

Proof. Suppose G′ is the result of conjugating G by elements ax ∈ Ag(x). We

show that the result already holds at the path level. Let P ≡ c0e1c1 · · · encn be a path

in (Σ, C), and write xi = t(ei) = s(ei+1). Then G′(P ) ∈ P(Γ, A) is represented by

G′(P ) ≡ g′x0(c0)α′(e1)g(e1)β′(e1)−1g′x1(c1) · · ·α′(en)g(en)β′(en)−1g′xn(cn)

= gx0(c0)ax0a−1
x0
α(e1)g(e1)β(e1)−1ax1gx1(c1)ax1 · · · gxn(cn)axn

= a−1
x0
gx0(c0)α(e1)g(e1)β(e1)−1gx1(c1) · · ·α(en)g(en)β(en)−1gxn(cn)axn

= a−1
x0
G(P ) axn

If P is a loop based at v, then x0 = xn = v. We see that the result holds with

a = av. �

We can now state our general lifting criterion for coverings of graphs of groups:
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Theorem 5.10 (General lifting). Suppose F : (Γ, A) → (∆, B) is a covering

map, G : (Σ, C) → (∆, B) is a map of graphs of groups, where Σ is a connected

graph, and let u, v be vertices of Γ, Σ such that f(u) = g(v). Then there exists a

map G̃ : (Σ, C) → (Γ, A) such that g̃(v) = u and FG̃ is conjugate to G if and only

if [Gπ(Σ, C, v)]b0 ⊆ F π(Γ, A, u) for some b0 ∈ Bf(u) = Bg(v); and if G̃ exists, it is

unique up to conjugacy.

The proof is deferred to Chapter 6.

5.4. Equivalence of coverings

First we define isomorphisms of graphs of groups in the obvious way. We call a

map of graphs of groups M : (Γ1, A1)→ (Γ2, A2) an isomorphism if there exists a map

of graphs of groups N : (Γ2, A2) → (Γ1, A1) such that both compositions MN and

NM are identity maps; such a map N is called an inverse of M . If M has an inverse,

then by a familiar argument, it is unique—we denote it by M−1. Note also that in

this situation the induced map M : π(Γ1, A1, x)→ π(Γ2, A2,m(x)) is an isomorphism

of groups, with inverse M−1 : π(Γ2, A2,m(x))→ π(Γ1, A1, x), for any vertex x in Γ1.

Using Lemma 3.3, it is not hard to show that a map of graphs of groups

M : (Γ1, A1)→ (Γ2, A2) is an isomorphism if and only if three conditions hold:

• the underlying map m : Γ1 → Γ2 is an isomorphism of graphs;

• for each x ∈ V (Γ1), the map mx : (A1)x → (A2)m(x) is an isomorphism of

groups;
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• for each e ∈ E(Γ1), the mapping c 7→ mx(c)
αM (e) is an isomorphism of groups

(A1)e → (A2)m(e).

The three conditions are obviously necessary for M to be an isomorphism. To see

that they are sufficient, note that the first two conditions allow us to define a map of

graphs of groups N : (Γ2, A2)→ (Γ1, A1) by applying Lemma 3.3 to the data:

(1) n = m−1 : Γ2 → Γ1;

(2) nx = m−1
x′ for all x ∈ V (Γ2); and

(3) αN(e) = m−1
x′ (αM(e′)−1) for all e ∈ E(Γ2),

where x′ = n(x) and e′ = n(e). Also, note below that c′ = nx(c) where c ∈ (A2)e. We

desire to show that N = M−1. To do so, we need to prove the following:

(i) N is a map of graphs of groups, and

(ii) NM = Id : (Γ1, A1) → (Γ1, A1) and MN = Id : (Γ2, A2) → (Γ2, A2), the

respective identity maps.

With regard to (i), to apply Lemma 3.3, we need to first show that

nx(c)
αN (e) ∈ (A1)e′

for all c ∈ (A2)e. To this end, we have that

nx(c)
αN (e) = m−1

x′ (c)m
−1
x′ (αM (e′)−1)

= m−1
x′ (αM(e′)cαM(e′)−1)

= m−1
x′ (αM(e′)αM(e′)−1mx′(c

′
1)αM(e′)αM(e′)−1)

= c′1 ∈ (A1)e′

since the fact that the mapping c 7→ mx(c)
αM (e) is an isomorphism of groups (A1)e →

(A2)m(e) implies that there exists a c′1 ∈ (A1)e′ such that c = αM(e′)−1mx′(c
′
1)αM(e′).
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To conclude (i), we now need to show that

[nx(c)
αN (e)]n(e) = ny(c

e)βN (e).

To this end, we see that

[nx(c)
αN (e)]n(e) = [m−1

x′ (αM(e′))m−1
x′ (c)m−1

x′ (αM(e′)−1)]e
′

= [m−1
x′ (αM(e′))m−1

x′ (αM(e′)−1mx′(c
′
1)αM(e′))m−1

x′ (αM(e′)−1)]e
′

= [m−1
x′ (mx′(c

′
1))]e

′

= c′e
′

1 .

But, since mx′(c
′)αM (e′)e = my′(c

′e′)βM (e′), we know that

c′e
′

1 = m−1
y′ (βM(e′)[mx′(c

′
1)αM (e′)e]βM(e′)−1)

= m−1
y′ (βM(e′))m−1

y′ ([αM(e′)−1mx′(c
′
1)αM(e′)]e)m−1

y′ (βM(e′)−1)

= βN(e)−1ny(c
e)βN(e)

= ny(c
e)βN (e),

thus proving (i).

As for (ii), we have that for all a ∈ (A1)x and any x ∈ V (Γ1)

NM(a) = nx′(mx(a)) = m−1
x (mx(a)) = a,

34



the identity element in (A1)x. A similar calculation will yield that MN(a′) = a′ for

all a′ ∈ (A2)x′ and any x′ ∈ V (Γ2). As for the respective edges, if e ∈ E(Γ1), then

N [M(e)] = N [αM(e)m(e)βM(e)−1]

= nx′(αM(e))αN(m(e))n(m(e))βN(m(e))ny′(βM(e)−1)

= nx′(αM(e))αN(e′)n(e′)βN(e′))ny′(βM(e)−1)

= m−1
x (αM(e))m−1

x (αM(e)−1)em−1
y (βM(e)−1)m−1

y (βM(e))

= e.

Again, a similar calculation also yields that M [N(e′)] = e′ for all e′ ∈ E(Γ2). Thus,

since we have shown that NM and MN are the respective identity maps on the

generators, we have that NM = Id and MN = Id, proving (ii) above.

Definition 5.11 (Equivalent coverings). Two coverings Fi : (Γi, Ai) → (∆, B),

i = 1, 2, of a graph of groups (∆, B) are equivalent if there exists an isomorphism of

graphs of groups M : (Γ1, A1)→ (Γ2, A2) such that F2M and F1 are conjugate maps.

(Γ1, A1)

(∆, B)

(Γ2, A2)
.............................................................................................................................................................................................................................................................. .......

.....

F1

.........................................................................................................................................................................................................................................................
.....
............

F2

............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ....................... ............
M

This defines an equivalence relation on the set of coverings of (∆, B). It is sym-

metric since if F2M is conjugate to F1, say by elements bx ∈ Bf1(x) for x ∈ V (Γ1),

then F1M
−1 is conjugate to F2 by the elements bm(x) = b−1

x ∈ Bf2(m(x)) = Bf1(x).

In fact, this relation projects to an equivalence relation on the set of conjugacy

classes of coverings of (∆, B). The following routine exercises justify this claim:
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Let F, F ′ : (Γ, A)→ (∆, B) and G,G′ : (Σ, C)→ (Γ, A) be pairs of conjugate maps of

graphs of groups. Then

(1) the compositions FG,F ′G′ : (Σ, C)→ (∆, B) are also conjugate. Hence there

is a well-defined composition of conjugacy classes given by [F ][G] = [FG].

(2) If G is an isomorphism, then G′ is also an isomorphism.

(3) If F is a covering map, then F ′ is also a covering map.

(4) Let Fi : (Γi, Ai) → (∆, B) be a covering map, i = 1, 2. Then F1 and F2 are

equivalent coverings if and only if there exists an isomorphism M : (Γ1, A1)→

(Γ2, A2) such that [F2][M ] = [F1].

To see (1), first note that it can be easily verified that FG is defined as follows:

(i) fg : Σ→ ∆ is the map of graphs;

(ii) fg(x)gx : Cx → Bfg(x) is the vertex homomorphism for all x ∈ V (Σ); and

(iii) αFG(e) = fg(x)(αG(e))αF (g(e)) for all e ∈ E(Σ).

FG as defined above yields the following for all c ∈ Cx where x ∈ V (Σ) and for all

e ∈ E(Σ) such that s(e) = x and t(e) = y:

• FG(c) = fg(x)gx(c), and

• FG(e) = fg(x)(αG(e))αF (g(e))fg(e)βF (g(e))−1fg(y)(βG(e−1)).

Now, we need elements bfg(x) ∈ Bfg(x) such that F ′G′(c) = FG(c)bfg(x) and αF ′G′(e) =

b−1
fg(x)αFG(e). We claim that bfg(x) = fg(x)(ax)bg(x). In order to see this, first we note
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that

F ′G′(c) = f ′g(x)(g
′
x(c))

= fg(x)(gx(c)
ax)bg(x)

= b−1
g(x)fg(x)(a

−1
x )fg(x)(gx(c))fg(x)(ax)bg(x)

= fg(x)(gx(c))
fg(x)(ax)bg(x)

= FG(c)bfg(x) .

In addition,

F ′G′(e)

= F ′(αG′(e)g
′(e)βG′(e)

−1)

= F ′(a−1
x αG(e)g(e)βG(e)−1ay)

= f ′g(x)(a
−1
x αG(e))αF ′(g(e))f ′g(e)(βF ′(g(e))−1)f ′g(y)(βG(e)−1ay)

= fg(x)(a
−1
x αG(e))bg(x)b−1

g(x)αF (g(e))fg(e)βF (g(e))−1bg(y)fg(y)(βG(e)−1ay)
bg(y)

= b−1
g(x)fg(x)(a

−1
x )fg(x)(αG(e))αF (g(e))fg(e)βF (g(e))−1fg(y)(βG(e)−1)fg(y)(ay)bg(y)

= b−1
g(x)fg(x)(a

−1
x )αFG(e)fg(e)βFG(e)−1fg(y)(ay)bg(y)

= b−1
fg(x)αFG(e)fg(e)βFG(e)−1bfg(y)

= αF ′G′(e)f
′g′(e)βF ′G′(e)

−1

Therefore, F ′G′ is conjugate to FG whenever F ′ is congugate to F and G′ is conjugate

to G.

As for (2), the proof is an easy application of the discussion at the beginning of

this chapter. Note that since G is an isomorphism of graphs of groups we have that

g′ = g is an isomorphism of graphs and g′x = ad(ax)gx is an isomorphism of groups

with g′−1
x (a) = g−1

x (aa
−1
x ) for all a ∈ Ax′ and x′ ∈ V (Γ) where g(x) = x′. Lastly, for
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all c ∈ Ce, where e ∈ E(Σ), the map c 7→ g′x(c)
αG′ (e) = gx(c)

αG(e) is an isomorphism

Ce → Ae′ with inverse a 7→ g−1
x (aαG(e)−1

) for all a ∈ Ae′ where g(e) = e′. Thus, G′−1

exists and is defined as follows:

(i) g′−1 = g−1 : Γ→ Σ is the map of graphs;

(ii) g′−1
x (a) = g−1

x (aa
−1
x ) for all a ∈ Ax′ where g(x) = x′; and

(iii) αG′−1(e′) = g′−1
x (αG′(e)

−1) = g−1
x (axαG(e)−1) for all e′ ∈ E(Γ) where g(e) =

e′.

With regard to (3), we need to show that

(i) f ′x : Ax → Bf ′(x) = Bf(x) is injective, and

(ii) F ′x : Lx(Γ, A)→ Lf ′(x) = Lf(x) is bijective.

In order to see (i), let a1, a2 ∈ Ax for some x ∈ V (Γ) such that f ′x(a1) = f ′x(a2). Then,

by the definition of f ′x we have that fx(a1)bx = fx(a2)bx for some bx ∈ Bf ′(x) = Bf(x).

But, this implies that fx(a1) = fx(a2) and we immediately have that a1 = a2 since F

is a covering.

As for the injectivity of the map induced on the links in (ii), suppose that

(a1Ae1 , e1), (a2Ae2 , e2) ∈ Lx(Γ, A) such that F ′x(a1Ae1) = F ′x(a2Ae2). Then, we have

that

(f ′x(a1)α′(e1)Bf ′(e1), f
′(e1)) = (f ′x(a2)α′(e2)Bf ′(e2), f

′(e2))

which implies that

(fx(a1)bxb−1
x α(e1)Bf(e1), f(e1)) = (fx(a2)bxb−1

x α(e2)Bf(e2), f(e2))

by the definitions of f ′, f ′x, and α′. The above step yields that f(e1) = f(e2) and

b−1
x fx(a1)α(e1)Bf(e1) = b−1

x fx(a2)α(e2)Bf(e2).
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Thus, we have that

fx(a1)α(e1)Bf(e1) = fx(a2)α(e2)Bf(e2)

yielding the fact that Fx(a1Ae1 , e1) = Fx(a2Ae2 , e1). Hence, the injectivity of Fx

implies that (a1Ae1 , e1) = (a2Ae2 , e2) and we have that F ′x is indeed injective.

As for the surjectivity of F ′x, let (bBe, e) ∈ Lf ′(x) = Lf(x). Then, (bxbBe, e) ∈

Lf ′(x) = Lf(x) as well. Now, since Fx is surjective, there exists (aAẽ, ẽ) ∈ Lx such that

Fx(aAẽ, ẽ) = (bxbBe, e). Thus, we have that

(fx(a)α(ẽ)Bf(ẽ), f(ẽ)) = (bxbBe, e)

which implies that

(bxf
′
x(a)α′(ẽ)Be, e) = (bxbBe, e).

From this equality, we see that bxf
′
x(a)α′(ẽ)Be = bxbBe yielding that f ′x(a)α′(ẽ)Be =

bBe. Thus, (aAẽ, ẽ) ∈ Lx such that F ′x(aAẽ, ẽ) = (bBe, e) and we have that Fx is

surjective. The proof of (4) is left to the reader.

Theorem 5.12. Two coverings Fi : (Γi, Ai)→ (∆, B) with Γi connected, i = 1, 2,

are equivalent if and only if, for some pair of vertices x1 ∈ V (Γ1) and x2 ∈ V (Γ2)

such that f1(x1) = f2(x2), we have that [F1 π(Γ1, A1, x1)]b0 = F2 π(Γ2, A2, x2) for some

element b0 ∈ Bfi(xi).

Proof. Suppose F1, F2 are equivalent coverings and let M : (Γ1, A1)→ (Γ2, A2)

be an isomorphism such that F2M and F1 are conjugate maps. Choose any ver-

tex x1 of Γ1 and let x2 = m(x1). Then by Lemma 5.9, [F1 π(Γ1, A1, x1)]b0 =

(F2M) π(Γ1, A1, x1) for some b0 ∈ Bf1(x1). However (F2M) π(Γ1, A1, x1) =

F2 π(Γ2, A2, x2) since M is an isomorphism.
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Conversely, assume that the condition holds for vertices vi ∈ V (Γi) and b0 ∈

Bfi(xi). Then by Theorem 5.10, there exists a map of graph of groups M1 : (Γ1, A1)→

(Γ2, A2) such that m1(x1) = x2 and F2M1 is conjugate to F1. Similarly, there exists

a map of graph of groups M2 : (Γ2, A2)→ (Γ1, A1) such that m2(x2) = x1 and F1M2

is conjugate to F2. We claim that M1 (likewise, M2) is an isomorphism.

The composition M2M1 is such that F1(M2M1) is conjugate to F1 since, by the

exercise (1) above, (F1M2)M1 is conjugate to F2M1 which is conjugate to F1; and

(m2m1)(x1) = x1. However the identity map Id on (Γ1, A1) also has this property.

So, by the uniqueness part of Theorem 5.10, M2M1 and Id are conjugate maps; whence

M2M1 is an isomorphism by the exercise (2) above. Therefore M1 has a left inverse,

namely (M2M1)−1M2.

Similarly, it follows that M1M2 is an isomorphism and we see that M2(M1M2)−1

is a right inverse of M1. Then, by a standard argument, (M2M1)−1M2 =

M2(M1M2)−1 = M−1
1 and M1 is an isomorphism. Hence F1 and F2 are equivalent

covering maps. �

5.5. Existence of coverings

There is a correspondence between connected coverings of a graph of groups

(∆, B) and subgroups of the fundamental group π(∆, B, y), for any vertex y of ∆,

which is completely analogous to the situation for coverings of topological spaces.

Theorem 5.13 (Existence of coverings). If F : (Γ, A)→ (∆, B) is a covering of

graphs of groups and x is any vertex of Γ with f(x) = y, then the induced homomor-

phism

F : π(Γ, A, x)→ π(∆, B, y)

is a monomorphism. Furthermore, if ∆ is connected and H is any subgroup of

π(∆, B, y), then there exists a covering F : (Γ, A) → (∆, B) where Γ is connected,
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and a vertex x of Γ such that f(x) = y and F π(Γ, A, x) = H; and any two such

coverings are equivalent.

Proof. The first part is an immediate consequence of Theorem 5.7. A proof of

the second part is given in Section 8.2. The third part is an immediate consequence

of Theorem 5.12. �
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CHAPTER 6

THE ]-CONSTRUCTION AND PROOF OF GENERAL

LIFTING

First we introduce a convenient construction (that we call the “sharp-

construction” or ]-construction) and see that it leads to an alternative way of de-

scribing conjugate maps.

6.1. The ]-construction

Given a graph of groups (Γ, A), we form a graph of groups (Γ], A) with an em-

bedded copy of (Γ, A) as follows. For each x ∈ V (Γ), let Ix be a non-empty index

set. Then V (Γ]) consists of the vertices of Γ together with a vertex x]i for each

x ∈ V (Γ) and each i ∈ Ix. The edge set E(Γ]) consists of the edges of Γ (with the

same sources and targets) together with an edge denoted [x, x]i] from x to x]i (and its

inverse), for each x ∈ V (Γ) and each i ∈ Ix. Denote the set of new vertices x]i by

V ](Γ) and the set of new edges [x, x]i]
±1 by E](Γ) so that V (Γ]) = V (Γ) ∪ V ](Γ) and

E(Γ]) = E(Γ) ∪ E](Γ), disjoint unions. We require that the groups and monomor-

phisms associated to Γ] agree with those assigned by A on Γ, and that the trivial

group be assigned to each new vertex x]i and edge [x, x]i]. (Since we are extending the

definition of A in this trivial way, we use the notation (Γ], A) and do not use A].) We

call (Γ], A) a trivial expansion of (Γ, A).

There is an obvious “projection” Ψ from P(Γ], A) onto P(Γ, A) that fixes every

path in P(Γ, A) and whose underlying “projection” ψ : Γ] → Γ fixes Γ and collapses
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each new edge [x, x]i] to its source vertex x.

P(Γ], A)
Ψ−−−→ P(Γ, A)y y

Γ]
ψ−−−→ Γ

It should be noted that ψ is not a map of graphs (as it maps new edges to vertices),

and thus Ψ is not a map of graphs of groups. However, it does map homotopic

paths to homotopic paths, and thus induces a homomorphism Ψ: π(Γ], A)→ π(Γ, A).

Furthermore, each section φ of the vertex mapping ψ : V ](Γ) → V (Γ) determines a

splitting Φ: π(Γ, A)→ π(Γ], A) of Ψ given by Φ([P ]) = [x, φ(x)]−1[P ][y, φ(y)], where

P is a path in (Γ, A) with source x and target y.

Now let G : (Σ, C)→ (Γ, A) be a map of graphs of groups and let (Σ], C), (Γ], A)

be trivial expansions of (Σ, C), (Γ, A). Then G can be extended to a map of graphs of

groups G] : (Σ], C)→ (Γ], A) in precisely the following ways: Extend the underlying

map of graphs g : Σ → Γ to a map g] : Σ] → Γ] by choosing for each new edge

[x, x]i] ∈ E](Σ) a new edge g]([x, x]i]) ∈ E](Γ) with source g(x). This completely

determines the map g]. Then to define G] with underlying map of graphs g] and

extending G, it is enough to define edge labels for the new edges of Σ]. Since all

new vertex and edge groups are trivial, for each [x, x]i] ∈ E](Σ) we can choose an

arbitrary element α]([x, x]i]) ∈ Ag(x) = Ag](x) as edge label. Of course, β]([x, x]i]) = 1

as Ag](x]i)
= 1.

The following simple observation says that each extension of G to a map

G] : (Σ], C)→ (Γ], A) corresponds to a conjugate of the map G.

Lemma 6.1. With the setup above, G is conjugate to a map G′ if and only if

there exists an extension of G to G] : (Σ], C)→ (Γ], A) such that G′ = ΨG]Φ, where

Ψ: π(Γ], A) → π(Γ, A) is the natural projection and Φ is a splitting of the natural

projection π(Σ], C)→ π(Σ, C).
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Proof. Let G] : (Σ], C)→ (Γ], A) be an extension of G and let G′ be the map of

graphs of groups determined by the composition

π(Σ, C)
Φ−−−→ π(Σ], C)

G]

−−−→ π(Γ], A)
Ψ−−−→ π(Γ, A).

For each x ∈ V (Σ), let x] = φ(x) and write ax = α]([x, x]]). Then for each path P

in (Σ, A), Φ([P ]) = [x, x]]−1[P ][y, y]] where x = s(P ) and y = t(P ). In particular,

if c ∈ Cx is a path of trivial length, then Φ(c) = [x, x]]−1c[x, x]] and G](Φ(c)) =

[g(x), g](x])]−1a−1
x gx(c)ax[g(x), g](x])] and Ψ(G](Φ(c))) = a−1

x gx(c)ax. It follows that

the homomorphism g′x : Cx → Ag(x) is given by g′x(c) = gx(c)
ax .

Similarly, if e ∈ E(Σ) say with s(e) = x and t(e) = y, then Φ(e) = [x, x]]−1e[y, y]]

and

G](Φ(e)) = [g(x), g](x])]−1a−1
x α(e)g(e)β(e)−1ay[g(y), g](y])]

and hence, Ψ(G](Φ(e))) = a−1
x α(e)g(e)β(e)−1ay. It follows that edge labels for G′ are

given by α′(e) = a−1
x α(e). It follows that G′ is the conjugate of G by the ax’s.

Conversely, assume that G′ is the map obtained by conjugating G by elements

ax ∈ Ag(x), x ∈ V (Σ). As noted above, we can construct an extension G] of G such

that α]([x, x]]) = ax for each x ∈ V (Σ); let g] : Σ] → Γ] be any extension of g and let

α]([x, x]i]) ∈ Ag(x) be arbitrarily chosen for all other new edges [x, x]i] ∈ E](Σ). Then

the first part of the proof shows that ΨG]Φ = G′, as required. �

Note that the image of the homomorphism Φ: π(Σ, C)→ π(Σ], C) consists only

of homotopy classes of paths joining vertices of V ](Σ) (i.e., new vertices). Denote the

subcategory of all paths in P(Σ], C) with sources and targets in V ](Σ) by P](Σ], C).

If G] : (Σ], C) → (Γ], A) is an extension of G : (Σ, C) → (Γ, A), then the induced

mapping G] : P(Σ], C) → P(Γ], A) obviously restricts to a mapping of P](Σ], C) to

P](Γ], A); we denote this restriction mapping by P](G]).
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The following is another useful way to characterize conjugate maps of graphs of

groups.

Lemma 6.2. Two maps of graphs of groups G1, G2 : (Σ, C) → (Γ, A) are conju-

gates of one another if and only if there exist extensions G]
1, G

]
2 : (Σ], C)→ (Γ], A) of

G1, G2 such that P](G]
1) = P](G]

2).

Proof. Assume that G2 is the conjugate of G1 by elements ax ∈ Ag(x), x ∈ V (Σ),

where g = g1 = g2 is the underlying map of graphs of G1 and G2. Let G]
1 : (Σ], C)→

(Γ], A) be any extension of G1. Then define an extension G]
2 : (Σ], C) → (Γ], A) of

G2, with the same underlying map of graphs g], by letting α]2([x, x]i]) = a−1
x α]1([x, x]i])

for each new edge [x, x]i] ∈ E](Σ). To show that P](G]
1) = P](G]

2), let P be a

path in (Γ, A) and let [x, x]i], [y, y
]
j] ∈ E](Σ), where x = s(P ) and y = t(P ). Write

P ] = [x, x]i]
−1P [y, y]j] ∈ P](Σ], C). Then

G]
2(P ]) = g]([x, x]i])

−1α]2([x, x]i])
−1G2(P )α]2([y, y]j])g

]([y, y]j])

= g]([x, x]i])
−1α]1([x, x]i])

−1axG2(P )a−1
y α]1([y, y]j])g

]([y, y]j])

= g]([x, x]i])
−1α]1([x, x]i])

−1G1(P )α]1([y, y]j])g
]([y, y]j])

= G]
1(P ])

as G2(P ) = a−1
x G1(P )ay by the proof of Lemma 5.9. Since P](Σ], C) is generated by

paths of the form P ], it follows that P](G]
1) = P](G]

2).

Conversely, assume that G]
1, G]

2 are extensions of G1, G2 such that P](G]
1) =

P](G]
2). For each x ∈ V (Σ), choose a vertex x] ∈ V ](Σ) adjacent to x. For c ∈ Cx,

write c] = [x, x]]−1c[x, x]]. Then c] ∈ P](Σ], C) and

G]
i(c

]) = g]i([x, x
]])−1α]i([x, x

]])−1(gi)x(c)α
]
i([x, x

]])g]i([x, x
]]).
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Thus α]1([x, x]])−1(g1)x(c)α
]
1([x, x]]) = α]2([x, x]])−1(g2)x(c)α

]
2([x, x]]) so that

(g2)x(c) = (g1)x(c)
ax , where ax = α]1([x, x]])α]2([x, x]])−1.

Similarly, for e ∈ E(Σ), consider the path e] = [x, x]]−1e[y, y]] ∈ P](Γ], C) where

x = s(e) and y = t(e). Then

G]
i(e

]) = g]i([x, x
]])−1α]i([x, x

]])−1αi(e)g(e)βi(e)
−1α]i([y, y

]])g]i([y, y
]]).

It follows that

α]1([x, x]])−1α1(e)g(e)β1(e)−1α]1([y, y]])

≡ α]2([x, x]])−1α2(e)g(e)β2(e)−1α]2([y, y]])

and hence, the edge labels on e can be adjusted so that

α]1([x, x]])−1α1(e) = α]2([x, x]])−1α2(e).

That is, we may assume that α2(e) = a−1
x α1(e) for all e ∈ E(Σ). Thus G1, G2 are

conjugate maps. �

The final observation we wish to make here is that the ]-construction is compatible

with covering maps, in the following sense.

Lemma 6.3. If F : (Γ, A)→ (∆, B) is a covering map of graphs of groups, and if

(∆], B) is a trivial expansion of (∆, B), then there exists a trivial expansion (Γ], A)

of (Γ, A) and an extension of F which is a covering map F ] : (Γ], A)→ (∆], B).

Proof. We consider only the simplest case in which associated to each vertex x

of ∆, there is only a single new vertex x] and thus also a single new edge [x, x]] (and

its inverse) in ∆]. The general case is similar.

Construct (Γ], A) as follows. For each x ∈ V (Γ), choose a transversal Tx for the

right cosets of the subgroup fx(Ax) in Bf(x); so Bf(x) = fx(Ax)Tx and every b ∈ Bf(x)
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is uniquely of the form b = fx(a)b′, where a ∈ Ax and b′ ∈ Tx. We assume, as we may,

that 1 = 1Bf(x)
∈ Tx for all x ∈ V (Γ). Let (Γ], A) be the associated trivial expansion

given by the ]-construction. That is, for each x ∈ V (Γ) and each b ∈ Tx, there is

a new vertex x]b and a new edge [x, x]b] (and its inverse) adjoined to Γ, to which A

associates the trivial group.

It remains to define an extension F ] : (Γ], A)→ (∆], B) of F which is also a cov-

ering map. First note that there is only one extension f ] : Γ] → ∆] of the underlying

map of graphs, namely the map satisfying f ]([x, x]b]) = [f(x), f(x)]]. Then let F ] be

the extension of F determined by the edge labels α]([x, x]b]) = b for each new edge

[x, x]b] in Γ]. We claim that F ] is a local bijection.

Note that for x ∈ V (Γ), it is enough to show that F ]
x : Lx(Γ

], A)→ Lf(x)(∆
], B)

is a bijection on the new parts of these links, since we already know that Fx, and

hence F ]
x, is a bijection on the old part. The new elements of Lx(Γ

], A) are of

the form (aA[x,x]b], [x, x
]
b]) = (a, [x, x]b]), for a ∈ Ax, b ∈ Tx, and F ]

x(a, [x, x
]
b]) =

(fx(a)α]([x, x]b]), f
]([x, x]b])) = (fx(a)b, [f(x), f(x)]]).

Suppose a1, a2 ∈ Ax and b1, b2 ∈ Tx are such that F ]
x(a1, [x, x

]
b1

]) = F ]
x(a2, [x, x

]
b2

]).

Then fx(a1)b1 = fx(a2)b2. However, Tx is a transversal for fx(Ax) in Bf(x), so b1 = b2

and fx(a1) = fx(a2). Moreover, fx is injective since F is a covering map. It follows

that (a1, [x, x
]
b1

]) = (a2, [x, x
]
b2

]) and hence, F ]
x is injective.

Now let (b, [f(x), f(x)]]) be a new element of Lf(x)(∆
], B). Since b ∈ Bf(x), it is

(uniquely) a product b = fx(a)b′, where a ∈ fx(Ax) and b′ ∈ Tx. Then (a, [x, x]b′ ]) ∈

Lx(Γ
], A) and F ]

x(a, [x, x
]
b′ ]) = (b, [f(x), f(x)]]). Hence F ]

x is surjective.

We have shown that F ] is locally bijective at each old vertex x ∈ V (Γ). At each

new vertex x] ∈ V (Γ]), Lx](Γ
], A) consists of a single element and clearly F ] is also

locally bijective at these vertices. �
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6.2. Proof of general lifting

We turn now to the proof of Theorem 5.10. The proof is long and consists of

lots of delicate verifications. In order to make it more manageable, we have broken

it down into a number of small steps.

6.2.1. Necessity of the lifting criterion. Suppose that G̃ exists. Then by

Lemma 5.9, there exists b0 ∈ Bf(u) such that [Gπ(Σ, C, v)]b0 = (FG̃)π(Σ, C, v) ⊆

F π(Γ, A, u); and we see that the condition is necessary for the existence of G̃. For

the remainder of the proof, assume conversely that this condition holds. By replacing

G by a conjugate map, we may assume that b0 = 1 and hence, we will assume that

Gπ(Σ, C, v) ⊆ F π(Γ, A, u).

6.2.2. Form a trivial expansion. Let (Σ], C), (∆], B) be the trivial expan-

sions of (Σ, C), (∆, B) with a single new vertex x] adjacent to each old vertex x.

Apply Lemma 6.3 to get a covering map F ] : (Γ], A) → (∆], B) which is an ex-

tension of F . Let g] : Σ] → ∆] be the unique extension of the underlying map

of graphs g : Σ → ∆ such that g]([x, x]]) = [g(x), g(x)]] for each x ∈ V (Σ).

Then let G] : (Σ], C) → (∆], B) be the the trivial extension of G with underlying

map of graphs g], i.e., the extension with all new edge labels trivial. Note that

g](v]) = g(v)] = f(u)] = f ](u]1), where the subscript 1 = 1Bf(u)
∈ Tf(u) by our con-

vention on the transversal. Also note that every loop in (Σ], C) at v] is homotopic

to a loop of the form [v, v]]−1P [v, v]], where P is a loop in (Σ, C) based at v, and

G]([v, v]]−1P [v, v]]) = [g(v), g(v)]]−1G(P )[g(v), g(v)]]. Similarly, every loop in (Γ], A)

at u]1 is homotopic to a loop of the form [u, u]1]−1Q[u, u]1], where Q is a loop in (Γ, A)

based at u, and F ]([u, u]1]−1Q[u, u]1]) = [f(u), f(u)]]−1F (Q)[f(u), f(u)]]. It follows

that

Gπ(Σ, C, v) ⊆ F π(Γ, A, u) ⇐⇒ G] π(Σ], C, v]) ⊆ F ] π(Γ], A, u]1).
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6.2.3. If P and Q are two paths in P](Σ], C) from the base vertex v] to a vertex

x], and if G̃](P ), G̃](Q) are the unique lifts of G](P ), G](Q) starting at u]1, then

G̃](P ) and G̃](Q) have the same target vertex. Thus, denoting this common target

vertex by g̃](x]), we get a well-defined mapping g̃] : V ](Σ) → V ](Γ) of new vertices

such that g̃](v]) = u]1 and f ]g̃] = g].

Since P](F ]) : P](Γ], A) → P](∆], B) has the unique path-lifting property and

homotopy lifting property by Theorems 5.5 and 5.7, we can proceed analogously as

in the topological theory of covering spaces. Let y] be the target of the path G̃](P )

and let R̃ be the unique lift of G](Q)−1 with source vertex y]. Then G̃](P )R̃ is a path

in (Γ], A) and

F ](G̃](P )R̃) = G](P )G](Q)−1 = G](PQ−1).

By our assumption that G] π(Σ], C, v]) ⊆ F ] π(Γ], A, u]1), there exists a loop S̃ in

(Γ], A) based at u]1 such that F ](S̃) ' G](PQ−1). By the homotopy lifting property,

G̃](P )R̃ ' S̃. Since S̃ is a loop, likewise G̃](P )R̃ must be a loop based at u]1. We

see that R̃−1 is a path in (Γ], A) starting at u]1 and F ](R̃−1) = F ](R̃)−1 = G](Q). So

by the unique path-lifting property, R̃−1 = G̃](Q). Therefore the target of G̃](Q) is

equal to s(R̃) = y], i.e., the same as the target of G̃](P ).

The mapping x] 7→ y] defined in the previous paragraph thus gives a well-defined

map g̃] : V ](Σ)→ V ](Γ) on new vertices.

6.2.4. General lifting for P](F ]) : P](Γ], A)→ P](∆], B).

P](Σ], C), v] P](∆], B)

P](Γ], A), u]1

......................................................................................................... ............
P](G])

................................................................................................................................................................................................................
.....
.......
.....

P](F ])

.........
....
.........
....
.........
....
.........
....
.........
....
.........
....
.........
....
.........
....
.........
....
.........
....
.........
....
............
............

P̃](G])
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There exists a unique homomorphism P̃](G]) : P](Σ], C) → P](Γ], A) whose un-

derlying map of vertices takes v] to u]1 and P](F ])P̃](G]) = P](G]). Further-

more, P̃](G]) preserves homotopy classes of paths and thus induces a homomorphism

P̃](G]) : π](Σ], C) → π](Γ], A), where π](Σ], C) is the sub-groupoid of π(Σ], C) con-

sisting of all homotopy classes of paths with sources and targets in V ](Σ) and similarly

for π](Γ], A).

To construct this lifted homomorphism (i.e., functor), first observe that the map-

ping x] 7→ y] defined in Step 3 gives a well-defined map g̃] : V ](Σ) → V ](Γ) on new

vertices (the map of objects of the small categories). Note that f ](g̃](x])) = g](x])

for all x] ∈ V ](Σ).

Then for each path P ∈ P](Σ], C) from x]1 to x]2, define P̃](G])(P ) = G̃](P ), the

unique lift of G](P ) in P](Γ], A) with source vertex g̃](x]1) (given by Theorem 5.5). To

see that the target of P̃](G])(P ) is g̃](x]2), note that Σ being connected implies that Σ]

is also connected. So there is a path Q in (Σ], C) from v] to x]1. By Step 3, the unique

lift G̃](Q) of G](Q) with source u]1 = g̃](v]) has target g̃](x]1). Hence G̃](Q)G̃](P )

is the unique lift of G](QP ) starting at u]1; so its target, which is also the target of

P̃](G])(P ), is g̃](x]2) by Step 3. Therefore P̃](G])(P ) is a path in (Γ], A) from g̃](x]1)

to g̃](x]2) (giving the required mapping of morphisms of the small categories).

To see that P̃](G]) is a homomorphism, let P be a path from x]1 to x]2 and let

Q be a path from x]2 to x]3. Then P̃](G])(P ) · P̃](G])(Q) and P̃](G])(PQ) are both

lifts of G](PQ) starting at g̃](x]1). Thus, by Lemma 5.3, P̃](G])(P ) · P̃](G])(Q) =

P̃](G])(PQ) and P̃](G]) is a homomorphism (i.e., functor of small categories).

The uniqueness of P̃](G]) also follows easily from Lemma 5.3. And our final

claim that P̃](G]) preserves homotopy classes of paths follows immediately from The-

orem 5.7.
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6.2.5. Existence of G̃. Consider the composition of homomorphisms

π(Σ, C)
Φ−−−→ π](Σ], C)

P̃](G])−−−−→ π](Γ], A)
Ψ−−−→ π(Γ, A)

where Ψ is the natural projection, Φ is the canonical splitting map of the natural

projection π(Σ], C) → π(Σ, C), and P̃](G]) is the homomorphism constructed in

Step 4. Note that this composite homomorphism maps V (Σ, C), E(Σ, C) to V (Γ, A),

E(Γ, A) and thus is a map of graphs of groups; denote it by G̃ : (Σ, C) → (Γ, A),

G̃ = ΨP̃](G])Φ. We claim that G̃ is a lift of G (up to conjugation) with g̃(v) = u.

First note that the underlying map of graphs is given on vertices by

ψg̃]φ : V (Σ) → V (Γ). So g̃(v) = ψ(g̃](φ(v))) = ψ(g̃](v])) = ψ(u]1) = u. Note

also that the underlying map of graphs g̃ : Σ→ Γ has a unique extension g̃] : Σ] → Γ]

such that g̃](x]) = g̃](x]) for each new vertex x] ∈ V ](Σ), where g̃] : V ](Σ) → V ](Γ)

is the underlying (object) mapping of P̃](G]) constructed in Step 3.

Next we let (G̃)] : (Σ], C)→ (Γ], A) be the trivial extension of G with underlying

map of graphs g̃]; and verify that (G̃)]Φ = P̃](G])Φ. To see this, let P be a path

in (Σ, C). Then simply note that Φ([P ]) = [P ]], where P ] = [x, x]]−1P [y, y]] for

x = s(P ) and y = t(P ), and that

(G̃)](P ]) = g̃]([x, x]])−1G̃(P )g̃]([y, y]])

' g̃]([x, x]])−1Ψ
(
P̃](G])(P ])

)
g̃]([y, y]])

= P̃](G])(P ]).

From our previous observation, Step 4, and the fact that G] is a trivial extension

of G, it follows that

Ψ
(
F ](G̃)]

)
Φ = ΨF ]P̃](G]) Φ = ΨP](G]) Φ = G.
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However, F ](G̃)] is an extension of FG̃; so FG̃ and G are conjugate maps by

Lemma 6.1.

Suppose H : (Σ, C) → (Γ, A) is a map of graphs of groups and let G = FH.

Then for each extension G] : (Σ], C) → (∆], B) of G, there exists an extension

H] : (Σ], C)→ (Γ], A) of H such that F ]H] = G].

(Σ], C) (∆], B)

(Γ], A)

................................................................................................................................................................ ............G]

................................................................................................................................................................................................................
.....
.......
.....

F ]

.........
....
.........
....
.........
....
.........
....
.........
....
.........
....
.........
....
.........
....
.........
....
.........
....
.........
....
.................
............

H]

Recall that to define the extension H] it is enough to specify an extension

h] : Σ] → Γ] of the underlying map of graphs h and to specify an element α]H([x, x]]) ∈

Ah(x) for each x ∈ V (Σ). We proceed as follows: for each x ∈ V (Σ), write the edge

label α]G([x, x]]) ∈ Bg(x) as its unique product α]G([x, x]]) = fh(x)(a)b, where a ∈ Ah(x)

and b ∈ Th(x). Then define

h](x]) = h(x)]b, h
]([x, x]]) = [h(x), h(x)]b], and α]H([x, x]]) = a.

Then we see that f ]h] = g], the unique extension of the underlying map of graphs

g of G, and that for each x ∈ V (Σ),

F ](H]([x, x]])) = F ](a[h(x), h(x)]b])

= fh(x)(a)α]F ([h(x), h(x)]b])[g(x), g(x)]]

= fh(x)(a)b[g(x), g(x)]]

= α]G([x, x]])[g(x), g(x)]] = G]([x, x]])
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Both being extensions of G, it follows that F ]H] = G], as required.

6.2.6. Uniqueness of G̃. Let G̃1, G̃2 : (Σ, C) → (Γ, A) be maps of graphs of

groups and let Gi = FG̃i, i = 1, 2. If G1, G2 are conjugate maps, then G̃1, G̃2 are

also conjugate maps.

(Σ, C) (∆, B)

(Γ, A)

........................................................................................................................................................................ ............
G1, G2

................................................................................................................................................................................................................
.....
.......
.....

F

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.............
............

G̃1, G̃2

First use Lemma 6.2 to get extensions G]
1, G]

2 of G1, G2 such that P](G]
1) =

P](G]
2). Then use Step 5 to get extensions G̃]

1, G̃]
2 of G̃1, G̃2 such that F ]G̃]

i = G]
i for

i = 1, 2. By the uniqueness part of Step 4, it must be that P](G̃]
1) = P](G̃]

2). Thus

ΨG̃]
1Φ = Ψ

(
P](G̃]

1)
)

Φ = Ψ
(
P](G̃]

2)
)

Φ = ΨG̃]
2Φ.

However, by Lemma 6.1, ΨG̃]
iΦ is conjugate to G̃i and hence G̃1 and G̃2 are conjugate

to one another. This completes the proof of Theorem 5.10.

We list some consequences of the theorem and its proof that will be useful later.

In what follows, for i = 1, 2, assume that Fi : (Γi, Ai)→ (∆, B) is a covering map and

let F ]
i : (Γ]i, Ai) → (∆], B) be a covering map which is an extension of Fi to trivial

expansions, where ∆] has only a single new vertex x] adjacent to each old vertex

x ∈ V (∆).

Corollary 6.4. Suppose Γ1, Γ2 are connected and let v]1, v]2 be new ver-

tices of Γ]1, Γ]2 such that f ]1(v]1) = f ]2(v]2). Then there exists a homomorphism

H : P](Γ]1, A1) → P](Γ]2, A2) such that h(v]1) = v]2 and F ]
2H = F ]

1 if and only if

F ]
1 π(Γ]1, A1, v

]
1) ⊆ F ]

2 π(Γ]2, A2, v
]
2); and if H exists, it is unique.
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P](Γ]1, A1), v]1

(∆], B)

P](Γ]2, A2), v]2
.............................................................................................................................................................................................................................................................. .......

.....

F ]
1

.........................................................................................................................................................................................................................................................
.....
............

F ]
2

............. ............. ............. ............. ............. ............. ............. ......................... ............
H

Corollary 6.5. If G : (Γ1, A1) → (Γ2, A2) is a map of graphs of groups such

that F2G = F1, then there exists an extension G] : (Γ]1, A1)→ (Γ]2, A2) of G such that

F ]
2G

] = F ]
1 .
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CHAPTER 7

COVERING TRANSFORMATIONS AND REGULAR

COVERINGS

In order to obtain comparable results to that in the theory of topological covering

spaces, we incorporate the ]-construction in our definition of covering transformations.

As before, given a covering map F : (Γ, A)→ (∆, B) of graphs of groups, let (∆], B) be

the trivial expansion with a single new vertex x] adjacent to each vertex x ∈ V (∆).

Then use Lemma 6.3, to construct a trivial expansion (Γ], A) and covering map

F ] : (Γ], A)→ (∆], B) extending F .

Definition 7.1. A covering transformation of F : (Γ, A) → (∆, B) is an auto-

morphism M : P](Γ], A)→ P](Γ], A) such that F ]M = F ].

P](Γ], A)

(∆], B)

P](Γ], A)
.............................................................................................................................................................................................................................................................. .......

.....

F ]

.........................................................................................................................................................................................................................................................
.....
............

F ]

............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............ ............
M

Theorem 7.2. Suppose Γ is connected and let v]1, v
]
2 ∈ f ]

−1
(x]), where x] is a

new vertex in V ](∆). Then there exists a covering transformation M : P](Γ], A) →

P](Γ], A) such that m(v]1) = v]2 if and only if F ] π(Γ], A, v]1) = F ] π(Γ], A, v]2); and if

M exists, it is unique.
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Proof. This follows immediately from Corollary 6.4 by a standard argument;

see, for example, [4, Corollary 5.6.5]. �

Using the unique path lifting and homotopy lifting properties, we can make the

fiber f ]
−1

(x]) over any new vertex x] ∈ V ](∆) into a right π(∆], B, x])-space in the

following standard way. For each v]1 ∈ f ]
−1

(x]) and [P ] ∈ π(∆], B, x]), let P̃ be the

unique lift of P with source v]1 given by Theorem 5.5. Since the target of P is also

equal to x], the target of P̃ is some vertex v]2 ∈ f ]
−1

(x]). Furthermore, the vertex

v]2 does not depend on the representative path taken in the homotopy class [P ] by

Theorem 5.7. Hence, it makes sense to define v]1 · [P ] = v]2. It is easily verified that

this defines a right group action of π(∆], B, x]) on the fiber f ]
−1

(x]); and by the

same arguments as for topological covering spaces we see that the π(∆], B, x])-space

f ]
−1

(x]) satisfies the following properties:

(1) The stabilizer of v] ∈ f ]−1
(x]) is the subgroup F ] π(Γ], A, v]).

(2) Covering transformations act as π(∆], B, x])-space automorphisms on

f ]
−1

(x]) .

(3) If Γ is connected, then π(∆], B, x]) acts transitively on f ]
−1

(x]).

We define regular coverings of graphs of groups in the same way as for topological

covering spaces: A covering F : (Γ, A) → (∆, B) of graphs of groups, where ∆ and

Γ are connected graphs, is called regular if F π(Γ, A, v) is a normal subgroup of

π(∆, B, f(v)). By the same argument as for coverings of path connected topological

spaces, this condition is independent of the choice of v ∈ V (Γ).

Lemma 7.3. If ∆ and Γ are connected, then the following conditions are equiva-

lent:

(1) F : (Γ, A)→ (∆, B) is a regular covering;

(2) F ] : (Γ], A)→ (∆], B) is a regular covering;
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(3) the group of covering transformations acts transitively on the fiber f ]
−1

(x])

for each x] ∈ V ](∆).

Proof. (1) ⇐⇒ (2): Let v ∈ V (Γ) and note that every loop P ] in (∆], B)

based at f(v) is homotopic to a loop P in (∆, B) based at f(v). Thus

π(∆, B, f(v)) ∼= π(∆
]

, B, f(v)).

Under this isomorphism, F (π(Γ, A, v)) corresponds to F
]
(π(Γ

]
, A, v)). Hence,

F (π(Γ, A, v)) / π(∆, B, f(v)) ⇐⇒ F
]

(π(Γ
]

, A, v)) / π(∆
]

, B, f(v)).

Therefore, (1) ⇐⇒ (2).

(2) ⇐⇒ (3): Let v] ∈ f ]
−1

(x]) and [P ] ∈ π(∆], B, x]). Then it is easy to

see that F ] π(Γ], A, v] · [P ]) = [F ] π(Γ], A, v])][P ]. So, by Theorem 7.2, there exists a

covering transformation M : P](Γ], A) → P](Γ], A) such that m(v]) = v] · [P ] if and

only if

[F ] π(Γ], A, v])][P ] = F ] π(Γ], A, v]).

The equivalence of (2) and (3) now follows since π(∆], B, x]) acts transitively on

f ]
−1

(x]), as Γ is connected. �

Theorem 7.4. If F : (Γ, A) → (∆, B) is a regular covering of connected graphs

of groups, then the group of covering transformations is isomorphic to the quotient

group π(∆, B, f(v))/F π(Γ, A, v) for any vertex v of Γ.

Proof. Let x = f(v). For each [P ] ∈ π(∆], B, f(v)]), observe that by Lemma 7.3

(3), there is a covering transformation M[P ] such that m[P ](v
]) = v] · [P ]; and M[P ] is
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unique by Theorem 7.2. If [P ], [Q] ∈ π(∆], B, x]), then by properties listed above

(m[P ]m[Q])(v
]) = m[P ](v

] · [Q]) = m[P ](v
]) · [Q]

= (v] · [P ]) · [Q] = v] · ([P ][Q]) = m[P ][Q](v
]).

Thus M[P ]M[Q] = M[P ][Q] by the uniqueness part of Theorem 7.2. That is, [P ] 7→M[P ]

is a homomorphism from π(∆], B, x]) to the group of covering transformations. This

homomorphism is onto since π(∆], B, x]) acts transitively on f ]
−1

(x]) and its kernel

is the stabilizer subgroup of v] which is F ] π(Γ], A, v]). Hence the group of covering

transformations is isomorphic to π(∆], B, x])/F ] π(Γ], A, v]). This latter quotient

group is isomorphic to π(∆, B, x)/F π(Γ, A, v) by a standard translation of base-point

isomorphism, and the result is established. �
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CHAPTER 8

A GENERALIZED BASS-SERRE THEORY

8.1. Covering maps associated to group actions

We begin by giving a method of constructing a graph of groups and covering

map associated to a given group action (by graph automorphisms) of a group G on

a graph Γ (acting on the left). We always assume, without further mention, that all

group actions are without edge inversions; that is, for all g ∈ G and all e ∈ E(Γ),

g · e 6= e. Then there is a unique way of making the quotient Γ/G into a graph such

that the quotient map g : Γ → Γ/G is a map of graphs. It is often more convenient

for our purposes to also make G act on the right of Γ using the equivalent right action

defined by

x · g = g−1 · x

for all x in Γ and g ∈ G. With this convention, we will sometimes write group

elements on the left and other times on the right, whichever is more suitable at the

time.

Choose a section σ of the orbit map g : Γ → Γ/G with the property that for all

e ∈ E(Γ/G),

s(σ(e)) = σ(s(e)).

(In many treatments of Bass-Serre theory, the choice of section is required to corre-

spond to a connected fundamental domain, which is done by first lifting a maximal

tree. However this is unnecessary, so we do not go to that length.) Notice that for

each e ∈ E(Γ/G), the edges σ(e) and σ(e) are in the same G-orbit. Thus, we can
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choose an element λ(e) ∈ G such that

σ(e) · λ(e) = σ (e) .

We require, as we may, that λ(e) = λ(e)−1.

Using σ : Γ/G → Γ and λ : E(Γ/G) → G, we construct a graph of groups

(Γ/G,Gσ) with underlying graph Γ/G as follows. For each y in Γ/G, let

(Gσ)y = Gσ(y) (the stabilizer subgroup).

Since G acts without inversions, for each e ∈ E(Γ/G), we see that (Gσ)e = Gσ(e) ⊆

Gσ(s(e)) = (Gσ)s(e); and we define the monomorphism (Gσ)e → (Gσ)t(e) via a 7→ ae

where

ae = aλ(e) = λ(e)−1aλ(e).

Note that

Ge
σ(e) = G

λ(e)
σ(e) = Gσ(e)·λ(e) = Gσ(e)·λ(e) = Gσ(e) ⊆ Gσ(s(e)) = Gσ(t(e))

and hence the image of a 7→ ae is indeed in Gσ(t(e)).

Now let H be a subgroup of G. Then the orbit map g : Γ→ Γ/G factors through

the orbit map h : Γ→ Γ/H via a unique map of graphs f : Γ/H → Γ/G.

Γ

Γ/H Γ/G

..................................................................................................................
.....
...........
.

h

......................................................................................................................
.
.......
.....

g

............. ............. ............. .................. ............
f

Restricting to the action of H on Γ, choose a section τ of the orbit map h : Γ→ Γ/H

and elements µ(e) ∈ H, for all e ∈ E(Γ/H), such that

µ(e) = µ(e)−1 and τ(e) · µ(e) = τ(e).

Then construct a graph of groups (Γ/H,Hτ ) from this data, as above.
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Theorem 8.1. There exists a commutative diagram of covering maps

Γ

(Γ/H,Hτ ) (Γ/G,Gσ)

.............................................................................................................................
....
............

H
................................................................................................................................. ........

....

G

........................................................................................................................ ............
F

such that the underlying maps of graphs of F , G, H are f , g, h; and when Γ is con-

nected, F : (Γ/H,Hτ )→ (Γ/G,Gσ) is a regular covering if and only if H is a normal

subgroup of G, in which case the group of covering transformations is isomorphic to

G/H.

Note that we are denoting the covering map from Γ to its quotient graph of

groups modulo G also by the symbol G. There should be no confusion caused by

doing this as it will always be clear from context which meaning of G is intended,

and similarly for H.

Proof. The proof is given in several parts.

8.1.1. Construction of the covering map F . We define a map of graphs of

groups F : (Γ/H,Hτ ) → (Γ/G,Gσ) with underlying map of graphs f : Γ/H → Γ/G

as follows. For x ∈ V (Γ/H), τ(x) and σ(f(x)) are in the same G-orbit of vertices of

Γ. So, there exists bx ∈ G such that

τ(x) · bx = σ(f(x)).

We do the same thing for the edges of Γ/H, but in a way that is compatible with λ

and µ, by first choosing an orientation E+(Γ/H) of the graph Γ/H. Then for each

e ∈ E+(Γ/H), choose be ∈ G such that

τ(e) · be = σ(f(e))
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and let be = µ(e)−1beλ(f(e)). Note that

τ(e) · be = τ(e) · µ(e)−1beλ(f(e))

= τ(e) · beλ(f(e))

= (τ(e) · be) · λ(f(e))

= σ(f(e)) · λ(f(e))

= σ(f(e)) = σ(f(e))

and that be = µ(e)beλ(f(e))−1 = µ(e)−1beλ(f(e)).

To summarize, for every z ∈ Γ/H (vertex or edge), we have chosen an element

bz ∈ G such that the following two properties hold:

(1) τ(z) · bz = σ(f(z));

(2) if z ∈ E(Γ/H), then bz = µ(z)−1bzλ(f(z)).

We use these choices of group elements (that translate between the two choices of

sections) to define the vertex homomorphisms and edge labels that determine F .

For x ∈ V (Γ/H), define the homomorphism fx : Hτ(x) → Gσ(f(x)) by fx(a) = abx .

Note that

fx(Hτ(x)) = Hbx
τ(x) = Hτ(x)·bx = Hσ(f(x)) ⊆ Gσ(f(x)),

as required; and also note that fx is injective.

Define edge labels αF = α : E(Γ/H) → V (Γ/G,Gσ) by α(e) = b−1
x be, where

x = s(e). Note that β(e) = α(e) = b−1
y be = b−1

y µ(e)−1beλ(f(e)), where y = t(e).
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Then for all e ∈ E(Γ/H) with s(e) = x, t(e) = y, and all c ∈ Hτ(e), we check that

σ(f(e)) · fx(c)α(e) = σ(f(e)) · cbxα(e)

= σ(f(e)) · b−1
e cbe

= τ(e) · cbe

= τ(e) · be = σ(f(e)),

yielding that fx(c)
α(e) ∈ Gσ(f(e)) and thus, one of the required conditions of Lemma 3.3

holds. To verify the other condition, observe further that

fx(c)
α(e)f(e) = cbxα(e)λ(f(e))

= cbeλ(f(e))

= cµ(e)byβ(e)

= (ce)byβ(e) = fy(c
e)β(e).

Thus, applying Lemma 3.3, we obtain a map of graphs of groups F : (Γ/H,Hτ ) →

(Γ/G,Gσ). We claim that F is a covering map.

For x ∈ V (Γ/H), define

τx : Lx(Γ/H,Hτ )→ Lτ(x)(Γ)

by τx(aHτ(e), e) = τ(e) · a−1. Since s(e) = x, a ∈ Hτ(x), and s(τ(e)) = τ(s(e)) = τ(x),

it follows that

s(τ(e) · a−1) = s(τ(e)) · a−1 = τ(x) · a−1 = τ(x),
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and hence τ(e) · a−1 ∈ Lτ(x)(Γ). The reader will note here that τx is a bijection as

well. Similarly, for y ∈ V (Γ/G), define

σy : Ly(Γ/G,Gσ)→ Lσ(y)(Γ)

by σy(bGσ(e), e) = σ(e) · b−1. The map σy is also a bijection.

Observe that for (aHτ(e), e) ∈ Lx(Γ/H,Hτ ) and y = f(x), we have that

σy(Fx(aHτ(e), e)) = σy(fx(a)α(e)Gσ(f(e)), f(e))

= σ(f(e)) · [fx(a)α(e)]−1

= σ(f(e)) · α(e)−1fx(a
−1)

= σ(f(e)) · α(e)−1b−1
x a−1bx

= σ(f(e)) · b−1
e a−1bx

= τ(e) · a−1bx

= τx(aHτ(e), e) · bx.

Thus, we have a commutative diagram:

Lτ(x)(Γ)
·bx−−−→ Lσ(y)(Γ)

τx

x xσy
Lx(Γ/H,Hτ )

Fx−−−→ Ly(Γ/G,Gσ)

It follows that Fx is a composition of bijections, and hence, is itself a bijection.

Therefore, F is a covering map.

8.1.2. Construction of the covering maps H and G. These are constructed

as special cases of the construction used for F , which is similar to the construction

of Bass [1]. We construct H first, applying our construction to h : Γ → Γ/H using

id : Γ → Γ and τ : Γ/H → Γ for the choices of sections. For each vertex or edge
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z ∈ Γ, we choose an elements az ∈ H (translating between the sections) such that

the following properties hold:

(1) z · az = τ(h(z));

(2) if z ∈ E(Γ), then az = azµ(h(z)).

Then applying our construction to this case gives us a covering map H : Γ →

(Γ/H,Hτ ) with underlying map of graphs h : Γ→ Γ/H.

Now for each z ∈ Γ, let bz = azbh(z) ∈ G, where az, bh(z) are the choices of

translating elements used in defining H, F . Note that for all z ∈ Γ,

(1) z · bz = σ(g(z)); and

(2) if z ∈ E(Γ), then bz = bzλ(g(z)).

For (1), we have that

z · bz = z · azbh(z)

= (z · az) · bh(z)

= τ(h(z)) · bh(z)

= σ(f(h(z)))

= σ(g(z)).

With regard to (2), we need to show that

z · bz = σ(g(z)).
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To this end,

z · bz = z · bzλ(g(z))

= z · bz · λ(g(z))

= σ(g(z)) · λ(g(z))

= σ(g(z))

= σ(g(z)).

Hence, these elements satisfy the required properties of translating elements for

constructing a covering map G : Γ → (Γ/G,Gσ) with underlying map of graphs

g : Γ → Γ/G (where the sections are id : Γ → Γ and σ : Γ/G → Γ). Furthermore,

by our choice of translating elements such that bz = azbh(z), for each z ∈ Γ, it follows

that FH = G, as desired.

8.1.3. Expanding the group action using the ]-construction. We show

that our ]-construction is compatible with the action of G on Γ. First form the trivial

expansion of (Γ/G,Gσ) with a single new vertex y] adjacent to each old vertex y of

Γ/G. Then form Γ] so that the fiber over each new vertex y] ∈ V ](Γ/G) is a copy of

the group G by taking

V ](Γ) = {y]b | y ∈ V (Γ/G) and b ∈ G}

and take [bσ(y), y]b] as the new edge attaching each new vertex y]b. Observe that the

action of G on Γ extends to an action on Γ] in an obvious way (by left multiplication):

for all b1, b2 ∈ G and y ∈ V (Γ/G),

b1 · y]b2 = y]b1b2 and b1 · [b2σ(y), y]b2 ] = [b1b2σ(y), y]b1b2 ]
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Also observe that Γ]/G = (Γ/G)] and that we have a commutative diagram of graphs

and maps:
Γ]

Γ]/H Γ]/G

..................................................................................................................
.....
...........
.

h]
......................................................................................................................

.
.......
.....

g]

................................................................................... ............
f ]

and the quotient maps h], g], f ] are extensions of h, g, f .

Next we apply the constructions in 8.1.1 and 8.1.2 to this expanded situation. By

taking some care in how we extend the sections τ , σ to the trivial expansions Γ]/H,

Γ]/G and in how we choose the translating elements between these sections, we can

ensure that the covering maps constructed agree with the earlier construction given

in Lemma 6.3. To begin, choose a right transversal Tx for the subgroup fx(Hτ(x)) of

Gσ(f(x)) for each x ∈ V (Γ/H). As always, we assume that the identity element of

Gσ(f(x)) is in Tx. The following observation is key.

Lemma 8.2. Let b ∈ G and y ∈ V (Γ/G). Then there exists a unique triple of

elements a′ ∈ H, x ∈ V (Γ/H), b′ ∈ Tx such that f(x) = y and

b = a′bxb
′.

Proof. Existence: Let x = h(bσ(y)). Then f(x) = g(bσ(y)) = y and τ(x) is in

the same H-orbit as bσ(y). So there exists a ∈ H such that aτ(x) = bσ(y). Thus

bσ(f(x)) = aτ(x) = abxσ(f(x)) and we see that b = abxb0 for some b0 ∈ Gσ(f(x)).

Write b0 = fx(a0)b′, where a0 ∈ Hτ(x) and b′ ∈ Tx. Then b = abxfx(a0)b′ = aa0bxb
′ =

a′bxb
′, where a′ = aa0 ∈ H, x ∈ V (Γ/H), and b′ ∈ Tx, as required.

Uniqueness: Suppose a′′ ∈ H, x′ ∈ V (Γ/H), b′′ ∈ Tx′ is another such triple. Note

that bσ(y) = a′bxb
′σ(f(x)) = a′bxσ(f(x)) = a′τ(x) and likewise that bσ(y) = a′′τ(x′).

So x = h(a′τ(x)) = h(bσ(y)) = h(a′′τ(x′)) = x′ and a′τ(x) = a′′τ(x). Thus (a′′)−1a′ ∈
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Hτ(x). Now a′bxb
′ = b = a′′bxb

′′ and hence

b′′ = b−1
x a0bxb

′ = fx(a0)b′

where a0 = (a′′)−1a′ ∈ Hτ(x) and b′, b′′ ∈ Tx. However, Tx is a right transversal for

fx(Hτ(x)) ≤ Gσ(f(x)) and fx is injective. So b′ = b′′ and a0 = 1; whence also a′ = a′′

and uniqueness follows. �

If follows immediately from the lemma that every H-orbit of vertices of Γ] con-

tains a unique vertex of the form f(x)]bxb′ , where x ∈ V (Γ/H) and b′ ∈ Tx; we

identify this orbit with x]b′ and define τ(x]b′) = f(x)]bxb′ . Similarly, each H-orbit

of edges (directed from old vertices to new vertices) contains a unique edge of the

form [bxσ(f(x)), f(x)]bxb′ ] = [τ(x), f(x)]bxb′ ], where x ∈ V (Γ/H) and b′ ∈ Tx; iden-

tify this orbit with [x, x]b′ ] and define τ([x, x]b′ ]
±1) = [τ(x), f(x)]bxb′ ]

±1. In this way,

we have identified Γ]/H with (Γ/H)] and extended τ to a section of the obit map

h] : Γ] → Γ]/H. Since τ([x, x]b′ ]
−1) = τ([x, x]b′ ])

−1, we can take µ([x, x]b′ ]) = 1 on new

edges.

Extend σ to new vertices and edges by σ(y]) = y]1 and σ([y, y]]±1) = [σ(y), y]1]±1,

where subscripts 1 = 1G. Since σ([y, y]]−1) = σ([y, y]])−1, we can take λ([y, y]]) = 1

on new edges.

SinceG acts freely on the new vertices and edges of Γ], the trivial group is assigned

byGσ, Hτ to each new vertex and new edge. It follows that (Γ]/G,Gσ), (Γ]/H,Hτ ) are

trivial expansions of (Γ/G,Gσ), (Γ/H,Hτ ). To define F ] : (Γ]/G,Gσ)→ (Γ]/H,Hτ ),

it remains to choose the translating elements between the sections τ and σ for each

new vertex x]b′ and new edge [x, x]b′ ] of Γ]/H. For this, we take b(x]b′) = b([x, x]b′ ]
±1) =

bxb
′ ∈ G. Note that τ(x]b′) · b(x

]
b′) = σ(f ](x]b′)) and τ([x, x]b′ ]

±1) · b([x, x]b′ ]±1) =

σ(f ]([x, x]b′ ]
±1)). Hence, by the construction in 8.1.1, we get a covering map F ]
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extending F . Since each α]F ([x, x]b′ ]) = b−1
x b([x, x]b′ ]) = b−1

x (bxb
′) = b′, it follows that

F ] is the same extension of F given by the construction of Lemma 6.3.

Finally, given b ∈ G and y ∈ V (Γ/G), apply the lemma to get unique a′ ∈ H,

x ∈ V (Γ/H), b′ ∈ Tx such that f(x) = y and b = a′bxb
′. Then define the translating

elements a(y]b) = a([bσ(y), y]b]
±1) = a′ ∈ H and b(y]b) = b([bσ(y), y]b]

±1) = b ∈ G. Then

the reader can easily verify that z · az = τ(h](z)) and z · bz = σ(g](z)) also hold for

all new vertices and edges of Γ]. Hence, by the construction in 8.1.2, we get covering

maps H], G] extending H, G. Furthermore, we have chosen the translating elements

such that azbf(z) = bz for each vertex or edge z of Γ]. Therefore F ]H] = G].

Γ]

(Γ]/H,Hτ ) (Γ]/G,Gσ)

.............................................................................................................................
....
............

H]

................................................................................................................................. ........
....

G]

.............................................................................................................. ............F ]

8.1.4. Homomorphism induced by λ and the action of π(Γ]/G,Gσ, y
])

on the fiber g]
−1

(y]). The function λ : E(Γ]/G) → G together with the inclusions

Gσ(y) ↪→ G, y ∈ Γ]/G, preserve the defining relations ece = ce, e ∈ E(Γ]/G), c ∈

Gσ(e), and thus determine a homomorphism of groupoids, which we also denote by

λ : π(Γ]/G,Gσ) → G. For any vertex y ∈ V (Γ]/G), let λy : π(Γ]/G,Gσ, y) → G

denote the homomorphism of groups obtained by the restriction of λ.

Note that the fiber of the map g] over any new vertex y] ∈ V ](Γ/G) is of the

form

g]
−1

(y]) = {y]b | b ∈ G}

which can be viewed as a copy of the group G. We make the following observations:

(1) The action of π(Γ]/G,Gσ, y
]) on the fiber g]

−1
(y]) is given by the com-

position of λy] followed by right multiplication in G; that is, for each
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[P ] ∈ π(Γ]/G,Gσ, y
]) and y]b ∈ g]

−1
(y]), we have that y]b · [P ] = y]b′ , where

b′ = bλy]([P ]).

(2) The homomorphism λy : π(Γ/G,Gσ, y)→ G is onto and Γ/G is connected if

and only if Γ is connected.

To see (1), let P be a path in (Γ]/G,Gσ) whose underlying path in Γ]/G is a

loop at y] and let b ∈ G. Then, by Theorem 5.5, there is a unique lift of P to a path

P̃ in Γ] with source y]b. Assume that P̃ = e1e2 · · · en and let vi = t(ei) = s(ei+1); and

note that v0 = y]b and vn = y]b′ for some b′ ∈ G. Then y]b · [P ] = y]b′ and

P = G](P̃ ) ≡ b0g(e1)b1g(e2)b2 · · · g(en)bn

where b0 = αG(e1) = b−1
v0
be1 = b−1be1 as v0 = y]b; bn = β(en)−1 = λ(g(en))−1b−1

en bvn =

λ(g(en))−1b−1
en b
′ as vn = y]b′ ; and for 1 ≤ i ≤ n − 1, bi = βG(ei)

−1αG(ei+1) =

λ(g(ei))
−1b−1

ei
bei+1

since αG(ei+1) = b−1
vi
bei+1

and βG(ei) = b−1
vi
beiλ(g(ei)). Thus, we

see that

λy]([P ]) = b0λ(g(e1))b1λ(g(e2))b2 · · ·λ(g(en))bn = b−1b′.

Hence b′ = bλy]([P ]) and (1) is established.

Next observe that λy is onto iff λy] : π(Γ]/G,Gσ, y)→ G is onto; Γ is connected

iff Γ] is connected; and Γ/G is connected iff Γ]/G is connected. Thus to prove (2), it

suffices to prove the corresponding statement for the graph Γ] and vertex y].

To this end, assume first that λy] is an onto map and that Γ]/G is connected.

Then it follows immediately from (1) that the fiber g]
−1

(y]) lies in a single component

of Γ]. Also note that if P is a path in (Γ]/G,Gσ) from some new vertex z] to y],

then there is a lift of P joining each vertex in g]
−1

(z]) to a vertex in g]
−1

(y]). Since

Γ]/G is connected, it follows that all new vertices of Γ] lie in the same component as

g]
−1

(y]). Since every old vertex is joined to a new vertex by an edge, we see that Γ]

is connected.
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Conversely, assume that Γ] is connected. Then for each b ∈ G, there is a path p

in Γ] from y]1 to y]b. Since g](y]1) = g](y]b) = y], we see that G]([p]) ∈ π(Γ]/G,Gσ, y
])

and y]1 · G]([p]) = y]b. Thus, by (1), it follows that b = 1 · λy](G]([p])). Hence λy] is

onto; and certainly the quotient graph Γ]/G is connected.

8.1.5. F π(Γ/H,Hτ , x) = λ−1
f(x)(H

bx). First, for any b′ ∈ Tx, we show that

F ] π(Γ]/H,Hτ , x
]
b′) = λ−1

f(x)]
(Hbxb′). Let [P ] ∈ π(Γ]/G,Gσ, f(x)]). Since x]b′ is in

the H-orbit of the vertex f(x)]bxb′ in Γ], it follows that [P ] ∈ F ] π(Γ]/H,Hτ , x
]
b′) if

and only if f(x)]bxb′ and f(x)]bxb′ · [P ] are in the same H-orbit. By 8.1.4(1), this is the

case if and only if there exists a ∈ H such that abxb
′ = bxb

′λf(x)]([P ]); or equivalently

λf(x)]([P ]) ∈ Hbxb′ , and our assertion follows.

Now consider the commutative diagram

π(Γ]/H,Hτ , x
]
1)

F ]

−−−→ π(Γ]/G,Gσ, f(x)])
λ
f(x)]−−−→ G

ad[x,x]1]

x ad[f(x),f(x)]]

x x=

π(Γ/H,Hτ , x)
F−−−→ π(Γ/G,Gσ, f(x))

λf(x)−−−→ G

where we have taken b′ = 1 ∈ Tx. The vertical maps are isomorphisms and we have

shown that the image of F ] is λ−1
f(x)]

(Hbx). It follows that the image of F is λ−1
f(x)(H

bx),

as required.

8.1.6. If Γ is connected, then F : (Γ/H,Hτ )→ (Γ/G,Gσ) is a regular cov-

ering if and only if H is a normal subgroup of G; and in this case the

group of covering transformations is isomorphic to G/H and the following

sequence is exact for any x ∈ V (Γ/H).

1→ π(Γ/H,Hτ , x)
F−−−→ π(Γ/G,Gσ, f(x))

λf(x)−−−→ G/H → 1

Here λf(x) is the composition of λf(x) and the quotient map G→ G/H.
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This follows immediately from Theorem 5.12, 8.1.5, 8.1.4(2), and Theorem 7.4.

This completes the proof of Theorem 8.1. �

One of the main theorems of Bass-Serre Theory follows from the case when H is

the trivial subgroup of G.

Corollary 8.3 (Main Theorem of Bass-Serre Theory). Let G be a group acting

on a connected graph Γ. Then the sequence

1→ π(Γ, x)
G−−−→ π(Γ/G,Gσ, f(x))

λf(x)−−−→ G→ 1

is exact for any vertex x of Γ. In particular, Γ is a tree if and only if λf(x) is an

isomorphism.

Remark 8.4 (Uniqueness of the associated covering). For i = 1, 2, let σi be a

section of the orbit map g : Γ→ Γ/G and let λi(e) ∈ G, for all e ∈ E(Γ/G), be group

elements satisfying:

λi(e) = λi(e)
−1 and σi(e) · λi(e) = σi(e);

likewise, let τi be a section of the orbit map h : Γ → Γ/H and let µi(e) ∈ H, for all

e ∈ E(Γ/H), be group elements satisfying:

µi(e) = µi(e)
−1 and τi(e) · µi(e) = τi(e).

Let Fi : (Γ/H,Hτi)→ (Γ/G,Gσi) be a covering map obtained by choosing translating

elements between the sections τi and σi using the construction of 8.1.1. Then there

exists a commutative diagram

(Γ/H,Hτ1)
M−−−→ (Γ/H,Hτ2)

F1

y yF2

(Γ/G,Gσ1)
N−−−→ (Γ/G,Gσ2)
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where M and N are isomorphisms of graphs of groups.

8.2. Proof of the existence of coverings

The proof is long and involved, and thus we will again break it up into steps as

we did before with the general lifting proof.

8.2.1. Define λ : π(∆, B)→ π(∆, B, y0). Let (∆, B) be a graph of groups where

∆ is connected. Now, we fix a vertex y0 ∈ V (∆) with the goal of defining a map

λ : π(∆, B)→ G

where G = π(∆, B, y0). To begin, choose a maximal tree T in ∆, and for each

y ∈ V (∆), define

λ : By → G by

λ(b) = p−1
y bpy,

where py is the unique reduced path in T from y to y0. Now, for each e ∈ E(∆),

define

λ(e) = p−1
y1
epy2 ,

where y1 = s(e) and y2 = t(e). Then for each e ∈ E(∆) and c ∈ Be we have that

λ(e)λ(c)λ(e) = (p−1
y2
epy1)(p

−1
y1
cpy1)(p

−1
y1
epy2)

= p−1
y2

(ece)py2

= p−1
y2
cepy2

= λ(ce).

Similarly, for all y ∈ V (∆) and b, b′ ∈ By,

λ(b)λ(b′) = (p−1
y bpy)(p

−1
y b′py) = p−1

y bb′py = λ(bb′).
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Thus, a groupoid homomorphism, λ : π(∆, B) → G is induced where

λy0 : π(∆, B, y0)→ G is the identity map.

8.2.2. Construct the graph ∆×G. Let ∆×G be the graph with

V (∆×G) = V (∆)×G and E(∆×G) = E(∆)×G.

Furthermore, for (e, g) ∈ E(∆×G), define

s(e, g) = (s(e), g); t(e, g) = (t(e), gλ(e)); and (e, g) = (e, gλ(e)).

In order to see the last portion of the statement above, note that

s((e, g)) = s(e, gλ(e)) = (s(e), gλ(e)) = (t(e), gλ(e)) = t(e, g), and

t((e, g)) = t(e, gλ(e)) = (t(e), g) = (s(e), g) = s(e, g).

Note also that G acts on ∆×G (on the left) by b′ · (z, b) = (z, b′b) for all z ∈ ∆ and

b, b′ ∈ G.

8.2.3. Define a quotient graph Γ = ∆×B G. To begin, we say that (z1, b1) ∼

(z2, b2) if z1 = z2 and b1λ(b) = b2 for some b ∈ Bzi , where i = 1, 2. This equivalence

respects the G-action. To see this, first note that b′·(z1, b1) = (z1, b
′b1) and b′·(z2, b2) =

(z2, b
′b2). Thus, if (z1, b1) ∼ (z2, b2), then z1 = z2 = z, say, and b1λ(b) = b2 for some

b ∈ Bz. Hence, b′b1λ(b) = b′b2 yielding that (z1, b
′b1) ∼ (z2, b

′b2). So, the action of G

projects to an action on Γ, with

b′ · [z, b] = [z, b′b].

Note then that Γ/G = ∆ via the identification G([z, b]) = z.

Now, define a section σ of the orbit map g : Γ→ ∆ by σ(z) = [z, 1], where 1 ∈ G.

Thus, we have that Gσ(z) = {b ∈ G | b · [z, 1] = [z, 1]}, and

b · [z, 1] = [z, 1] ⇔ (z, b) ∼ (z, 1)

⇔ 1 · λ(b′) = b,
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for some b′ ∈ Bz. But, this is true if and only if b ∈ λ(Bz). Hence,

Gσ(z) = λ(Bz) ≤ G.

Identifying Bz with its image λ(Bz) = Gσ(z) we see that

(Γ/G,Gσ) = (∆, B).

8.2.4. Γ is a tree (the Bass-Serre tree). Since ∆ is connected and λy0 is an

isomorphism (hence a surjection), by 8.1.4(2), Γ is connected. Hence, Γ is a tree by

Corollary 8.3.

8.2.5. Define an appropriate covering F : (Γ/H,Hτ )→ (Γ/G,Gσ) = (∆, B),

where H ≤ π(∆, B, y0) = G. To this end, let H be any subgroup of G. We desire to

define the above covering in such a way that Fπ(Γ/H,Hτ , x0) = H for appropriate

choice of section τ of the orbit map h : Γ → Γ/H and vertex x0 ∈ V (Γ/H) where

f(x0) = y0. To begin, choose x0 = h([y0, 1]). Then, if h : Γ→ Γ/H is the orbit map,

we have that

f(x0) = (fh)[y0, 1] = g[y0, 1] = y0.

Now, we choose τ such that τ(x0) = [y0, 1] = σ(y0) and take bx0 = 1 ∈ G. Then,

τ(x0) · bx0 = σ(f(x0)).

Hence, by 8.1.5,

Fπ(Γ/H,Hτ , x0) = λ−1
f(x0)(H

bx0 )

= λ−1
y0

(H)

= H,

since λy0 is the identity.
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